Skip to main content

Biology of Renal Cell Carcinoma (Vascular Endothelial Growth Factor, Mammalian Target of Rapamycin, Immune Aspects)

  • Chapter
  • First Online:
Renal Cell Carcinoma

Part of the book series: Current Clinical Urology ((CCU))

  • 1880 Accesses

Abstract

The current approach of targeted therapies for renal cell carcinoma (RCC) is centralized on two pathways largely responsible for the progression of RCC. This chapter will explore the biology of RCC, the effects of disrupting conserved pathways in advanced RCC, and a look into the current targeted therapies for these main regulatory pathways. Clear cell renal cell carcinoma pathophysiology is largely characterized by loss of the tumor suppressor von Hippel–Lindau (VHL) gene and the subsequent disruption of the hypoxia-inducible factor (HIF) pathway. It is the regulation and delicate balance of proper gene induction and protein expression that maintains a normal physiological state in the kidney; this chapter will explore the regulation of the vascular endothelial growth factor (VEGF) and mammalian target of rapamycin (mTOR) pathways as well as what perturbations stemming from VHL loss or mutation can result in advanced RCC. Finally, we will touch on the immunologic monitoring of RCC and the opportunities related to manipulating the immune system for treating patients with advanced RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong KR, Woodward ER, Killick P, Lim C, Macdonald F, Maher ER. Genotype–phenotype correlations in von Hippel Lindau disease. Hum Mutat. 2007;28(2):143–9.

    PubMed  CAS  Google Scholar 

  2. Zbar B. Von Hippel–Lindau disease and sporadic renal cell carcinoma. Cancer Surv. 1995;25:219.

    PubMed  CAS  Google Scholar 

  3. Zbar B, Kishida T, Chen F, et al. Germline mutations in the Von Hippel–Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat. 1996;8(4):348–57.

    PubMed  CAS  Google Scholar 

  4. Crossey PA, Richards FM, Foster K, et al. Identification of intragenic mutations in the Von Hippel–Lindau disease tumour suppressor gene andcorrelation with disease phenotype. Hum Mol Genet. 1994;3(8):1303.

    PubMed  CAS  Google Scholar 

  5. Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317.

    PubMed  CAS  Google Scholar 

  6. Clifford SC, Cockman ME, Smallwood AC, et al. Contrasting effects on HIF-1 regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum Mol Genet. 2001;10(10):1029.

    PubMed  CAS  Google Scholar 

  7. Linehan W, Lerman M, Zbar B. Identification of the VHL gene: its role in renal carcinoma. JAMA. 1995;273(7):564–70.

    PubMed  CAS  Google Scholar 

  8. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68(4):820.

    PubMed  Google Scholar 

  9. Hamano K, Esumi M, Igarashi H, et al. Biallelic inactivation of the von Hippel–Lindau tumor suppressor gene in sporadic renal cell carcinoma. J Urol. 2002;167(2):713–7.

    PubMed  CAS  Google Scholar 

  10. Duan DR, Pause A, Burgess WH, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995;269(5229):1402.

    PubMed  CAS  Google Scholar 

  11. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin Jr WG. Binding of the von Hippel–Lindau tumor suppressor protein to elongin B and C. Science. 1995;269(5229):1444.

    PubMed  CAS  Google Scholar 

  12. Kamura T, Koepp D, Conrad M, et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science. 1999;284(5414):657.

    PubMed  CAS  Google Scholar 

  13. Pause A, Lee S, Worrell RA, et al. The von Hippel–Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA. 1997;94(6):2156.

    PubMed  CAS  Google Scholar 

  14. Lonergan KM, Iliopoulos O, Ohh M, et al. Regulation of hypoxia-inducible mRNAs by the von Hippel–Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol. 1998;18(2):732.

    PubMed  CAS  Google Scholar 

  15. Clifford SC, Astuti D, Hooper L, Maxwell PH, Ratcliffe PJ, Maher ER. The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma. Oncogene. 2001;20(36):5067.

    PubMed  CAS  Google Scholar 

  16. Maxwell PH, Wiesener MS, Chang GW, et al. The tumor suppressor protein VHL targets hypoxia inducible factores for oxygen-dependent proteolysis. Development. 1995;121:4005–16.

    Google Scholar 

  17. Knauth K, Bex C, Jemth P, Buchberger A. Renal cell carcinoma risk in type 2 von Hippel–Lindau disease correlates with defects in pVHL stability and HIF-1 interactions. Oncogene. 2005;25(3):370–7.

    Google Scholar 

  18. Maxwell P, Wiesener M, Chang G, et al. The tumour suppressor protein VHL targets hypoxia inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    PubMed  CAS  Google Scholar 

  19. Cockman ME, Masson N, Mole DR, et al. Hypoxia inducible factor- binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J Biol Chem. 2000;275(33):25733.

    PubMed  CAS  Google Scholar 

  20. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1 alpha}(HIF-1 {alpha}) and HIF-2 {alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361.

    PubMed  CAS  Google Scholar 

  21. Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc Natl Acad Sci USA. 1996;93(20):10595.

    PubMed  CAS  Google Scholar 

  22. Zimmer M, Doucette D, Siddiqui N, Iliopoulos O. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL−/−tumors. Mol Cancer Res. 2004;2(2):89–95.

    PubMed  CAS  Google Scholar 

  23. Kondo K, Kim WY, Lechpammer M, Kaelin Jr WG. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 2003;1(3):E83.

    PubMed  Google Scholar 

  24. Raval RR, Lau KW, Tran MGB, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25(13):5675.

    PubMed  CAS  Google Scholar 

  25. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;56(3):794–814.

    PubMed  CAS  Google Scholar 

  26. Gordan JD, Lal P, Dondeti VR, et al. HIF-[alpha] effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell. 2008;14(6):435–46.

    PubMed  CAS  Google Scholar 

  27. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2 [alpha] promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11(4):335–47.

    PubMed  CAS  Google Scholar 

  28. Michaelson I. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK. 1948;68:137–80.

    Google Scholar 

  29. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306.

    PubMed  CAS  Google Scholar 

  30. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246(4935):1309.

    PubMed  CAS  Google Scholar 

  31. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161(2):851–8.

    PubMed  CAS  Google Scholar 

  32. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci. 2005;109:227–41.

    PubMed  CAS  Google Scholar 

  33. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266(18):11947.

    PubMed  CAS  Google Scholar 

  34. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.

    PubMed  CAS  Google Scholar 

  35. Paavonen K, Mandelin J, Partanen T, et al. Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium. J Rheumatol. 2002;29(1):39.

    PubMed  CAS  Google Scholar 

  36. Kukk E, Lymboussaki A, Taira S, et al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 1996;122(12):3829.

    PubMed  CAS  Google Scholar 

  37. Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1 hypoxia response element VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 2000;60(22):6248.

    PubMed  CAS  Google Scholar 

  38. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359(6398):843–5.

    PubMed  CAS  Google Scholar 

  39. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science. 2002;295(5556):858.

    PubMed  CAS  Google Scholar 

  40. Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE. Structural basis for Hif-1/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci USA. 2002;99(8):5271.

    PubMed  CAS  Google Scholar 

  41. Kobayashi A, Numayama-Tsuruta K, Sogawa K, Fujii-Kuriyama Y. CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt). J Biochem. 1997;122(4):703.

    PubMed  CAS  Google Scholar 

  42. Olenyuk BZ, Zhang GJ, Klco JM, Nickols NG, Kaelin Jr WG, Dervan PB. Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist. Proc Natl Acad Sci USA. 2004;101(48):16768.

    PubMed  CAS  Google Scholar 

  43. Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270(22):13333.

    PubMed  CAS  Google Scholar 

  44. Damert A, Machein M, Breier G, et al. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res. 1997;57(17):3860.

    PubMed  CAS  Google Scholar 

  45. Levy AP, Levy NS, Goldberg MA. Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel–Lindau protein. J Biol Chem. 1996;271(41):25492.

    PubMed  CAS  Google Scholar 

  46. Stein I, Neeman M, Shweiki D, Itin A, Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol. 1995;15(10):5363.

    PubMed  CAS  Google Scholar 

  47. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem. 1996;271(5):2746.

    PubMed  CAS  Google Scholar 

  48. Liu H, Brannon AR, Reddy AR, et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell renal cell carcinoma. BMC Syst Biol. 2010;4(1):51.

    PubMed  Google Scholar 

  49. Liu L, Simon MC. Regulation of transcription and translation by hypoxia. Cancer Biol Ther. 2004;3(6):492.

    PubMed  CAS  Google Scholar 

  50. Poltorak Z, Cohen T, Sivan R, et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem. 1997;272(11):7151.

    PubMed  CAS  Google Scholar 

  51. Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 1986;46(11):5629.

    PubMed  CAS  Google Scholar 

  52. Collins P, Connolly D, Williams T. Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br J Pharmacol. 1993;109(1):195.

    PubMed  CAS  Google Scholar 

  53. Roberts W, Palade G. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995;108:2369.

    PubMed  CAS  Google Scholar 

  54. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146(5):1029.

    PubMed  CAS  Google Scholar 

  55. Wu H, Huang Q, Yuan Y, Granger HJ. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol. 1996;271(6):H2735.

    PubMed  CAS  Google Scholar 

  56. Hippenstiel S, Krull M, Ikemann A, Risau W, Clauss M, Suttorp N. VEGF induces hyperpermeability by a direct action on endothelial cells. Am J Physiol. 1998;274(5):L678.

    PubMed  CAS  Google Scholar 

  57. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med. 1995;333(26):1757.

    PubMed  CAS  Google Scholar 

  58. Brattström D, Bergqvist M, Larsson A, et al. Basic fibroblast growth factor and vascular endothelial growth factor in sera from non-small cell lung cancer patients. Anticancer Res. 1998;18(2A):1123–7.

    PubMed  Google Scholar 

  59. Guidi A. Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst. 1995;87(16):1237.

    PubMed  CAS  Google Scholar 

  60. Gasparini G, Bonoldi E, Gatti C, et al. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst. 1997;89(2):139.

    PubMed  CAS  Google Scholar 

  61. Yamamoto Y, Toi M, Kondo S, et al. Concentrations of vascular endothelial growth factor in the sera of normal controls and cancer patients. Clin Cancer Res. 1996;2(5):821.

    PubMed  CAS  Google Scholar 

  62. Li XF, Gregory J, Ahmed A. Immunolocalisation of vascular endothelial growth factor in human endometrium. Growth Factors. 1994;11(4):277–82.

    PubMed  CAS  Google Scholar 

  63. Salven P, Ruotsalainen T, Mattson K, Joensuu H. High pre-treatment serum level of vascular endothelial growth factor (VEGF) is associated with poor outcome in small-cell lung cancer. Int J Cancer. 1998;79(2):144–6.

    PubMed  CAS  Google Scholar 

  64. Fuhrmann Benzakein E, Ma MN, Rubbia Brandt L, et al. Elevated levels of angiogenic cytokines in the plasma of cancer patients. Int J Cancer. 2000;85(1):40–5.

    PubMed  CAS  Google Scholar 

  65. Mhle R, Green D, Moore MAS, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA. 1997;94(2):663.

    Google Scholar 

  66. Webb NJA, Myers CR, Watson CJ, Bottomley MJ, Brenchley PEC. Activated human neutrophils express vascular endothelial growth factor (VEGF). Cytokine. 1998;10(4):254–7.

    PubMed  CAS  Google Scholar 

  67. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    PubMed  CAS  Google Scholar 

  68. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335.

    PubMed  CAS  Google Scholar 

  69. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349(5):427.

    PubMed  CAS  Google Scholar 

  70. Bhatt RS, Wang X, Zhang L, et al. Renal cancer resistance to antiangiogenic therapy is delayed by restoration of angiostatic signaling. Mol Cancer Ther. 2010;9:2793–802.

    PubMed  CAS  Google Scholar 

  71. Atkins MB, Choueiri TK, Cho D, Regan M, Signoretti S. Treatment selection for patients with metastatic renal cell carcinoma. Cancer. 2009;115(S10):2327–33.

    PubMed  CAS  Google Scholar 

  72. Cowey CL, Fielding JR, Kimryn Rathmell W. The loss of radiographic enhancement in primary renal cell carcinoma tumors following multitargeted receptor tyrosine kinase therapy is an additional indicator of response. Urology. 2010;75(5):1108–13.

    PubMed  Google Scholar 

  73. Cowey CL, Amin C, Pruthi RS, et al. Neoadjuvant clinical trial with sorafenib for patients with stage II or higher renal cell carcinoma. J Clin Oncol. 2010;28(9):1502.

    PubMed  CAS  Google Scholar 

  74. Motzer RJ, Rini BI, Bukowski RM, et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA. 2006;295(21):2516.

    PubMed  CAS  Google Scholar 

  75. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125.

    Google Scholar 

  76. Ward JE, Stadler WM. Pazopanib in renal cell carcinoma. Clin Cancer Res. 2010;16(24):5923.

    PubMed  CAS  Google Scholar 

  77. Cowey CL, Hutson TE, Figlin R. Pazopanib in the treatment of renal cell carcinoma. Clin Investig. 2011;1(1):75–85.

    CAS  Google Scholar 

  78. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115.

    PubMed  CAS  Google Scholar 

  79. Bhargava P, Esteves B, Al-Adhami M, et al. Activity of tivozanib (AV-951) in patients with renal cell carcinoma (RCC): subgroup analysis from a phase II randomized discontinuation trial (RDT). Proc Am Soc Clin Onc. 2010;28:4599.

