Skip to main content

Cardiac Plasticity in Health and Disease

  • Chapter
  • First Online:
Translational Cardiology

Abstract

The heart is a remarkably plastic organ. In the setting of disease-related stress, such as unremitting hypertension or myocardial injury, hypertrophic growth takes place that increases the risk of functional decompensation and malignant rhythm disturbance. However, not all hypertrophy is pathological; growth of the heart into the setting of physiological demand is adaptive and is not associated with adverse sequelae. The heart can also diminish in size. Indeed, it is capable of shrinking up to 25% under a variety of clinically relevant circumstances, such as ventricular unloading by means of bedrest, mechanical support, or weightlessness. Each of these major forms of myocardial plasticity is associated with energy-dependent remodeling of the major components of the myocyte, coordinated angiogenic alterations in blood supply, adjustments in the consumption of energy-providing substrates, and, in the cases of pathological hypertrophy and myocyte atrophy, activation of a previously dormant “fetal gene program.” Here, we review mechanisms whereby the myocardium increases or decreases in size, the relevance of these mechanisms to normal physiology and cardiovascular disease, and the prospects for targeting these processes for therapeutic gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209.

    PubMed  Google Scholar 

  2. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358(13):1370–80.

    PubMed  CAS  Google Scholar 

  3. Milliken MC, Stray-Gundersen J, Peshock RM, Katz J, Mitchell JH. Left ventricular mass as determined by magnetic resonance imaging in male endurance athletes. Am J Cardiol. 1988;62(4):301–5.

    PubMed  CAS  Google Scholar 

  4. Fagard R. Athlete’s heart. Heart. 2003;89(12):1455–61.

    PubMed  Google Scholar 

  5. Razeghi P, Sharma S, Ying J, et al. Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation. Circulation. 2003;108(20):2536–41.

    PubMed  CAS  Google Scholar 

  6. Rockman HA, Ross RS, Harris AN, et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA. 1991;88(18):8277–81.

    PubMed  CAS  Google Scholar 

  7. Hill JA, Karimi M, Kutschke W, et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation. 2000;101(24):2863–9.

    PubMed  CAS  Google Scholar 

  8. Parmacek MS, Epstein JA. Cardiomyocyte renewal. N Engl J Med. 2009;361(1):86–8.

    PubMed  CAS  Google Scholar 

  9. Weber KT, Clark WA, Janicki JS, Shroff SG. Physiologic versus pathologic hypertrophy and the pressure-overloaded myocardium. J Cardiovasc Pharmacol. 1987;10 Suppl 6:S37–50.

    PubMed  Google Scholar 

  10. Dorn II GW, Robbins J, Sugden PH. Phenotyping hypertrophy: eschew Obfuscation. Circ Res. 2003;92(11):1171–5.

    PubMed  CAS  Google Scholar 

  11. Duvekot JJ, Peeters LL. Maternal cardiovascular hemodynamic adaptation to pregnancy. Obstet Gynecol Surv. 1994;49(12 Suppl):S1–14.

    PubMed  CAS  Google Scholar 

  12. Hunter S, Robson SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68(12):540–3.

    PubMed  CAS  Google Scholar 

  13. Schannwell CM, Zimmermann T, Schneppenheim M, Plehn G, Marx R, Strauer BE. Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology. 2002;97(2):73–8.

    PubMed  Google Scholar 

  14. Buttrick PM, Scheuer J. Physiologic, biochemical, and coronary adaptation to exercise conditioning. Cardiol Clin. 1987;5(2):259–70.

    PubMed  CAS  Google Scholar 

  15. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991;324(5):295–301.

    PubMed  CAS  Google Scholar 

  16. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64.

    PubMed  CAS  Google Scholar 

  17. Pfeffer M, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72.

    PubMed  CAS  Google Scholar 

  18. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Levy D. Left ventricular dilatation and the risk of congestive heart failure in people without myocardial infarction. N Engl J Med. 1997;336(19):1350–5.

    PubMed  CAS  Google Scholar 

  19. Dorn II GW. The fuzzy logic of physiological cardiac hypertrophy. Hypertension. 2007;49(5):962–70.

    PubMed  CAS  Google Scholar 

  20. Mesa A, Jessurun C, Hernandez A, et al. Left ventricular diastolic function in normal human pregnancy. Circulation. 1999;99(4):511–7.

    PubMed  CAS  Google Scholar 

  21. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82(4):521–4.

    PubMed  CAS  Google Scholar 

  22. Ekblom B, Hermansen L. Cardiac output in athletes. J Appl Physiol. 1968;25(5):619–25.

    PubMed  CAS  Google Scholar 

  23. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol. 1985;58(3):785–90.

    PubMed  CAS  Google Scholar 

  24. Kasikcioglu E, Oflaz H, Akhan H, et al. Left ventricular remodeling and aortic distensibility in elite power athletes. Heart Vessels. 2004;19(4):183–8.

    PubMed  Google Scholar 

  25. Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002;105(8):944–9.

    PubMed  Google Scholar 

  26. Colan SD. Mechanics of left ventricular systolic and diastolic function in physiologic hypertrophy of the athlete’s heart. Cardiol Clin. 1997;15(3):355–72.

    PubMed  CAS  Google Scholar 

  27. Pluim BM, Lamb HJ, Kayser HWM, et al. Functional and metabolic evaluation of the Athlete’s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation. 1998;97(7):666–72.

    PubMed  CAS  Google Scholar 

  28. Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW. Physiology: postprandial cardiac hypertrophy in pythons. Nature. 2005;434(7029):37–8.

    PubMed  CAS  Google Scholar 

  29. Rame JE, Ramilo M, Spencer N, et al. Development of a depressed left ventricular ejection fraction in patients with left ventricular hypertrophy and a normal ejection fraction. Am J Cardiol. 2004;93(2):234–7.

    PubMed  Google Scholar 

  30. Drazner MH, Rame JE, Marino EK, et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol. 2004;43(12):2207–15.

    PubMed  Google Scholar 

  31. Berenji K, Drazner MH, Rothermel BA, Hill JA. Does load-induced ventricular hypertrophy progress to systolic heart failure? Am J Physiol Heart Circ Physiol. 2005;289(1):H8–H16.

    PubMed  CAS  Google Scholar 

  32. Towbin J. Molecular genetics of hypertrophic cardiomyopathy. Curr Cardiol Rep. 2000;2(2): 134–40.

    PubMed  CAS  Google Scholar 

  33. Richard P, Charron P, Carrier L, et al. Hypertrophic Cardiomyopathy. Distribution of Disease Genes, Spectrum of Mutations, and Implications for a Molecular Diagnosis Strategy. Circulation. April 21, 2003 2003:01.CIR.0000066323.0000015244.0000066354.

    Google Scholar 

  34. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287(10):1308–20.

    PubMed  Google Scholar 

  35. Braunwald E, Lambrew CT, Rockoff SD, Ross Jr J, Morrow AG. Idiopathic hypertrophic subaortic stenosis. I. A description of the disease based upon an analysis of 64 patients. Circulation. 1964;30 Suppl 4:3–119.

    PubMed  Google Scholar 

  36. Wigle ED, Sasson Z, Henderson MA, et al. Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review. Prog Cardiovasc Dis. 1985;28(1):1–83.

    PubMed  CAS  Google Scholar 

  37. Marian AJ, Roberts R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation. 1995;92(5):1336–47.

    PubMed  CAS  Google Scholar 

  38. Braunwald E, Seidman CE, Sigwart U. Contemporary evaluation and management of hypertrophic cardiomyopathy. Circulation. 2002;106(11):1312–6.

    PubMed  Google Scholar 

  39. Kinoshita M, Takano H, Taenaka Y, et al. Cardiac disuse atrophy during LVAD pumping. ASAIO Trans. 1988;34(3):208–12.

    PubMed  CAS  Google Scholar 

  40. Kong SW, Bodyak N, Yue P, et al. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiol Genomics. 2005;21(1):34–42.

    PubMed  CAS  Google Scholar 

  41. Iemitsu M, Miyauchi T, Maeda S, et al. Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am J Physiol Regul Integr Comp Physiol. 2001;281(6):R2029–2036.

    PubMed  CAS  Google Scholar 

  42. Aronow BJ, Toyokawa T, Canning A, et al. Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. Physiol Genomics. 2001;6(1):19–28.

    PubMed  CAS  Google Scholar 

  43. McMullen JR, Shioi T, Zhang L, et al. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA. 2003;100(21):12355–60.

    PubMed  CAS  Google Scholar 

  44. Shioi T, Kang PM, Douglas PS, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000;19(11):2537–48.

    PubMed  CAS  Google Scholar 

  45. Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program. Ann N Y Acad Sci. 2010;1188(1):191–8.

    PubMed  CAS  Google Scholar 

  46. Holubarsch C, Goulette R, Litten R, Martin B, Mulieri L, Alpert N. The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res. 1985;56(1):78–86.

    PubMed  CAS  Google Scholar 

  47. Alpert N, Mulieri L. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res. 1982;50(4):491–500.

    PubMed  CAS  Google Scholar 

  48. Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA. Myosin heavy chain gene expression in human heart failure. J Clin Invest. 1997;100(9):2362–70.

    PubMed  CAS  Google Scholar 

  49. Palmer B. Thick filament proteins and performance in human heart failure. Heart Fail Rev. 2005;10(3):187–97.

    PubMed  CAS  Google Scholar 

  50. Izumo S, Lompré AM, Matsuoka R, et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest. 1987;79(3):970–7.

    PubMed  CAS  Google Scholar 

  51. Mahdavi V, Lompre AM, Chambers AP, Nadal-Ginard B. Cardiac myosin heavy chain isozymic transitions during development and under pathological conditions are regulated at the level of mRNA availability. Eur Heart J. 1984;5(Suppl F):181–91.

    PubMed  CAS  Google Scholar 

  52. Krenz M, Robbins J. Impact of beta-myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol. 2004;44(12):2390–7.

    PubMed  CAS  Google Scholar 

  53. Lowes BD, Gilbert EM, Abraham WT, et al. Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med. 2002;346(18):1357–65.

    PubMed  CAS  Google Scholar 

  54. Iglewski M, Hill J, Lavandero S, Rothermel B. Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep. 2010;12(6):418–25.

    PubMed  Google Scholar 

  55. Bing RJ. The metabolism of the heart. Trans Am Coll Cardiol. 1955;5:8–14.

    PubMed  CAS  Google Scholar 

  56. Wisneski JA, Gertz EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest (United States). 1987;2:359–66.

    Google Scholar 

  57. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA. 1999;96(13):7473–8.

    PubMed  CAS  Google Scholar 

  58. Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res. 2011;90(2):202–9.

    PubMed  CAS  Google Scholar 

  59. Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980;186(3):701–11.

    PubMed  CAS  Google Scholar 

  60. Nguyen VT, Mossberg KA, Tewson TJ, et al. Temporal analysis of myocardial glucose metabolism by 2-[18F]fluoro-2-deoxy-d-glucose. Am J Physiol. 1990;259(4 Pt 2):H1022–1031.

    PubMed  CAS  Google Scholar 

  61. Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem. 1998;273(45):29530–9.

    PubMed  CAS  Google Scholar 

  62. Boluyt MO, Zheng JS, Younes A, et al. Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ Res. 1997;81(2):176–86.

    PubMed  CAS  Google Scholar 

  63. Depre C, Shipley GL, Chen W, et al. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med. 1998;4(11):1269–75.

    PubMed  CAS  Google Scholar 

  64. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129.

    PubMed  CAS  Google Scholar 

  65. Starling RC, Hammer DF, Altschuld RA. Human myocardial ATP content and in vivo contractile function. Mol Cell Biochem. 1998;180(1):171–7.

    PubMed  CAS  Google Scholar 

  66. Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40(7):1267–74.

    PubMed  CAS  Google Scholar 

  67. Shen WQ, Asai K, Uechi M, et al. Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs – A compensatory role for the parallel loss of creatine. Circulation. 1999;100(20):2113–8.

    PubMed  CAS  Google Scholar 

  68. Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci USA. 2005;102(3):808–13.

    PubMed  CAS  Google Scholar 

  69. VíG D-R, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;40(2):271–7.

    Google Scholar 

  70. Sochor H, Schelbert HR, Schwaiger M, Henze E, Phelps ME. Studies of fatty acid metabolism with positron emission tomography in patients with cardiomyopathy. Eur J Nucl Med Mol Imaging. 1986;12:S66–9.

    Google Scholar 

  71. Neglia D, De Caterina A, Marraccini P, et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;293(6):H3270–3278.

    PubMed  CAS  Google Scholar 

  72. Yazaki Y, Isobe M, Takahashi W, et al. Assessment of myocardial fatty acid metabolic abnormalities in patients with idiopathic dilated cardiomyopathy using 123I BMIPP SPECT: correlation with clinicopathological findings and clinical course. Heart. 1999;81(2):153–9.

    PubMed  CAS  Google Scholar 

  73. Strom CC, Aplin M, Ploug T, et al. Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy. FEBS J. 2005;272(11):2684–95.

    PubMed  CAS  Google Scholar 

  74. Chen H, Chan DC. Mitochondrial Dynamics in Mammals. In: Gerald PS, editor. Current Topics in Developmental Biology, Vol 59. Academic Press; 2004. p. 119–144.

    Google Scholar 

  75. Osteryoung KW, Nunnari J. The division of endosymbiotic organelles. Science. 2003;302(5651):1698–704.

    PubMed  CAS  Google Scholar 

  76. Berman SB, Pineda FJ, Hardwick JM. Mitochondrial fission and fusion dynamics: the long and short of it. Cell Death Differ. 2008;15(7):1147–52.

    PubMed  CAS  Google Scholar 

  77. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial ­biology. Mol Aspects Med. 2004;25(4):365–451.

    PubMed  CAS  Google Scholar 

  78. Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol. 2007;146(1):26–39.

    PubMed  Google Scholar 

  79. Twig G, Elorza A, Molina AJA, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.

    PubMed  CAS  Google Scholar 

  80. Hom J, Sheu SS. Morphological dynamics of mitochondria – a special emphasis on cardiac muscle cells. J Mol Cell Cardiol. 2009;46(6):811–20.

    PubMed  CAS  Google Scholar 

  81. Gottlieb RA, Gustafsson SB. Mitochondrial turnover in the heart. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2011;813(7):1295–301.

    Google Scholar 

  82. Russell LK, Mansfield CM, Lehman JJ, et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1{alpha} promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 2004;94(4):525–33.

    PubMed  CAS  Google Scholar 

  83. Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84(1):91–9.

    PubMed  CAS  Google Scholar 

  84. Ong S-B, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012–22.

    PubMed  CAS  Google Scholar 

  85. Volpe P, Salviati G, Di Virgilio F, Pozzan T. Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature. 1985;316(6026):347–9.

    PubMed  CAS  Google Scholar 

  86. Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure? Circ Res. 2003;93(10):896–906.

    PubMed  CAS  Google Scholar 

  87. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science. 1990;248(4962):1547–50.

    PubMed  CAS  Google Scholar 

  88. Frank KF, Bolck B, Erdmann E, Schwinger RH. Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation. Cardiovasc Res. 2003;57(1):20–7.

    PubMed  CAS  Google Scholar 

  89. Chakraborti S, Das S, Kar P, et al. Calcium signaling phenomena in heart diseases: a perspective. Mol Cell Biochem. 2007;298(1–2):1–40.

    PubMed  CAS  Google Scholar 

  90. Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987;61(1):70–6.

    PubMed  CAS  Google Scholar 

  91. Sadoshima J, Qiu Z, Morgan JP, Izumo S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Circ Res. 1995;76(1):1–15.

    PubMed  CAS  Google Scholar 

  92. Iaccarino G, Dolber PC, Lefkowitz RJ, Koch WJ. Bbeta-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: regulation by beta- but not alpha1-adrenergic stimulation. Hypertension. 1999;33(1 Pt 2):396–401.

    PubMed  CAS  Google Scholar 

  93. Chen X, Piacentino 3rd V, Furukawa S, Goldman B, Margulies KB, Houser SR. L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res. 2002;91(6):517–24.

    PubMed  CAS  Google Scholar 

  94. Shimada T, Yoshiyama M, Takeuchi K, et al. Long acting calcium antagonist amlodipine prevents left ventricular remodeling after myocardial infarction in rats. Cardiovasc Res. 1998;37(3):618–26.

    PubMed  CAS  Google Scholar 

  95. Muth JN, Bodi I, Lewis W, Varadi G, Schwartz A. A Ca(2+)-dependent transgenic model of cardiac hypertrophy: a role for protein kinase Calpha. Circulation. 2001;103(1):140–7.

    PubMed  CAS  Google Scholar 

  96. Meyer M, Schillinger W, Pieske B, et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation. 1995;92(4):778–84.

    PubMed  CAS  Google Scholar 

  97. Muller OJ, Lange M, Rattunde H, et al. Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload. Cardiovasc Res. 2003;59(2):380–9.

    PubMed  CAS  Google Scholar 

  98. del Monte F, Williams E, Lebeche D, et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation. 2001;104(12):1424–9.

    PubMed  Google Scholar 

  99. Schultz Jel J, Glascock BJ, Witt SA, et al. Accelerated onset of heart failure in mice during pressure overload with chronically decreased SERCA2 calcium pump activity. Am J Physiol Heart Circ Physiol. 2004;286(3):H1146–1153.

    PubMed  Google Scholar 

  100. Sato Y, Kiriazis H, Yatani A, et al. Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation. J Biol Chem. 2001;276(12):9392–9.

    PubMed  CAS  Google Scholar 

  101. Fowler MR, Smith GL. The cardiac contraction cycle: is Ca2+ going local? J Appl Physiol. 2009;107:1981–4.

    PubMed  CAS  Google Scholar 

  102. Grueter C, Colbran R, Anderson M. CaMKII, an emerging molecular driver for calcium homeostasis, arrhythmias, and cardiac dysfunction. J Mol Med. 2007;85(1):5–14.

    PubMed  CAS  Google Scholar 

  103. Swulius MT, Waxham MN. Ca(2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci. 2008;65(17):2637–57.

    PubMed  CAS  Google Scholar 

  104. Couchonnal LF, Anderson ME. The role of calmodulin kinase II in myocardial physiology and disease. Physiology. 2008;23(3):151–9.

    PubMed  CAS  Google Scholar 

  105. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997;386(6627):855–8.

    PubMed  CAS  Google Scholar 

  106. Kirchhefer U, Schmitz W, Scholz H, Neumann J. Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res. 1999;42(1):254–61.

    PubMed  CAS  Google Scholar 

  107. Zhang T, Johnson EN, Gu Y, et al. The cardiac-specific nuclear delta(B) isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem. 2002;277(2):1261–7.

    PubMed  CAS  Google Scholar 

  108. Zhang T, Maier LS, Dalton ND, et al. The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res. 2003;92(8):912–9.

    PubMed  CAS  Google Scholar 

  109. Ling H, Zhang T, Pereira L, et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest. 2009;119(5):1230–40.

    PubMed  CAS  Google Scholar 

  110. Backs J, Backs T, Neef S, et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA. 2009;106(7):2342–7.

    PubMed  CAS  Google Scholar 

  111. Clipstone NA, Crabtree GR. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature. 1992;357(6380):695–7.

    PubMed  CAS  Google Scholar 

  112. Malleret G, Haditsch U, Genoux D, et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell. 2001;104(5):675–86.

    PubMed  CAS  Google Scholar 

  113. Sakuma K, Yamaguchi A. The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol. 2010;2010:721219.

    PubMed  Google Scholar 

  114. Aramburu J, Heitman J, Crabtree GR. Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep. 2004;5(4):343–8.

    PubMed  CAS  Google Scholar 

  115. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–28.

    PubMed  CAS  Google Scholar 

  116. Oka T, Maillet M, Watt AJ, et al. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res. 2006;98(6):837–45.

    PubMed  CAS  Google Scholar 

  117. Yanazume T, Hasegawa K, Morimoto T, et al. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol. 2003;23(10):3593–606.

    PubMed  CAS  Google Scholar 

  118. Takaya T, Kawamura T, Morimoto T, et al. Identification of p300-targeted acetylated residues in GATA4 during hypertrophic responses in cardiac myocytes. J Biol Chem. 2008;283(15):9828–35.

    PubMed  CAS  Google Scholar 

  119. Wilkins BJ, Dai Y-S, Bueno OF, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2004;94(1):110–8.

    PubMed  CAS  Google Scholar 

  120. Hill JA, Rothermel B, Yoo KD, et al. Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function. J Biol Chem. 2002;277(12): 10251–5.

    PubMed  CAS  Google Scholar 

  121. Meguro T, Hong C, Asai K, et al. Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res. 1999;84(6):735–40.

    PubMed  CAS  Google Scholar 

  122. Heineke J, Wollert KC, Osinska H, et al. Calcineurin protects the heart in a murine model of dilated cardiomyopathy. J Mol Cell Cardiol. 2010;48(6):1080–7.

    PubMed  CAS  Google Scholar 

  123. Fuentes JJ, Genesca L, Kingsbury TJ, et al. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum Mol Genet. 2000;9(11):1681–90.

    PubMed  CAS  Google Scholar 

  124. Sanna B, Brandt EB, Kaiser RA, et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc Natl Acad Sci USA. 2006;103(19):7327–32.

    PubMed  CAS  Google Scholar 

  125. Rothermel BA, McKinsey TA, Vega RB, et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci USA. 2001;98(6):3328–33.

    PubMed  CAS  Google Scholar 

  126. Vega RB, Rothermel BA, Weinheimer CJ, et al. Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc Natl Acad Sci USA. 2003;100(2):669–74.

    PubMed  CAS  Google Scholar 

  127. Hannenhalli S, Putt ME, Gilmore JM, et al. Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation. 2006;114(12):1269–76.

    PubMed  CAS  Google Scholar 

  128. Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs. Development. 2007;134(23):4131–40.

    PubMed  CAS  Google Scholar 

  129. Kim Y, Phan D, van Rooij E, et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest. 2008;118(1):124–32.

    PubMed  CAS  Google Scholar 

  130. Wu H, Rothermel B, Kanatous S, et al. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 2001;20(22):6414–23.

    PubMed  CAS  Google Scholar 

  131. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 1999;18(18):5099–107.

    PubMed  CAS  Google Scholar 

  132. Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell. 2000;6(2):233–44.

    PubMed  CAS  Google Scholar 

  133. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002;110(4):479–88.

    PubMed  CAS  Google Scholar 

  134. Fielitz J, Kim MS, Shelton JM, et al. Requirement of protein kinase D1 for pathological cardiac remodeling. Proc Natl Acad Sci USA. 2008;105(8):3059–63.

    PubMed  CAS  Google Scholar 

  135. Passier R, Zeng H, Frey N, et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest. 2000;105(10):1395–406.

    PubMed  CAS  Google Scholar 

  136. Youn HD, Sun L, Prywes R, Liu JO. Apoptosis of T cells mediated by Ca2+−induced release of the transcription factor MEF2. Science. 1999;286(5440):790–3.

    PubMed  CAS  Google Scholar 

  137. Youn HD, Liu JO. Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity. 2000;13(1):85–94.

    PubMed  CAS  Google Scholar 

  138. Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA. 2003;100(4):1711–6.

    PubMed  CAS  Google Scholar 

  139. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science. 1988;241(4862):202–5.

    PubMed  CAS  Google Scholar 

  140. Okamura H, Aramburu J, Garcia-Rodriguez C, et al. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell. 2000;6(3):539–50.

    PubMed  CAS  Google Scholar 

  141. Zhu J, McKeon F. NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature. 1999;398(6724):256–60.

    PubMed  CAS  Google Scholar 

  142. van Rooij E, Doevendans PA, de Theije CC, Babiker FA, Molkentin JD, de Windt LJ. Requirement of nuclear factor of activated T-cells in calcineurin-mediated cardiomyocyte hypertrophy. J Biol Chem. 2002;277(50):48617–26.

    PubMed  Google Scholar 

  143. Wu Y, Borde M, Heissmeyer V, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006;126(2):375–87.

    PubMed  CAS  Google Scholar 

  144. Mathew S, Mascareno E, Siddiqui MA. A ternary complex of transcription factors, Nished and NFATc4, and co-activator p300 bound to an intronic sequence, intronic regulatory element, is pivotal for the up-regulation of myosin light chain-2v gene in cardiac hypertrophy. J Biol Chem. 2004;279(39):41018–27.

    PubMed  CAS  Google Scholar 

  145. Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG, Rao A. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science. 1999;285(5436):2129–33.

    PubMed  CAS  Google Scholar 

  146. Kuriyama M, Matsushita M, Tateishi A, et al. A cell-permeable NFAT inhibitor peptide prevents pressure-overload cardiac hypertrophy. Chem Biol Drug Des. 2006;67(3):238–43.

    PubMed  CAS  Google Scholar 

  147. Bian J, Popovic ZB, Benejam C, Kiedrowski M, Rodriguez LL, Penn MS. Effect of cell-based intercellular delivery of transcription factor GATA4 on ischemic cardiomyopathy. Circ Res. 2007;100(11):1626–33.

    PubMed  CAS  Google Scholar 

  148. Gusterson R, Brar B, Faulkes D, Giordano A, Chrivia J, Latchman D. The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade. J Biol Chem. 2002;277(4):2517–24.

    PubMed  CAS  Google Scholar 

  149. Gusterson RJ, Jazrawi E, Adcock IM, Latchman DS. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem. 2003;278(9):6838–47.

    PubMed  CAS  Google Scholar 

  150. Dai YS, Markham BE. p300 Functions as a coactivator of transcription factor GATA-4. J Biol Chem. 2001;276(40):37178–85.

    PubMed  CAS  Google Scholar 

  151. Ma K, Chan JK, Zhu G, Wu Z. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol. 2005;25(9):3575–82.

    PubMed  CAS  Google Scholar 

  152. Yanazume T, Morimoto T, Wada H, Kawamura T, Hasegawa K. Biological role of p300 in cardiac myocytes. Mol Cell Biochem. 2003;248(1–2):115–9.

    PubMed  CAS  Google Scholar 

  153. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett. 2009;277(1):8–21.

    PubMed  CAS  Google Scholar 

  154. Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novartis Found Symp. 2006;274:3–12.

    PubMed  CAS  Google Scholar 

  155. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res. 2006;98(1):15–24.

    PubMed  CAS  Google Scholar 

  156. Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008;40(10):2023–39.

    PubMed  CAS  Google Scholar 

  157. McKinsey TA. Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart. J Mol Cell Cardiol. 2010;51:491–6.

    PubMed  Google Scholar 

  158. Crabb SJ, Howell M, Rogers H, et al. Characterisation of the in vitro activity of the depsipeptide histone deacetylase inhibitor spiruchostatin A. Biochem Pharmacol. 2008;76(4):463–75.

    PubMed  CAS  Google Scholar 

  159. van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci. 2006;103(48):18255–60.

    PubMed  Google Scholar 

  160. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.

    PubMed  Google Scholar 

  161. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129(2):303–17.

    PubMed  CAS  Google Scholar 

  162. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–20.

    PubMed  CAS  Google Scholar 

  163. Chen JF, Murchison EP, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA. 2008;105(6):2111–6.

    PubMed  CAS  Google Scholar 

  164. da Costa Martins PA, Bourajjaj M, Gladka M, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008;118(15):1567–76.

    PubMed  Google Scholar 

  165. Rao PK, Toyama Y, Chiang HR, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009;105(6):585–94.

    PubMed  CAS  Google Scholar 

  166. Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007;116(3):258–67.

    PubMed  CAS  Google Scholar 

  167. Pan ZW, Lu YJ, Yang BF. MicroRNAs: a novel class of potential therapeutic targets for cardiovascular diseases. Acta Pharmacol Sin. 2010;31(1):1–9.

    PubMed  Google Scholar 

  168. Ikeda S, He A, Kong SW, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29(8):2193–204.

    PubMed  CAS  Google Scholar 

  169. Li Q, Lin X, Yang X, Chang J. NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol. 2010;298(5):H1340–7.

    PubMed  CAS  Google Scholar 

  170. Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.

    PubMed  CAS  Google Scholar 

  171. Matkovich SJ, Wang W, Tu Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 2010;106((1):166–75.

    PubMed  CAS  Google Scholar 

  172. Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119(9):2772–86.

    PubMed  CAS  Google Scholar 

  173. Levine BD, Zuckerman JH, Pawelczyk JA. Cardiac atrophy after bed-rest deconditioning: a nonneural mechanism for orthostatic intolerance. Circulation. 1997;96(2):517–25.

    PubMed  CAS  Google Scholar 

  174. Galinanes M, Zhai X, Hearse DJ. The effect of load on atrophy, myosin isoform shifts and contractile function: studies in a novel rat heart transplant preparation. J Mol Cell Cardiol. 1995;27(1):407–17.

    PubMed  CAS  Google Scholar 

  175. Kolar F, MacNaughton C, Papousek F, Korecky B. Systolic mechanical performance of heterotopically transplanted hearts in rats treated with cyclosporin. Cardiovasc Res. 1993;27(7):1244–7.

    PubMed  CAS  Google Scholar 

  176. Perhonen MA, Franco F, Lane LD, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol. 2001;91(2):645–53.

    PubMed  CAS  Google Scholar 

  177. Tisdale MJ. Cancer cachexia. Br J Cancer. 1991;63(3):337–42.

    PubMed  CAS  Google Scholar 

  178. Tessitore L, Costelli P, Bonetti G, Baccino FM. Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys. 1993;306(1):52–8.

    PubMed  CAS  Google Scholar 

  179. Watenpaugh DE. Nocturnal lower body positive pressure to counteract microgravity-induced cardiac remodeling/atrophy. J Appl Physiol. 2002;92(5):2222–3.

    PubMed  Google Scholar 

  180. Chaudhary KW, Rossman EI, Piacentino 3rd V, et al. Altered myocardial Ca2+ cycling after left ventricular assist device support in the failing human heart. J Am Coll Cardiol. 2004;44(4):837–45.

    PubMed  CAS  Google Scholar 

  181. Bruckner BA, Razeghi P, Stetson S, et al. Degree of cardiac fibrosis and hypertrophy at time of implantation predicts myocardial improvement during left ventricular assist device support. J Heart Lung Transplant. 2004;23(1):36–42.

    PubMed  Google Scholar 

  182. Bruckner BA, Stetson SJ, Perez-Verdia A, et al. Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J Heart Lung Transplant. 2001;20(4):457–64.

    PubMed  CAS  Google Scholar 

  183. DeRose JJ, Umana JP, Argenziano M, et al. Implantable left ventricular assist devices provide an excellent outpatient bridge to transplantation and recovery. J Am Coll Cardiol. 1997;30(7):1773–7.

    PubMed  Google Scholar 

  184. Margulies KB. Reversal mechanisms of left ventricular remodeling: lessons from left ventricular assist device experiments. J Card Fail. 2002;8(6, Part 2):S500–5.

    PubMed  Google Scholar 

  185. Maybaum S, Kamalakannan G, Murthy S. Cardiac recovery during mechanical assist device support. Semin Thorac Cardiovasc Surg. 2008;20(3):234–46.

    PubMed  Google Scholar 

  186. Burkhoff D, Klotz S, Mancini DM. LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J Card Fail. 2006;12(3):227–39.

    PubMed  Google Scholar 

  187. Maybaum S, Mancini D, Xydas S, et al. Cardiac improvement during mechanical circulatory support: A Prospective Multicenter Study of the LVAD Working Group. Circulation. 2007;115(19):2497–505.

    PubMed  Google Scholar 

  188. Dipla K, Mattiello JA, Jeevanandam V, Houser SR, Margulies KB. Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation. 1998;97(23):2316–22.

    PubMed  CAS  Google Scholar 

  189. Dandel M, Weng Y, Siniawski H, et al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J. 2011;32:1148–60.

    PubMed  Google Scholar 

  190. Doenst T, Bugger H, Leippert S, Barleon B, Marme D, Beyersdorf F. Differential gene expression in response to ventricular unloading in rat and human myocardium. Thorac Cardiovasc Surg. 2006;54(6):381–7.

    PubMed  CAS  Google Scholar 

  191. Tomanek RJ, Cooper GT. Morphological changes in the mechanically unloaded myocardial cell. Anat Rec. 1981;200(3):271–80.

    PubMed  CAS  Google Scholar 

  192. Thompson EW, Marino TA, Uboh CE, Kent RL, Cooper GT. Atrophy reversal and cardiocyte redifferentiation in reloaded cat myocardium. Circ Res. 1984;54(4):367–77.

    PubMed  CAS  Google Scholar 

  193. Brinks H, Tevaearai H, Muhlfeld C, et al. Contractile function is preserved in unloaded hearts despite atrophic remodeling. J Thorac Cardiovasc Surg. 2009;137(3):742–6.

    PubMed  Google Scholar 

  194. Welsh DC, Dipla K, McNulty PH, et al. Preserved contractile function despite atrophic remodeling in unloaded rat hearts. Am J Physiol Heart Circ Physiol. 2001;281(3): H1131–1136.

    PubMed  CAS  Google Scholar 

  195. Doenst T, Goodwin GW, Cedars AM, Wang M, Stepkowski S, Taegtmeyer H. Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism. 2001;50(9):1083–90.

    PubMed  CAS  Google Scholar 

  196. Young ME, Patil S, Ying J, et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J. 2001;15(3):833–45.

    PubMed  CAS  Google Scholar 

  197. Taegtmeyer H, Razeghi P, Young ME. Mitochondrial proteins in hypertrophy and atrophy: a transcript analysis in rat heart. Clin Exp Pharmacol Physiol. 2002;29(4):346–50.

    PubMed  CAS  Google Scholar 

  198. Razeghi P, Wang ME, Youker KA, Golfman L, Stepkowski S, Taegtmeyer H. Lack of NF-kappaB1 (p105/p50) attenuates unloading-induced downregulation of PPARalpha and PPARalpha-regulated gene expression in rodent heart. Cardiovasc Res. 2007;74(1):133–9.

    PubMed  CAS  Google Scholar 

  199. Sharma S, Ying J, Razeghi P, Stepkowski S, Taegtmeyer H. Atrophic remodeling of the transplanted rat heart. Cardiology. 2006;105(2):128–36.

    PubMed  Google Scholar 

  200. Razeghi P, Taegtmeyer H. Hypertrophy and atrophy of the heart: the other side of remodeling. Ann N Y Acad Sci. 2006;1080:110–9.

    PubMed  CAS  Google Scholar 

  201. Attaix D, Ventadour S, Codran A, Bechet D, Taillandier D, Combaret L. The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem. 2005;41:173–86.

    PubMed  CAS  Google Scholar 

  202. Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8.

    PubMed  CAS  Google Scholar 

  203. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001;98(25):14440–5.

    PubMed  CAS  Google Scholar 

  204. Willis MS, Rojas M, Li L, et al. Muscle ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol. 2009;296(4):H997–H1006.

    PubMed  CAS  Google Scholar 

  205. Razeghi P, Volpini KC, Wang M-E, Youker KA, Stepkowski S, Taegtmeyer H. Mechanical unloading of the heart activates the calpain system. J Mol Cell Cardiol. 2007;42(2):449–52.

    PubMed  CAS  Google Scholar 

  206. Kassiotis C, Ballal K, Wellnitz K, et al. Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation. 2009;120(11 Suppl 1):S191–197.

    PubMed  CAS  Google Scholar 

  207. El-Armouche A, Schwoerer AP, Neuber C, et al. Common MicroRNA signatures in cardiac hypertrophic and atrophic remodeling induced by changes in hemodynamic load. PLoS One. 2010;5(12):e14263.

    PubMed  Google Scholar 

  208. Thum T, Galuppo P, Kneitz S, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. J Mol Cell Cardiol. 2007;42(6 Suppl 1):S154–4.

    Google Scholar 

  209. Baskin KK, Taegtmeyer H. Taking pressure off the heart: the ins and outs of atrophic remodelling. Cardiovasc Res. 2011;90(2):243–50.

    PubMed  CAS  Google Scholar 

  210. Hellerstein HK, Santiago-Stevenson D. Atrophy of the heart; a correlative study of 85 proved cases. Circulation. 1950;1(1):93–126. illus.

    PubMed  CAS  Google Scholar 

  211. Samarel A, Parmacek M, Magid N, Decker R, Lesch M. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits. Circ Res. 1987;60(6):933–41.

    PubMed  CAS  Google Scholar 

  212. Crie JS, Sanford CF, Wildenthal K. Influence of starvation and refeeding on cardiac protein degradation in rats. J Nutr. 1980;110(1):22–7.

    PubMed  CAS  Google Scholar 

  213. Leichman JG, Wilson EB, Scarborough T, et al. Dramatic reversal of derangements in muscle metabolism and left ventricular function after bariatric surgery. Am J Med. 2008;121(11): 966–73.

    PubMed  CAS  Google Scholar 

  214. Algahim MF, Lux TR, Leichman JG, et al. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am J Med. 2010;123(6):549–55.

    PubMed  Google Scholar 

  215. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89(2):381–410.

    PubMed  CAS  Google Scholar 

  216. Zhou X, Wang JL, Lu J, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–43.

    PubMed  CAS  Google Scholar 

  217. Wysong A, Couch M, Shadfar S, et al. NF-kappaB inhibition protects against tumor-induced cardiac atrophy in vivo. Am J Pathol. 2011;178(3):1059–68.

    PubMed  CAS  Google Scholar 

  218. Cosper PF, Leinwand LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 2011;71(5):1710–20.

    PubMed  CAS  Google Scholar 

  219. Hedhli N, Pelat M, Depre C. Protein turnover in cardiac cell growth and survival. Cardiovasc Res. 2005;68(2):186–96.

    PubMed  CAS  Google Scholar 

  220. McMullen JR, Shioi T, Huang WY, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 2004;279(6):4782–93.

    PubMed  CAS  Google Scholar 

  221. McMullen JR, Sherwood MC, Tarnavski O, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 2004;109(24):3050–5.

    PubMed  CAS  Google Scholar 

  222. Shioi T, McMullen JR, Tarnavski O, et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003;107(12):1664–70.

    PubMed  CAS  Google Scholar 

  223. Gao XM, Wong G, Wang B, et al. Inhibition of mTOR reduces chronic pressure-overload cardiac hypertrophy and fibrosis. J Hypertens. 2006;24(8):1663–70.

    PubMed  CAS  Google Scholar 

  224. McMullen JR, Shioi T, Zhang L, et al. Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin-like growth factor 1 receptor-phosphoinositide 3-kinase-induced cardiac hypertrophy. Mol Cell Biol. 2004;24(14):6231–40.

    PubMed  CAS  Google Scholar 

  225. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N. mTOR, translation initiation and cancer. Oncogene. 2006;25(48):6416–22.

    PubMed  CAS  Google Scholar 

  226. Chan EY. mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal. 2009;2(84):pe51.

    PubMed  Google Scholar 

  227. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.

    PubMed  CAS  Google Scholar 

  228. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807–26.

    PubMed  CAS  Google Scholar 

  229. Vigoreaux JO. The muscle Z band: lessons in stress management. J Muscle Res Cell Motil. 1994;15(3):237–55.

    PubMed  CAS  Google Scholar 

  230. Sanger JW, Ayoob JC, Chowrashi P, Zurawski D, Sanger JM. Assembly of myofibrils in cardiac muscle cells. Adv Exp Med Biol. 2000;481:89–102. discussion 103–105.

    PubMed  CAS  Google Scholar 

  231. Pracyk JB, Tanaka K, Hegland DD, et al. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J Clin Invest. 1998;102(5):929–37.

    PubMed  CAS  Google Scholar 

  232. Aoki H, Izumo S, Sadoshima J. Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res. 1998;82(6):666–76.

    PubMed  CAS  Google Scholar 

  233. Hoshijima M, Sah VP, Wang Y, Chien KR, Brown JH. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase. J Biol Chem. 1998;273(13):7725–30.

    PubMed  CAS  Google Scholar 

  234. Kovacic-Milivojevic B, Roediger F, Almeida EA, Damsky CH, Gardner DG, Ilic D. Focal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy. Mol Biol Cell. 2001;12(8):2290–307.

    PubMed  CAS  Google Scholar 

  235. Kasahara H, Ueyama T, Wakimoto H, et al. Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organization in postnatal cardiomyocytes. J Mol Cell Cardiol. 2003;35(3):243–56.

    PubMed  CAS  Google Scholar 

  236. Solaro RJ. Multiplex kinase signaling modifies cardiac function at the level of sarcomeric proteins. J Biol Chem. 2008;283(40):26829–33.

    PubMed  CAS  Google Scholar 

  237. Seguchi O, Takashima S, Yamazaki S, et al. A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest. 2007;117(10):2812–24.

    PubMed  CAS  Google Scholar 

  238. Morgan HE, Baker KM. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation. 1991;83(1):13–25.

    PubMed  CAS  Google Scholar 

  239. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 1997;59:551–71.

    PubMed  CAS  Google Scholar 

  240. Komuro I, Kaida T, Shibazaki Y, et al. Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem. 1990;265(7):3595–8.

    PubMed  CAS  Google Scholar 

  241. Mann DL, Kent RL, Cooper GT. Load regulation of the properties of adult feline cardiocytes: growth induction by cellular deformation. Circ Res. 1989;64(6):1079–90.

    PubMed  CAS  Google Scholar 

  242. Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem. 1992;267(15):10551–60.

    PubMed  CAS  Google Scholar 

  243. Sadoshima J, Qiu Z, Morgan JP, Izumo S. Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J. 1996;15(20):5535–46.

    PubMed  CAS  Google Scholar 

  244. Vandenburgh H, Kaufman S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science. 1979;203(4377):265–8.

    PubMed  CAS  Google Scholar 

  245. Park JM, Borer JG, Freeman MR, Peters CA. Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol Cell Physiol. 1998;275(5):C1247–54.

    CAS  Google Scholar 

  246. Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science. 1990;250(4985):1266–9.

    PubMed  CAS  Google Scholar 

  247. Geiger RV, Berk BC, Alexander RW, Nerem RM. Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis. Am J Physiol. 1992;262(6 Pt 1):C1411–1417.

    PubMed  CAS  Google Scholar 

  248. Sasaki N, Mitsuiye T, Noma A. Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Jpn J Physiol. 1992;42(6):957–70.

    PubMed  CAS  Google Scholar 

  249. Willis MS, Townley-Tilson WH, Kang EY, Homeister JW, Patterson C. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ Res. 2010;106(3):463–78.

    PubMed  CAS  Google Scholar 

  250. Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci USA. 2004;101(52):18135–40.

    PubMed  CAS  Google Scholar 

  251. Taillandier D, Aurousseau E, Meynial-Denis D, et al. Coordinate activation of lysosomal, Ca2+−activated and ATP-ubiquitin-dependent proteinases in the unweighted rat soleus muscle. Biochem J. 1996;316(Pt 1):65–72.

    PubMed  CAS  Google Scholar 

  252. Temparis S, Asensi M, Taillandier D, et al. Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Cancer Res. 1994;54(21):5568–73.

    PubMed  CAS  Google Scholar 

  253. Arya R, Kedar V, Hwang JR, et al. Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol. 2004;167(6):1147–59.

    PubMed  CAS  Google Scholar 

  254. Kim HT, Kim KP, Lledias F, et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem. 2007;282(24):17375–86.

    PubMed  CAS  Google Scholar 

  255. Rodriguez JE, Schisler JC, Patterson C, Willis MS. Seek and destroy: the ubiquitin––proteasome system in cardiac disease. Curr Hypertens Rep. 2009;11(6):396–405.

    PubMed  CAS  Google Scholar 

  256. Wang X, Robbins J. Heart failure and protein quality control. Circ Res. 2006;99(12):1315–28.

    PubMed  CAS  Google Scholar 

  257. Willis MS, Schisler JC, Portbury AL, Patterson C. Build it up-tear it down: protein quality control in the cardiac sarcomere. Cardiovasc Res. 2009;81(3):439–48.

    PubMed  CAS  Google Scholar 

  258. Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res. 2007;100(4):456–9.

    PubMed  CAS  Google Scholar 

  259. Fielitz J, Kim MS, Shelton JM, et al. Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest. 2007;117(9):2486–95.

    PubMed  CAS  Google Scholar 

  260. Willis MS, Schisler JC, Li L, et al. Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res. 2009;105(1):80–8.

    PubMed  CAS  Google Scholar 

  261. Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S. Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J. 2008;27(2):350–60.

    PubMed  CAS  Google Scholar 

  262. Li HH, Kedar V, Zhang C, et al. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest. 2004;114(8):1058–71.

    PubMed  CAS  Google Scholar 

  263. Li HH, Willis MS, Lockyer P, et al. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest. 2007;117(11): 3211–23.

    PubMed  CAS  Google Scholar 

  264. Tannous P, Zhu H, Nemchenko A, et al. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation. 2008;117(24):3070–8.

    PubMed  CAS  Google Scholar 

  265. Xie P, Guo S, Fan Y, Zhang H, Gu D, Li H. Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK activation. J Biol Chem. 2009;284(9):5488–96.

    PubMed  CAS  Google Scholar 

  266. Fielitz J, van Rooij E, Spencer JA, et al. Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proc Natl Acad Sci USA. 2007;104(11):4377–82.

    PubMed  CAS  Google Scholar 

  267. Willis MS, Schisler JC, Patterson C. Appetite for destruction: E3 ubiquitin-ligase protection in cardiac disease. Future Cardiol. 2008;4(1):65–75.

    PubMed  CAS  Google Scholar 

  268. Toth A, Nickson P, Qin LL, Erhardt P. Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem. 2006;281(6):3679–89.

    PubMed  CAS  Google Scholar 

  269. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.

    PubMed  CAS  Google Scholar 

  270. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–21.

    PubMed  CAS  Google Scholar 

  271. Rothermel BA, Hill JA. Myocyte autophagy in heart disease: friend or foe? Autophagy. 2007;3(6):632–4.

    PubMed  CAS  Google Scholar 

  272. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9(10):1102–9.

    PubMed  CAS  Google Scholar 

  273. Ferdous A, Battiprolu PK, Ni YG, Rothermel BA, Hill JA. FoxO, autophagy, and cardiac remodeling. J Cardiovasc Transl Res. 2010;3(4):355–64.

    PubMed  Google Scholar 

  274. Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM. Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res. 2001;51(2):304–12.

    PubMed  CAS  Google Scholar 

  275. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy. 2007;3(4):405–7.

    PubMed  CAS  Google Scholar 

  276. Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22.

    PubMed  CAS  Google Scholar 

  277. Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem. 2006;281(40):29776–87.

    PubMed  CAS  Google Scholar 

  278. Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–91.

    PubMed  Google Scholar 

  279. Yamamoto S, Sawada K, Shimomura H, Kawamura K, James TN. On the nature of cell death during remodeling of hypertrophied human myocardium. J Mol Cell Cardiol. 2000;32(1): 161–75.

    PubMed  CAS  Google Scholar 

  280. Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619–24.

    PubMed  CAS  Google Scholar 

  281. Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007;117(7):1782–93.

    PubMed  CAS  Google Scholar 

  282. Weekes J, Morrison K, Mullen A, Wait R, Barton P, Dunn MJ. Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics. 2003;3(2):208–16.

    PubMed  CAS  Google Scholar 

  283. Kostin S, Pool L, Elsasser A, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92(7):715–24.

    PubMed  CAS  Google Scholar 

  284. Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34.

    PubMed  CAS  Google Scholar 

  285. Tannous P, Zhu H, Johnstone JL, et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci USA. 2008;105(28):9745–50.

    PubMed  CAS  Google Scholar 

  286. Bondareva LA, Nemova NN. Molecular evolution of intracellular Ca2+−dependent proteases. Bioorg Khim. 2008;34(3):295–302.

    PubMed  CAS  Google Scholar 

  287. Dear TN, Boehm T. Identification and characterization of two novel calpain large subunit genes. Gene. 2001;274(1–2):245–52.

    PubMed  CAS  Google Scholar 

  288. Papp Z, van der Velden J, Stienen GJ. Calpain-I induced alterations in the cytoskeletal structure and impaired mechanical properties of single myocytes of rat heart. Cardiovasc Res. 2000;45(4):981–93.

    PubMed  CAS  Google Scholar 

  289. Lim CC, Zuppinger C, Guo X, et al. Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem. 2004;279(9):8290–9.

    PubMed  CAS  Google Scholar 

  290. Solomon V, Goldberg AL. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem. 1996;271(43):26690–7.

    PubMed  CAS  Google Scholar 

  291. Hasselgren PO, Fischer JE. Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg. 2001;233(1):9–17.

    PubMed  CAS  Google Scholar 

  292. Kramerova I, Kudryashova E, Venkatraman G, Spencer MJ. Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway. Hum Mol Genet. 2005;14(15):2125–34.

    PubMed  CAS  Google Scholar 

  293. Ke L, Qi XY, Dijkhuis AJ, et al. Calpain mediates cardiac troponin degradation and contractile dysfunction in atrial fibrillation. J Mol Cell Cardiol. 2008;45(5):685–93.

    PubMed  CAS  Google Scholar 

  294. Galvez AS, Diwan A, Odley AM, et al. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res. 2007;100(7):1071–8.

    PubMed  CAS  Google Scholar 

  295. Cohen S, Brault JJ, Gygi SP, et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol. 2009;185(6):1083–95.

    PubMed  CAS  Google Scholar 

  296. Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest. 1996;97(6):1447–53.

    PubMed  CAS  Google Scholar 

  297. Price SR, Bailey JL, Wang X, et al. Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest. 1996;98(8):1703–8.

    PubMed  CAS  Google Scholar 

  298. Baracos VE, DeVivo C, Hoyle DH, Goldberg AL. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol. 1995;268(5 Pt 1):E996–1006.

    PubMed  CAS  Google Scholar 

  299. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44(6):817–29.

    PubMed  CAS  Google Scholar 

  300. Foo RS, Mani K, Kitsis RN. Death begets failure in the heart. J Clin Invest. 2005;115(3):565–71.

    PubMed  CAS  Google Scholar 

  301. Kung G, Konstantinidis K, Kitsis RN. Programmed necrosis, not apoptosis, in the heart. Circ Res. 2011;108(8):1017–36.

    PubMed  CAS  Google Scholar 

  302. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.

    PubMed  CAS  Google Scholar 

  303. Sen S. Programmed cell death: concept, mechanism and control. Biol Rev Camb Philos Soc. 1992;67(3):287–319.

    PubMed  CAS  Google Scholar 

  304. Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell. 2003;11(2):529–41.

    PubMed  CAS  Google Scholar 

  305. Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell. 2001;107(3):399–407.

    PubMed  CAS  Google Scholar 

  306. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003;10(1):26–35.

    PubMed  CAS  Google Scholar 

  307. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14(22):5579–88.

    PubMed  CAS  Google Scholar 

  308. Bao Q, Shi Y. Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ. 2007;14(1):56–65.

    PubMed  CAS  Google Scholar 

  309. Koonin EV, Aravind L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ. 2002;9(4):394–404.

    PubMed  CAS  Google Scholar 

  310. Scorrano L, Ashiya M, Buttle K, et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell. 2002;2(1):55–67.

    PubMed  CAS  Google Scholar 

  311. Nguyen M, Breckenridge DG, Ducret A, Shore GC. Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol Cell Biol. 2000;20(18):6731–40.

    PubMed  CAS  Google Scholar 

  312. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300(5616):135–9.

    PubMed  CAS  Google Scholar 

  313. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292(5517):727–30.

    PubMed  CAS  Google Scholar 

  314. Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science. 2003;301(5632):513–7.

    PubMed  CAS  Google Scholar 

  315. Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004;6(5):443–50.

    PubMed  CAS  Google Scholar 

  316. Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem. 2001;276(15):11615–23.

    PubMed  CAS  Google Scholar 

  317. Mikhailov V, Mikhailova M, Degenhardt K, Venkatachalam MA, White E, Saikumar P. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem. 2003;278(7):5367–76.

    PubMed  CAS  Google Scholar 

  318. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89.

    PubMed  CAS  Google Scholar 

  319. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell. 2002;9(2):423–32.

    PubMed  CAS  Google Scholar 

  320. Li H, Zhu H, Xu C-J, Yuan J. Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.

    PubMed  CAS  Google Scholar 

  321. Yuan H, Williams SD, Adachi S, Oltersdorf T, Gottlieb RA. Cytochrome c dissociation and release from mitochondria by truncated Bid and ceramide. Mitochondrion. 2003;2(4):237–44.

    PubMed  CAS  Google Scholar 

  322. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–6.

    PubMed  CAS  Google Scholar 

  323. Kharbanda S, Pandey P, Schofield L, et al. Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci USA. 1997;94(13):6939–42.

    PubMed  CAS  Google Scholar 

  324. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2002;3(6):401–10.

    PubMed  CAS  Google Scholar 

  325. Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;13(3):239–52.

    PubMed  CAS  Google Scholar 

  326. Potts MB, Vaughn AE, McDonough H, Patterson C, Deshmukh M. Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol. 2005;171(6):925–30.

    PubMed  CAS  Google Scholar 

  327. Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 2003;11(2):519–27.

    PubMed  CAS  Google Scholar 

  328. Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA. 2001;98(15):8662–7.

    PubMed  CAS  Google Scholar 

  329. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science. 2000;288(5467):874–7.

    PubMed  CAS  Google Scholar 

  330. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102(1):33–42.

    PubMed  CAS  Google Scholar 

  331. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102(1):43–53.

    PubMed  CAS  Google Scholar 

  332. Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem. 2000;275(4):2581–8.

    PubMed  CAS  Google Scholar 

  333. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. 2001;8(3):613–21.

    PubMed  CAS  Google Scholar 

  334. Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17(12):1487–96.

    PubMed  CAS  Google Scholar 

  335. Peter ME. The flip side of FLIP. Biochem J. 2004;382(Pt 2):e1–3.

    PubMed  CAS  Google Scholar 

  336. Nam YJ, Mani K, Ashton AW, et al. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell. 2004;15(6):901–12.

    PubMed  CAS  Google Scholar 

  337. Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA. Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem. 2004;279(20):21233–8.

    PubMed  CAS  Google Scholar 

  338. Foo RS, Nam YJ, Ostreicher MJ, et al. Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA. 2007;104(52):20826–31.

    PubMed  CAS  Google Scholar 

  339. Sanchis D, Mayorga M, Ballester M, Comella JX. Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death Differ. 2003;10(9):977–86.

    PubMed  CAS  Google Scholar 

  340. Grooten J, Goossens V, Vanhaesebroeck B, Fiers W. Cell membrane permeabilization and cellular collapse, followed by loss of dehydrogenase activity: early events in tumour necrosis factor-induced cytotoxicity. Cytokine. 1993;5(6):546–55.

    PubMed  CAS  Google Scholar 

  341. Chappell JB, Crofts AR. Calcium ion accumulation and volume changes of isolated liver mitochondria. Calcium ion-induced swelling. Biochem J. 1965;95:378–86.

    PubMed  CAS  Google Scholar 

  342. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–9.

    PubMed  CAS  Google Scholar 

  343. Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489–95.

    PubMed  CAS  Google Scholar 

  344. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–90.

    PubMed  CAS  Google Scholar 

  345. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22(2):245–57.

    PubMed  CAS  Google Scholar 

  346. Mahoney DJ, Cheung HH, Mrad RL, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA. 2008;105(33):11778–83.

    PubMed  CAS  Google Scholar 

  347. Varfolomeev E, Goncharov T, Fedorova AV, et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem. 2008;283(36):24295–9.

    PubMed  CAS  Google Scholar 

  348. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133(4):693–703.

    PubMed  CAS  Google Scholar 

  349. Lin Y, Devin A, Rodriguez Y, Liu ZG. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 1999;13(19):2514–26.

    PubMed  CAS  Google Scholar 

  350. He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137(6):1100–11.

    PubMed  CAS  Google Scholar 

  351. Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–23.

    PubMed  CAS  Google Scholar 

  352. Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332–6.

    PubMed  CAS  Google Scholar 

  353. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res. 2004;61(3):372–85.

    PubMed  CAS  Google Scholar 

  354. Crompton M, Costi A. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem. 1988;178(2):489–501.

    PubMed  CAS  Google Scholar 

  355. Halestrap AP, Woodfield KY, Connern CP. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 1997;272(6):3346–54.

    PubMed  CAS  Google Scholar 

  356. Petronilli V, Cola C, Massari S, Colonna R, Bernardi P. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J Biol Chem. 1993;268(29):21939–45.

    PubMed  CAS  Google Scholar 

  357. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. Interactions of Cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, a Cyclosporin a-sensitive channel. J Biol Chem. 1996;271(4):2185–92.

    PubMed  CAS  Google Scholar 

  358. Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658–62.

    PubMed  CAS  Google Scholar 

  359. Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652–8.

    PubMed  CAS  Google Scholar 

  360. Xu K, Tavernarakis N, Driscoll M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron. 2001;31(6):957–71.

    PubMed  CAS  Google Scholar 

  361. Hall DH, Gu G, Garcia-Anoveros J, Gong L, Chalfie M, Driscoll M. Neuropathology of degenerative cell death in Caenorhabditis elegans. J Neurosci. 1997;17(3):1033–45.

    PubMed  CAS  Google Scholar 

  362. Bianchi L, Gerstbrein B, Frokjaer-Jensen C, et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat Neurosci. 2004;7(12):1337–44.

    PubMed  CAS  Google Scholar 

  363. Wang KKW. Calpain and caspase: can you tell the difference? Trends Neurosci. 2000; 23(1):20–6.

    PubMed  Google Scholar 

  364. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

    PubMed  CAS  Google Scholar 

  365. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.

    PubMed  CAS  Google Scholar 

  366. Jia L, Dourmashkin RR, Allen PD, Gray AB, Newland AC, Kelsey SM. Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br J Haematol. 1997;98(3):673–85.

    PubMed  CAS  Google Scholar 

  367. Thorburn J, Moore F, Rao A, et al. Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol Biol Cell. 2005;16(3):1189–99.

    PubMed  CAS  Google Scholar 

  368. Pyo JO, Jang MH, Kwon YK, et al. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem. 2005;280(21):20722–9.

    PubMed  CAS  Google Scholar 

  369. Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 2008;103(4):343–51.

    PubMed  CAS  Google Scholar 

  370. Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304(5676):1500–2.

    PubMed  CAS  Google Scholar 

  371. Yu L, Wan F, Dutta S, et al. Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA. 2006;103(13):4952–7.

    PubMed  CAS  Google Scholar 

  372. Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.

    PubMed  CAS  Google Scholar 

  373. Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20(15):5454–68.

    PubMed  CAS  Google Scholar 

  374. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol. 2003;284(2):H456–463.

    PubMed  CAS  Google Scholar 

  375. Kurrelmeyer KM, Michael LH, Baumgarten G, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci USA. 2000;97(10):5456–61.

    PubMed  CAS  Google Scholar 

  376. Mani K, Peng C-F, Rosner G, Armstrong RC, Kitsis RN. The role of apoptosis in myocardial infarction and heart failure. 2005.

    Google Scholar 

  377. Brocheriou V, Hagege AA, Oubenaissa A, et al. Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med. 2000;2(5):326–33.

    PubMed  CAS  Google Scholar 

  378. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol. 2001;280(5):H2313–2320.

    PubMed  CAS  Google Scholar 

  379. Hochhauser E, Cheporko Y, Yasovich N, et al. Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell Biochem Biophys. 2007;47(1):11–20.

    PubMed  CAS  Google Scholar 

  380. Toth A, Jeffers JR, Nickson P, et al. Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2006;291(1):H52–60.

    PubMed  CAS  Google Scholar 

  381. Chua CC, Gao J, Ho YS, et al. Overexpression of IAP-2 attenuates apoptosis and protects against myocardial ischemia/reperfusion injury in transgenic mice. Biochim Biophys Acta. 2007;1773(4):577–83.

    PubMed  CAS  Google Scholar 

  382. Liu HR, Gao E, Hu A, et al. Role of Omi/HtrA2 in apoptotic cell death after myocardial ischemia and reperfusion. Circulation. 2005;111(1):90–6.

    PubMed  CAS  Google Scholar 

  383. Bhuiyan MS, Fukunaga K. Inhibition of HtrA2/Omi ameliorates heart dysfunction following ischemia/reperfusion injury in rat heart in vivo. Eur J Pharmacol. 2007;557(2–3):168–77.

    PubMed  CAS  Google Scholar 

  384. Pyo JO, Nah J, Kim HJ, et al. Protection of cardiomyocytes from ischemic/hypoxic cell death via Drbp1 and pMe2GlyDH in cardio-specific ARC transgenic mice. J Biol Chem. 2008;283(45):30707–14.

    PubMed  CAS  Google Scholar 

  385. Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA. TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation. 2002;106(6):735–9.

    PubMed  CAS  Google Scholar 

  386. Chatterjee S, Bish LT, Jayasankar V, et al. Blocking the development of postischemic cardiomyopathy with viral gene transfer of the apoptosis repressor with caspase recruitment domain. J Thorac Cardiovasc Surg. 2003;125(6):1461–9.

    PubMed  CAS  Google Scholar 

  387. Matsui T, Tao J, del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation. 2001;104(3):330–5.

    PubMed  CAS  Google Scholar 

  388. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101(6):660–7.

    PubMed  CAS  Google Scholar 

  389. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation. 1998;97(3):276–81.

    PubMed  CAS  Google Scholar 

  390. Holly TA, Drincic A, Byun Y, et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol. 1999;31(9):1709–15.

    PubMed  CAS  Google Scholar 

  391. Huang JQ, Radinovic S, Rezaiefar P, Black SC. In vivo myocardial infarct size reduction by a caspase inhibitor administered after the onset of ischemia. Eur J Pharmacol. 2000;402(1–2): 139–42.

    PubMed  CAS  Google Scholar 

  392. van Empel VPM, Bertrand ATA, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67(1):21–9.

    PubMed  Google Scholar 

  393. Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003;111(10):1497–504.

    PubMed  CAS  Google Scholar 

  394. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science. 1991;252(5007):802–8.

    PubMed  CAS  Google Scholar 

  395. D’Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA. 1997;94(15):8121–6.

    PubMed  Google Scholar 

  396. Adams JW, Sakata Y, Davis MG, et al. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA. 1998;95(17):10140–5.

    PubMed  CAS  Google Scholar 

  397. Yussman MG, Toyokawa T, Odley A, et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med. 2002;8(7):725–30.

    PubMed  CAS  Google Scholar 

  398. Regula KM, Ens K, Kirshenbaum LA. Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res. 2002;91(3):226–31.

    PubMed  CAS  Google Scholar 

  399. Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA. 2002;99(20):12825–30.

    PubMed  CAS  Google Scholar 

  400. Diwan A, Krenz M, Syed FM, et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest. 2007;117(10):2825–33.

    PubMed  CAS  Google Scholar 

  401. Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell. 1999;97(2):189–98.

    PubMed  CAS  Google Scholar 

  402. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88(2):581–609.

    PubMed  CAS  Google Scholar 

  403. Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85(9):856–66.

    PubMed  CAS  Google Scholar 

  404. Nakayama H, Chen X, Baines CP, et al. Ca2+− and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest. 2007;117(9):2431–44.

    PubMed  CAS  Google Scholar 

  405. Hill JA. Autophagy in cardiac plasticity and disease. Pediatr Cardiol. 2011;32(3):282–9.

    PubMed  Google Scholar 

  406. Eghbali M, Czaja MJ, Zeydel M, et al. Collagen chain mRNAs in isolated heart cells from young and adult rats. J Mol Cell Cardiol. 1988;20(3):267–76.

    PubMed  CAS  Google Scholar 

  407. Eghbali M, Tomek R, Sukhatme VP, Woods C, Bhambi B. Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ Res. 1991;69(2):483–90.

    PubMed  CAS  Google Scholar 

  408. Bashey RI, Donnelly M, Insinga F, Jimenez SA. Growth properties and biochemical characterization of collagens synthesized by adult rat heart fibroblasts in culture. J Mol Cell Cardiol. 1992;24(7):691–700.

    PubMed  CAS  Google Scholar 

  409. Leicht M, Marx G, Karbach D, Gekle M, Kohler T, Zimmer HG. Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion. Mol Cell Biochem. 2003;251(1–2):119–26.

    PubMed  CAS  Google Scholar 

  410. Zohar R, Zhu B, Liu P, Sodek J, McCulloch CA. Increased cell death in osteopontin-deficient cardiac fibroblasts occurs by a caspase-3-independent pathway. Am J Physiol Heart Circ Physiol. 2004;287(4):H1730–9.

    PubMed  CAS  Google Scholar 

  411. Smith C, Davidson S, Lim S, Simpkin J, Hothersall J, Yellon D. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 2007;21(4):227–33.

    PubMed  CAS  Google Scholar 

  412. Lim S, Davidson S, Mocanu M, Yellon D, Smith C. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther. 2007;21(6):467–9.

    PubMed  CAS  Google Scholar 

  413. Liu J, Farmer Jr JD, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991;66(4):807–15.

    PubMed  CAS  Google Scholar 

  414. Weinbrenner C, Liu GS, Downey JM, Cohen MV. Cyclosporine A limits myocardial infarct size even when administered after onset of ischemia. Cardiovasc Res. 1998;38(3):676–84.

    CAS  Google Scholar 

  415. Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359(5):473–81.

    PubMed  CAS  Google Scholar 

  416. Baughman KL. Diagnosis of myocarditis: death of Dallas criteria. Circulation. 2006;113(4):593–5.

    PubMed  Google Scholar 

  417. Dobaczewski M, Frangogiannis NG. Chemokines and cardiac fibrosis. Front Biosci (Schol Ed). 2009;1:391–405.

    Google Scholar 

  418. Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol. 2000;15(4):264–72.

    PubMed  CAS  Google Scholar 

  419. Berry JM, Le V, Rotter D, et al. (2011) Reversibility of adverse, calcineurin-dependent cardiac remodeling. Circulation Research. 2011:CIRCRESAHA.110.228452.

    Google Scholar 

  420. Anderson KR, Sutton MGSJ, Lie JT. Histopathological types of cardiac fibrosis in myocardial disease. J Pathol. 1979;128(2):79–85.

    PubMed  CAS  Google Scholar 

  421. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13(7):1637–52.

    PubMed  CAS  Google Scholar 

  422. Isoyama S, Nitta-Komatsubara Y. Acute and chronic adaptation to hemodynamic overload and ischemia in the aged heart. Heart Fail Rev. 2002;7(1):63–9.

    PubMed  Google Scholar 

  423. Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res. 1998;39(1):60–76.

    PubMed  CAS  Google Scholar 

  424. Bowers SLK, Banerjee I, Baudino TA. The extracellular matrix: at the center of it all. J Mol Cell Cardiol. 2010;48(3):474–82.

    PubMed  CAS  Google Scholar 

  425. Matsushita T, Oyamada M, Fujimoto K, et al. Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res. 1999;85(11):1046–55.

    PubMed  CAS  Google Scholar 

  426. Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol. 2003;200(4):423–8.

    PubMed  CAS  Google Scholar 

  427. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    PubMed  CAS  Google Scholar 

  428. MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res. 2000;46(2):257–63.

    PubMed  CAS  Google Scholar 

  429. Tsuruda T, Costello-Boerrigter LC, Burnett JC. Matrix metalloproteinases: pathways of Induction by bioactive molecules. Heart Fail Rev. 2004;9(1):53–61.

    PubMed  CAS  Google Scholar 

  430. Corda S, Samuel J-L, Rappaport L. Extracellular matrix and growth factors during heart growth. Heart Fail Rev. 2000;5(2):119–30.

    PubMed  CAS  Google Scholar 

  431. Gray MO, Long CS, Kalinyak JE, Li H-T, Karliner JS. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothelin-1 from fibroblasts. Cardiovasc Res. 1998;40(2):352–63.

    PubMed  CAS  Google Scholar 

  432. Jiang Z-S, Jeyaraman M, Wen G-B, et al. High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J Mol Cell Cardiol. 2007;42(1):222–33.

    PubMed  CAS  Google Scholar 

  433. Kresse H, Schönherr E. Proteoglycans of the extracellular matrix and growth control. J Cell Physiol. 2001;189(3):266–74.

    PubMed  CAS  Google Scholar 

  434. Villaschi S, Nicosia RF. Paracrine interactions between fibroblasts and endothelial cells in a serum-free coculture model. Modulation of angiogenesis and collagen gel contraction. Lab Invest. 1994;71(2):291–9.

    PubMed  CAS  Google Scholar 

  435. Zhao L, Eghbali-Webb M. Release of pro- and anti-angiogenic factors by human cardiac fibroblasts: effects on DNA synthesis and protection under hypoxia in human endothelial cells. Biochim Biophys Acta (BBA) – Molecular Cell Research. 2001;1538(2–3):273–82.

    CAS  Google Scholar 

  436. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    PubMed  CAS  Google Scholar 

  437. Engel FB, Schebesta M, Duong MT, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19(10):1175–87.

    PubMed  CAS  Google Scholar 

  438. Kuhn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.

    PubMed  Google Scholar 

  439. Kohl P. Heterogeneous cell coupling in the heart: an electrophysiological role for fibroblasts. Circ Res. 2003;93(5):381–3.

    PubMed  CAS  Google Scholar 

  440. Zhou B, von Gise A, Ma Q, Hu YW, Pu WT. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev Biol. 2010;338(2):251–61.

    PubMed  CAS  Google Scholar 

  441. Goshima K, Tonomura Y. Synchronized beating of embryonic mouse myocardial cells mediated by FL cells in monolayer culture. Exp Cell Res. 1969;56(2–3):387–92.

    PubMed  CAS  Google Scholar 

  442. Chilton L, Giles WR, Smith GL. Evidence of intercellular coupling between co-cultured adult rabbit ventricular myocytes and myofibroblasts. J Physiol. 2007;583(1):225–36.

    PubMed  CAS  Google Scholar 

  443. Hu H, Sachs F. Stretch-activated ion channels in the heart. J Mol Cell Cardiol. 1997;29(6):1511–23.

    PubMed  CAS  Google Scholar 

  444. Li G-R, Sun H-Y, Chen J-B, Zhou Y, Tse H-F, Lau C-P. Characterization of multiple ion channels in cultured human cardiac fibroblasts. PLoS One. 2009;4(10):e7307.

    PubMed  Google Scholar 

  445. Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A. Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol. 2003;82(1–3):43–56.

    PubMed  CAS  Google Scholar 

  446. Kamkin A, Kiseleva I, Isenberg G, et al. Cardiac fibroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog Biophys Mol Biol. 2003;82(1–3):111–20.

    PubMed  CAS  Google Scholar 

  447. Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res. 2002;91(12):1103–13.

    PubMed  CAS  Google Scholar 

  448. Chaturvedi RR, Herron T, Simmons R, et al. Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation. 2010;121(8):979–88.

    PubMed  Google Scholar 

  449. de Bakker JMT, van Capelle FJL, Janse MJ, et al. Fractionated electrograms in dilated cardiomyopathy: origin and relation to abnormal conduction. J Am Coll Cardiol. 1996;27(5):1071–8.

    PubMed  Google Scholar 

  450. Spach MS, Boineau JP. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections; a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysiol. 1997;20(2):397–413.

    PubMed  CAS  Google Scholar 

  451. Adamson PB, Barr RC, Callans DJ, et al. The perplexing complexity of cardiac arrhythmias: beyond electrical remodeling. Heart Rhythm. 2005;2(6):650–9.

    PubMed  Google Scholar 

  452. Rohr S. Myofibroblasts in diseased hearts: new players in cardiac arrhythmias? Heart Rhythm. 2009;6(6):848–56.

    PubMed  Google Scholar 

  453. Fredj S, Bescond J, Louault C, Potreau D. Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J Cell Physiol. 2005;202(3):891–9.

    PubMed  CAS  Google Scholar 

  454. Lucas JA, Zhang Y, Li P, et al. Inhibition of transforming growth factor-β signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart. Am J Physiol Heart Circ Physiol. 2010;298(2):H424–32.

    PubMed  CAS  Google Scholar 

  455. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952–61.

    PubMed  CAS  Google Scholar 

  456. Rosenkranz S, Flesch M, Amann K, et al. Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol. 2002;283(3):H1253–1262.

    PubMed  CAS  Google Scholar 

  457. Brooks WW, Conrad CH. Myocardial fibrosis in transforming growth factor [beta]1heterozygous mice. J Mol Cell Cardiol. 2000;32(2):187–95.

    PubMed  CAS  Google Scholar 

  458. Weber KT, Brilla CG. Myocardial fibrosis and the renin-angiotensin-aldosterone system. J Cardiovasc Pharmacol. 1992;20 Suppl 1:S48–54.

    PubMed  CAS  Google Scholar 

  459. Brilla CG, Matsubara LS, Weber KT. Anti-Aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25(5):563–75.

    PubMed  CAS  Google Scholar 

  460. Nishioka T, Suzuki M, Onishi K, et al. Eplerenone attenuates myocardial fibrosis in the angiotensin II-induced hypertensive mouse: involvement of tenascin-C induced by aldosterone-mediated inflammation. J Cardiovasc Pharmacol. 2007;49(5):261–8.

    PubMed  CAS  Google Scholar 

  461. Guney I, Selcuk NY, Altintepe L, Atalay H, Basarali MK, Buyukbas S. Antifibrotic effects of aldosterone receptor blocker (spironolactone) in patients with chronic kidney disease. Ren Fail. 2009;31(9):779–84.

    PubMed  CAS  Google Scholar 

  462. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341(10):709–17.

    PubMed  CAS  Google Scholar 

  463. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.

    PubMed  CAS  Google Scholar 

  464. Zannad F, McMurray JJV, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21.

    PubMed  CAS  Google Scholar 

  465. Packer M. The impossible task of developing a new treatment for heart failure. J Card Fail. 2002;8(4):193–6.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Hill and Rothermel laboratories for thoughtful commentary. This work was supported by grants from the NIH (HL-075173, JAH; HL-080144, JAH; HL-090842, JAH; HL-072016, BAR; HL-097768, BAR), AHA (0640084N, JAH; 0655202Y, BAR), ADA (7-08-MN-21-ADA, JAH), and the AHA-Jon Holden DeHaan Foundation (0970518N, JAH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gondalia, R.B., Rothermel, B.A., Lavandero, S., Gillette, T.G., Hill, J.A. (2012). Cardiac Plasticity in Health and Disease. In: Patterson, C., Willis, M. (eds) Translational Cardiology. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-891-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-891-7_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-890-0

  • Online ISBN: 978-1-61779-891-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics