Skip to main content

Mitochondria as a Source of ROS in Mammalian Spermatozoa

  • Chapter
  • First Online:
Studies on Men's Health and Fertility
  • 1309 Accesses

Abstract

The influence of reactive oxygen species (ROS) on sperm function and male fertility is well documented; in contrast, the role of the mitochondria in the generation of aberrant oxidative stress is a recent development. The mitochondria, comprised of complex machinery for energy production, are also equally complex in term of oxidative stress with multiple sites of ROS generation and multiple ­neutralizing enzymatic and nonenzymatic antioxidants. Knockout mouse models of enzymatic antioxidants do not lead to drastic changes in male fertility; however, increases susceptibility to external toxins and aging. Taking into account the ­numerous intrinsic and external factors that have been related to mitochondria ROS generation including fatty acids, apoptosis, cigarette smoking, and paternal age, it is likely that multiple risk factors will increase the likelihood of excessive mitochondria ROS generation in mammalian spermatozoa. A clinical focus on mitochondria-targeted antioxidant therapies and research may provide greater insight into oxidative stress-related male infertility and potential treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril. 1979;31(5):531–7.

    PubMed  CAS  Google Scholar 

  2. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9(6):367–76.

    PubMed  CAS  Google Scholar 

  3. Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays. 1994;16(4):259–67.

    PubMed  CAS  Google Scholar 

  4. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8(5):338–48.

    PubMed  CAS  Google Scholar 

  5. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48(6):835–50.

    PubMed  CAS  Google Scholar 

  6. Guthrie HD, Welch GR. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J Anim Sci. 2006;84(8):2089–100.

    PubMed  CAS  Google Scholar 

  7. Alvarez JG, Storey BT. Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit spermatozoa. Biol Reprod. 1984;30(2):323–31.

    PubMed  CAS  Google Scholar 

  8. Holland MK, Alvarez JG, Storey BT. Production of superoxide and activity of superoxide dismutase in rabbit epididymal spermatozoa. Biol Reprod. 1982;27(5):1109–18.

    PubMed  CAS  Google Scholar 

  9. Vernet P, Fulton N, Wallace C, Aitken RJ. Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa. Biol Reprod. 2001;65(4):1102–13.

    PubMed  CAS  Google Scholar 

  10. Ball BA, Vo A. Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability, and mitochondrial membrane potential. J Androl. 2001;22(6):1061–9.

    PubMed  CAS  Google Scholar 

  11. Dadoune JP. The nuclear status of human sperm cells. Micron. 1995;26(4):323–45.

    PubMed  CAS  Google Scholar 

  12. Amann RP, Johnson L, Thompson Jr DL, Pickett BW. Daily spermatozoal production, epididymal spermatozoal reserves and transit time of spermatozoa through the epididymis of the rhesus monkey. Biol Reprod. 1976;15(5):586–92.

    PubMed  CAS  Google Scholar 

  13. Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl. 1996;17(3):276–87.

    PubMed  CAS  Google Scholar 

  14. Aitken RJ, West K, Buckingham D. Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J Androl. 1994;15(4):343–52.

    PubMed  CAS  Google Scholar 

  15. Aitken RJ, Baker HW. Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod. 1995;10(7):1736–9.

    PubMed  CAS  Google Scholar 

  16. Aitken RJ, Buckingham DW, Brindle J, Gomez E, Baker HW, Irvine DS. Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum Reprod. 1995;10(8):2061–71.

    PubMed  CAS  Google Scholar 

  17. Kullisaar T, Turk S, Punab M, et al. Oxidative stress in leucocytospermic prostatitis patients: preliminary results. Andrologia. 2008;40(3):161–72.

    PubMed  CAS  Google Scholar 

  18. Haidl G, Allam JP, Schuppe HC. Chronic epididymitis: impact on semen parameters and therapeutic options. Andrologia. 2008;40(2):92–6.

    PubMed  CAS  Google Scholar 

  19. Alvarez JG, Sharma RK, Ollero M, et al. Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril. 2002;78(2):319–29.

    PubMed  Google Scholar 

  20. Aitken RJ, Fisher HM, Fulton N, et al. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev. 1997;47(4):468–82.

    PubMed  CAS  Google Scholar 

  21. Richer SC, Ford WC. A critical investigation of NADPH oxidase activity in human spermatozoa. Mol Hum Reprod. 2001;7(3):237–44.

    PubMed  CAS  Google Scholar 

  22. Sabeur K, Ball BA. Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction. 2007;134(2):263–70.

    PubMed  CAS  Google Scholar 

  23. Banfi B, Molnar G, Maturana A, et al. A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem. 2001;276(40):37594–601.

    PubMed  CAS  Google Scholar 

  24. Armstrong JS, Bivalacqua TJ, Chamulitrat W, Sikka S, Hellstrom WJ. A comparison of the NADPH oxidase in human sperm and white blood cells. Int J Androl. 2002;25(4):223–9.

    PubMed  CAS  Google Scholar 

  25. Shukla S, Jha RK, Laloraya M, Kumar PG. Identification of non-mitochondrial NADPH oxidase and the spatio-temporal organization of its components in mouse spermatozoa. Biochem Biophys Res Commun. 2005;331(2):476–83.

    PubMed  CAS  Google Scholar 

  26. Holland MK, Storey BT. Oxygen metabolism of mammalian spermatozoa. Generation of hydrogen peroxide by rabbit epididymal spermatozoa. Biochem J. 1981;198(2):273–80.

    PubMed  CAS  Google Scholar 

  27. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93(8):3199–207.

    PubMed  CAS  Google Scholar 

  28. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973;134(3):707–16.

    PubMed  CAS  Google Scholar 

  29. Inoue M, Sato EF, Nishikawa M, et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003;10(23):2495–505.

    PubMed  CAS  Google Scholar 

  30. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335–44.

    PubMed  CAS  Google Scholar 

  31. Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM. Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med. 2002;33(6):755–64.

    PubMed  CAS  Google Scholar 

  32. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277(47):44784–90.

    PubMed  CAS  Google Scholar 

  33. Brookes PS. Mitochondrial nitric oxide synthase. Mitochondrion. 2004;3(4):187–204.

    PubMed  CAS  Google Scholar 

  34. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995;38(3):357–66.

    PubMed  CAS  Google Scholar 

  35. Stone D, Darley-Usmar V, Martin JF. Calcium fluxes and reperfusion damage: the role of mitochondria. In: Parratt JR, editor. Myocardial response to acute injury. Basingstoke: Macmillan; 1992.

    Google Scholar 

  36. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90(17):7915–22.

    PubMed  CAS  Google Scholar 

  37. Beckman KB, Ames BN. Mitochondrial aging: open questions. Ann N Y Acad Sci. 1998;854:118–27.

    PubMed  CAS  Google Scholar 

  38. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547–81.

    PubMed  CAS  Google Scholar 

  39. Finkel T. Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol. 2005;6(12):971–6.

    PubMed  CAS  Google Scholar 

  40. Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004;53 Suppl 1:S110–8.

    PubMed  CAS  Google Scholar 

  41. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.

    PubMed  CAS  Google Scholar 

  42. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.

    PubMed  CAS  Google Scholar 

  43. Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr. 1999;31(4):347–66.

    PubMed  CAS  Google Scholar 

  44. Turrens JF, Freeman BA, Levitt JG, Crapo JD. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys. 1982;217(2):401–10.

    PubMed  CAS  Google Scholar 

  45. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191(2):421–7.

    PubMed  CAS  Google Scholar 

  46. Gallon F, Marchetti C, Jouy N, Marchetti P. The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil Steril. 2006;86(5):1526–30.

    PubMed  Google Scholar 

  47. Troiano L, Granata AR, Cossarizza A, et al. Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Exp Cell Res. 1998;241(2):384–93.

    PubMed  CAS  Google Scholar 

  48. Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002;17(5):1257–65.

    PubMed  Google Scholar 

  49. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod. 2004;19(10):2267–76.

    PubMed  Google Scholar 

  50. Donnelly GB, Glassman J, Long C, et al. Granulocyte-colony stimulating factor (G-CSF) may improve disease outcome in elderly patients with diffuse large cell lymphoma (DLCL) treated with CHOP chemotherapy. Leuk Lymphoma. 2000;39(1–2):67–75.

    PubMed  CAS  Google Scholar 

  51. Wang X, Sharma RK, Gupta A, et al. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril. 2003;80 Suppl 2:844–50.

    PubMed  Google Scholar 

  52. De Iuliis GN, Thomson LK, Mitchell LA, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81(3):517–24.

    PubMed  Google Scholar 

  53. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive ­oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4(7):e6446.

    PubMed  Google Scholar 

  54. Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.

    PubMed  CAS  Google Scholar 

  55. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41(1):183–97.

    PubMed  CAS  Google Scholar 

  56. Aitken RJ, Wingate JK, De Iuliis GN, McLaughlin EA. Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. Mol Hum Reprod. 2007;13(4):203–11.

    PubMed  CAS  Google Scholar 

  57. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112.

    PubMed  CAS  Google Scholar 

  58. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem. 2001;276(42):38388–93.

    PubMed  CAS  Google Scholar 

  59. Lebovitz RM, Zhang H, Vogel H, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA. 1996;93(18):9782–7.

    PubMed  CAS  Google Scholar 

  60. Li Y, Huang TT, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376–81.

    PubMed  CAS  Google Scholar 

  61. Van Remmen H, Ikeno Y, Hamilton M, et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics. 2003;16(1):29–37.

    PubMed  Google Scholar 

  62. Raineri I, Carlson EJ, Gacayan R, et al. Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility. Free Radic Biol Med. 2001;31(8):1018–30.

    PubMed  CAS  Google Scholar 

  63. Narisawa S, Hecht NB, Goldberg E, Boatright KM, Reed JC, Millan JL. Testis-specific cytochrome c-null mice produce functional sperm but undergo early testicular atrophy. Mol Cell Biol. 2002;22(15):5554–62.

    PubMed  CAS  Google Scholar 

  64. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996;20(3):463–6.

    PubMed  CAS  Google Scholar 

  65. Ho YS, Magnenat JL, Bronson RT, et al. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem. 1997;272(26):16644–51.

    PubMed  CAS  Google Scholar 

  66. de Haan JB, Bladier C, Griffiths P, et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem. 1998;273(35):22528–36.

    PubMed  Google Scholar 

  67. Chabory E, Damon C, Lenoir A, et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest. 2009;119(7):2074–85.

    PubMed  CAS  Google Scholar 

  68. Thomas JP, Maiorino M, Ursini F, Girotti AW. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem. 1990;265(1):454–61.

    PubMed  CAS  Google Scholar 

  69. Knopp EA, Arndt TL, Eng KL, et al. Murine phospholipid hydroperoxide glutathione peroxidase: cDNA sequence, tissue expression, and mapping. Mamm Genome. 1999;10(6):601–5.

    PubMed  CAS  Google Scholar 

  70. Ursini F, Heim S, Kiess M, et al. Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999;285(5432):1393–6.

    PubMed  CAS  Google Scholar 

  71. Kelner MJ, Bagnell RD, Montoya MA, Lanham KA. Structural organization of the human gastrointestinal glutathione peroxidase (GPX2) promoter and 3′-nontranscribed region: transcriptional response to exogenous redox agents. Gene. 2000;248(1–2):109–16.

    PubMed  CAS  Google Scholar 

  72. Pretsch W. Glutathione reductase activity deficiency in homozygous Gr1a1Neu mice does not cause haemolytic anaemia. Genet Res. 1999;73(1):1–5.

    PubMed  CAS  Google Scholar 

  73. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003;300(5619):650–3.

    PubMed  CAS  Google Scholar 

  74. Leyens G, Donnay I, Knoops B. Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comp Biochem Physiol B Biochem Mol Biol. 2003;136(4):943–55.

    PubMed  Google Scholar 

  75. Neumann CA, Krause DS, Carman CV, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003;424(6948):561–5.

    PubMed  CAS  Google Scholar 

  76. Lee TH, Kim SU, Yu SL, et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood. 2003;101(12):5033–8.

    PubMed  CAS  Google Scholar 

  77. Li L, Shoji W, Takano H, et al. Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stress. Biochem Biophys Res Commun. 2007;355(3):715–21.

    PubMed  CAS  Google Scholar 

  78. Wang Y, Feinstein SI, Manevich Y, Ho YS, Fisher AB. Lung injury and mortality with hyperoxia are increased in peroxiredoxin 6 gene-targeted mice. Free Radic Biol Med. 2004;37(11):1736–43.

    PubMed  CAS  Google Scholar 

  79. Wang X, Phelan SA, Forsman-Semb K, et al. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J Biol Chem. 2003;278(27):25179–90.

    PubMed  CAS  Google Scholar 

  80. Antunes F, Han D, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H(2)O(2) detoxification in in vivo conditions. Free Radic Biol Med. 2002;33(9):1260–7.

    PubMed  CAS  Google Scholar 

  81. Jeulin C, Soufir JC, Weber P, Laval-Martin D, Calvayrac R. Catalase activity in human spermatozoa and seminal plasma. Gamete Res. 1989;24(2):185–96.

    PubMed  CAS  Google Scholar 

  82. Tramer F, Rocco F, Micali F, Sandri G, Panfili E. Antioxidant systems in rat epididymal spermatozoa. Biol Reprod. 1998;59(4):753–8.

    PubMed  CAS  Google Scholar 

  83. Bilodeau JF, Chatterjee S, Sirard MA, Gagnon C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol Reprod Dev. 2000;55(3):282–8.

    PubMed  CAS  Google Scholar 

  84. Ho YS, Xiong Y, Ma W, Spector A, Ho DS. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem. 2004;279(31):32804–12.

    PubMed  CAS  Google Scholar 

  85. Cocco T, Di Paola M, Papa S, Lorusso M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med. 1999;27(1–2):51–9.

    PubMed  CAS  Google Scholar 

  86. Aitken RJ, Wingate JK, De Iuliis GN, Koppers AJ, McLaughlin EA. Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J Clin Endocrinol Metab. 2006;91(10):4154–63.

    PubMed  CAS  Google Scholar 

  87. Koppers AJ, Garg ML, Aitken RJ. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med. 2010;48(1):112–9.

    PubMed  CAS  Google Scholar 

  88. Ollero M, Gil-Guzman E, Lopez MC, et al. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16(9):1912–21.

    PubMed  CAS  Google Scholar 

  89. Khosrowbeygi A, Zarghami N. Fatty acid composition of human spermatozoa and seminal plasma levels of oxidative stress biomarkers in subfertile males. Prostaglandins Leukot Essent Fatty Acids. 2007;77(2):117–21.

    PubMed  CAS  Google Scholar 

  90. Conquer JA, Martin JB, Tummon I, Watson L, Tekpetey F. Fatty acid analysis of blood serum, seminal plasma, and spermatozoa of normozoospermic vs. asthenozoospermic males. Lipids. 1999;34(8):793–9.

    PubMed  CAS  Google Scholar 

  91. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–42.

    PubMed  CAS  Google Scholar 

  92. Hoeberichts FA, Woltering EJ. Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. Bioessays. 2003;25(1):47–57.

    PubMed  Google Scholar 

  93. Chernyak BV. Redox regulation of the mitochondrial permeability transition pore. Biosci Rep. 1997;17(3):293–302.

    PubMed  CAS  Google Scholar 

  94. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem. 1999;274(4):2225–33.

    PubMed  CAS  Google Scholar 

  95. Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem. 1998;273(19):11401–4.

    PubMed  CAS  Google Scholar 

  96. Oehninger S, Morshedi M, Weng SL, Taylor S, Duran H, Beebe S. Presence and significance of somatic cell apoptosis markers in human ejaculated spermatozoa. Reprod Biomed Online. 2003;7(4):469–76.

    PubMed  Google Scholar 

  97. Glander HJ, Schaller J. Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol Hum Reprod. 1999;5(2):109–15.

    PubMed  CAS  Google Scholar 

  98. Paasch U, Grunewald S, Agarwal A, Glandera HJ. Activation pattern of caspases in human spermatozoa. Fertil Steril. 2004;81 Suppl 1:802–9.

    PubMed  CAS  Google Scholar 

  99. Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J. 2011;436(3):687–98.

    PubMed  CAS  Google Scholar 

  100. Grunewald S, Sharma R, Paasch U, Glander HJ, Agarwal A. Impact of caspase activation in human spermatozoa. Microsc Res Tech. 2009;72(11):878–88.

    PubMed  CAS  Google Scholar 

  101. Barroso G, Taylor S, Morshedi M, Manzur F, Gavino F, Oehninger S. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril. 2006;85(1):149–54.

    PubMed  CAS  Google Scholar 

  102. Wu GJ, Chang FW, Lee SS, Cheng YY, Chen CH, Chen IC. Apoptosis-related phenotype of ejaculated spermatozoa in patients with varicocele. Fertil Steril. 2009;91(3):831–7.

    PubMed  CAS  Google Scholar 

  103. Lozano GM, Bejarano I, Espino J, et al. Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J Reprod Dev. 2009;55(6):615–21.

    PubMed  CAS  Google Scholar 

  104. Libman J, Gabriel MS, Sairam MR, Zini A. Catalase can protect spermatozoa of FSH receptor knock-out mice against oxidant-induced DNA damage in vitro. Int J Androl. 2010;33(6):818–22.

    PubMed  CAS  Google Scholar 

  105. Aitken RJ, Skakkebaek NE, Roman SD. Male reproductive health and the environment. Med J Aust. 2006;185(8):414–5.

    PubMed  Google Scholar 

  106. Ghosh J, Das J, Manna P, Sil PC. Hepatotoxicity of di-(2-ethylhexyl)phthalate is attributed to calcium aggravation, ROS-mediated mitochondrial depolarization, and ERK/NF-kappaB pathway activation. Free Radic Biol Med. 2010;49(11):1779–91.

    PubMed  CAS  Google Scholar 

  107. Felty Q, Xiong WC, Sun D, et al. Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers. Biochemistry. 2005;44(18):6900–9.

    PubMed  CAS  Google Scholar 

  108. Rock G, Labow RS, Tocchi M. Distribution of di(2-ethylhexyl) phthalate and products in blood and blood components. Environ Health Perspect. 1986;65:309–16.

    PubMed  CAS  Google Scholar 

  109. Agarwal DK, Maronpot RR, Lamb JC, Kluwe WM. Adverse effects of butyl benzyl phthalate on the reproductive and hematopoietic systems of male rats. Toxicology. 1985;35(3):189–206.

    PubMed  CAS  Google Scholar 

  110. Richburg JH, Boekelheide K. Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol Appl Pharmacol. 1996;137(1):42–50.

    PubMed  CAS  Google Scholar 

  111. Kasahara E, Sato EF, Miyoshi M, et al. Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate. Biochem J. 2002;365(Pt 3):849–56.

    PubMed  CAS  Google Scholar 

  112. Pant N, Shukla M, Kumar Patel D, et al. Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol. 2008;231(1):112–6.

    PubMed  CAS  Google Scholar 

  113. Heck KE, Schoendorf KC, Ventura SJ, Kiely JL. Delayed childbearing by education level in the United States, 1969–1994. Matern Child Health J. 1997;1(2):81–8.

    PubMed  CAS  Google Scholar 

  114. Jung A, Schuppe HC, Schill WB. Comparison of semen quality in older and younger men attending an andrology clinic. Andrologia. 2002;34(2):116–22.

    PubMed  CAS  Google Scholar 

  115. Levitas E, Lunenfeld E, Weisz N, Friger M, Potashnik G. Relationship between age and semen parameters in men with normal sperm concentration: analysis of 6022 semen samples. Andrologia. 2007;39(2):45–50.

    PubMed  CAS  Google Scholar 

  116. Cocuzza M, Athayde KS, Agarwal A, et al. Age-related increase of reactive oxygen species in neat semen in healthy fertile men. Urology. 2008;71(3):490–4.

    PubMed  Google Scholar 

  117. Lee HC, Lim ML, Lu CY, et al. Concurrent increase of oxidative DNA damage and lipid peroxidation together with mitochondrial DNA mutation in human lung tissues during aging—smoking enhances oxidative stress on the aged tissues. Arch Biochem Biophys. 1999;362(2):309–16.

    PubMed  CAS  Google Scholar 

  118. Wei YH, Kao SH, Lee HC. Simultaneous increase of mitochondrial DNA deletions and lipid peroxidation in human aging. Ann N Y Acad Sci. 1996;786:24–43.

    PubMed  CAS  Google Scholar 

  119. Lu CY, Lee HC, Fahn HJ, Wei YH. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res. 1999;423(1–2):11–21.

    PubMed  CAS  Google Scholar 

  120. Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010;51(5):440–50.

    PubMed  CAS  Google Scholar 

  121. Wei YH, Lee CF, Lee HC, et al. Increases of mitochondrial mass and mitochondrial genome in association with enhanced oxidative stress in human cells harboring 4,977 BP-deleted mitochondrial DNA. Ann N Y Acad Sci. 2001;928:97–112.

    PubMed  CAS  Google Scholar 

  122. James AM, Murphy MP. How mitochondrial damage affects cell function. J Biomed Sci. 2002;9(6 Pt 1):475–87.

    PubMed  CAS  Google Scholar 

  123. Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas Jr AJ. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril. 2002;78(3):491–9.

    PubMed  Google Scholar 

  124. Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996;351(2):199–203.

    PubMed  Google Scholar 

  125. St Clair DK, Jordan JA, Wan XS, Gairola CG. Protective role of manganese superoxide dismutase against cigarette smoke-induced cytotoxicity. J Toxicol Environ Health. 1994;43(2):239–49.

    PubMed  CAS  Google Scholar 

  126. Miro O, Alonso JR, Jarreta D, Casademont J, Urbano-Marquez A, Cardellach F. Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis. 1999;20(7):1331–6.

    PubMed  CAS  Google Scholar 

  127. Ramlau-Hansen CH, Thulstrup AM, Aggerholm AS, Jensen MS, Toft G, Bonde JP. Is smoking a risk factor for decreased semen quality? A cross-sectional analysis. Hum Reprod. 2007;22(1):188–96.

    PubMed  CAS  Google Scholar 

  128. Viloria T, Garrido N, Fernandez JL, Remohi J, Pellicer A, Meseguer M. Sperm selection by swim-up in terms of deoxyribonucleic acid fragmentation as measured by the sperm chromatin dispersion test is altered in heavy smokers. Fertil Steril. 2007;88(2):523–5.

    PubMed  Google Scholar 

  129. Sepaniak S, Forges T, Gerard H, Foliguet B, Bene MC, Monnier-Barbarino P. The influence of cigarette smoking on human sperm quality and DNA fragmentation. Toxicology. 2006;223(1–2):54–60.

    PubMed  CAS  Google Scholar 

  130. Rubes J, Lowe X, Moore II D, et al. Smoking cigarettes is associated with increased sperm disomy in teenage men. Fertil Steril. 1998;70(4):715–23.

    PubMed  CAS  Google Scholar 

  131. Shi Q, Ko E, Barclay L, Hoang T, Rademaker A, Martin R. Cigarette smoking and aneuploidy in human sperm. Mol Reprod Dev. 2001;59(4):417–21.

    PubMed  CAS  Google Scholar 

  132. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24.

    PubMed  CAS  Google Scholar 

  133. Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7(Suppl):S41–50.

    PubMed  CAS  Google Scholar 

  134. Mukai K, Kikuchi S, Urano S. Stopped-flow kinetic study of the regeneration reaction of tocopheroxyl radical by reduced ubiquinone-10 in solution. Biochim Biophys Acta. 1990;1035(1):77–82.

    PubMed  CAS  Google Scholar 

  135. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660(1–2):171–99.

    PubMed  CAS  Google Scholar 

  136. Littarru GP, Tiano L. Clinical aspects of coenzyme Q10: an update. Curr Opin Clin Nutr Metab Care. 2005;8(6):641–6.

    PubMed  CAS  Google Scholar 

  137. Mancini A, Milardi D, Conte G, Festa R, De Marinis L, Littarru GP. Seminal antioxidants in humans: preoperative and postoperative evaluation of coenzyme Q10 in varicocele patients. Horm Metab Res. 2005;37(7):428–32.

    PubMed  CAS  Google Scholar 

  138. Mancini A, De Marinis L, Oradei A, et al. Coenzyme Q10 concentrations in normal and pathological human seminal fluid. J Androl. 1994;15(6):591–4.

    PubMed  CAS  Google Scholar 

  139. Mancini A, Conte G, Milardi D, De Marinis L, Littarru GP. Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicocele. Andrologia. 1998;30(1):1–4.

    PubMed  CAS  Google Scholar 

  140. Balercia G, Mancini A, Paggi F, et al. Coenzyme Q10 and male infertility. J Endocrinol Invest. 2009;32(7):626–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam John Koppers PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koppers, A.J. (2012). Mitochondria as a Source of ROS in Mammalian Spermatozoa. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_2

Download citation

Publish with us

Policies and ethics