    Google Scholar 

  80. Bhargava P, Esteves B, Nosov D, et al. Updated activity and safety results of a phase II randomized discontinuation trial (RDT) of AV-951, a potent and selective VEGFR1, 2, and 3 kinase inhibitor, in patients with renal cell carcinoma (RCC). Proc Am Soc Clin Onc. 2009;27:5032.

    Google Scholar 

  81. Rini BI, Wilding G, Hudes G, et al. Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol. 2009;27(27):4462.

    PubMed  CAS  Google Scholar 

  82. Murakami M, Ichisaka T, Maeda M, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004;24(15):6710.

    PubMed  CAS  Google Scholar 

  83. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.

    PubMed  CAS  Google Scholar 

  84. Wullschleger S, Loewith R, Hall MN. TOR ­signaling in growth and metabolism. Cell. 2006;124(3):471–84.

    PubMed  CAS  Google Scholar 

  85. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926.

    PubMed  CAS  Google Scholar 

  86. Toschi A, Lee E, Gadir N, Ohh M, Foster DA. Differential dependence of hypoxia-inducible factors 1 and 2 on mTORC1 and mTORC2. J Biol Chem. 2008;283(50):34495.

    PubMed  CAS  Google Scholar 

  87. Zheng XF, Fiorentino D, Chen J, Crabtree GR, Schreiber SL. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell. 1995;82(1):121–30.

    PubMed  CAS  Google Scholar 

  88. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.

    PubMed  CAS  Google Scholar 

  89. Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–8.

    PubMed  CAS  Google Scholar 

  90. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22.

    PubMed  CAS  Google Scholar 

  91. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol. 2010;7(5):277–85.

    PubMed  CAS  Google Scholar 

  92. Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.

    PubMed  CAS  Google Scholar 

  93. Sonenberg N, Gingras AC. The mRNA 5′cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol. 1998;10(2):268–75.

    PubMed  CAS  Google Scholar 

  94. Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22(20):7004.

    PubMed  CAS  Google Scholar 

  95. Thomas GV, Tran C, Mellinghoff IK, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 2005;12(1):122–7.

    PubMed  Google Scholar 

  96. Vezine C, Kudelski A, Sehgal S. Rapamycin (AY-22.989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete ans isolation of the active principle. J Antibiot (Tokyo). 1975;28:721–6.

    Google Scholar 

  97. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271.

    PubMed  CAS  Google Scholar 

  98. Wang Y, Wang X, Subjeck J, Shrikant P, Kim H. Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br J Cancer. 2011;104:643–52.

    PubMed  CAS  Google Scholar 

  99. Dutcher J, de Souza P, McDermott D, et al. Effect of temsirolimus versus interferon-α on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med Oncol. 2009;26(2):202–9.

    PubMed  CAS  Google Scholar 

  100. Kirova YM, Servois V, Chargari C, Amessis M, Zerbib M, Beuzeboc P. Further developments for improving response and tolerance to irradiation for advanced renal cancer: concurrent (mTOR) inhibitor RAD001 and helical tomotherapy. Invest New Drugs. 2012;30:1241–3.

    PubMed  Google Scholar 

  101. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56.

    PubMed  CAS  Google Scholar 

  102. Bedke J, Stenzl A. Immunologic mechanisms in RCC and allogeneic renal transplant rejection. Nat Rev Urol. 2010;7(6):339–47.

    PubMed  CAS  Google Scholar 

  103. Gouttefangeas C, Stenzl A, Stevanovi S, Rammensee HG. Immunotherapy of renal cell carcinoma. Cancer Immunol Immunother. 2007;56(1):117–28.

    PubMed  CAS  Google Scholar 

  104. Schreiber T, Podack E. A critical analysis of the tumour immunosurveillance controversy for 3-MCA-induced sarcomas. Br J Cancer. 2009;101(3):381–6.

    PubMed  CAS  Google Scholar 

  105. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    PubMed  CAS  Google Scholar 

  106. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996;87(8):3336.

    PubMed  CAS  Google Scholar 

  107. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007;117(5):1167–74.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kimryn Rathmell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arreola, A., Rathmell, W.K. (2013). Biology of Renal Cell Carcinoma (Vascular Endothelial Growth Factor, Mammalian Target of Rapamycin, Immune Aspects). In: Campbell, S., Rini, B. (eds) Renal Cell Carcinoma. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-062-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-062-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-061-8

  • Online ISBN: 978-1-62703-062-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics