Skip to main content

Direct Methods for the Detection of Reactive Oxygen Species in Human Semen Samples

  • Chapter
  • First Online:
Studies on Men's Health and Fertility

Abstract

The accurate, selective measurement of reactive oxygen species (ROS) production by human spermatozoa is still a work-in-progress. Traditionally, chemiluminescence approaches have been employed using luminol or lucigenin as probes to provide a sensitive readout of the redox status of human sperm populations. A particular concern with these chemiluminescent probes is that they can also generate spurious signals as a consequence of redox cycling activity, particularly in the case of lucigenin which only needs to experience a one-electron reduction at the hands of a cellular oxidoreductase to generate intense but artificial redox signals. Most importantly, the measurement of ROS in sperm suspensions is confounded by the presence of leukocytes. Alternatives are to either physically remove the leukocytes using magnetic beads coated with a monoclonal antibody against the common leukocyte antigen (CD45) or to use fluorescent probes in combination with fluorescence microscopy or flow cytometry to focus the analysis on individual cells rather than cell suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacLeod J (1943) The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol 138:512–518

    CAS  Google Scholar 

  2. Lord R (1951) Sea urchin spermatozoa. Biol Rev 26:1–27

    Article  Google Scholar 

  3. Tosic J, Walton A (1946) Formation of hydrogen peroxide by spermatozoa and its inhibitory effect on respiration. Nature 158:485

    Article  PubMed  CAS  Google Scholar 

  4. Tosic J, Walton A (1950) Metabolism of spermatozoa. Formation of hydrogen peroxide by spermatozoa and its effects on motility and survival. Biochem J 47:199–212

    PubMed  CAS  Google Scholar 

  5. Wales RG, White IG, Lamond DR (1959) The spermicidal activity of hydrogen peroxide in vitro and in vivo. J Endocrinol 18:236–244

    Article  PubMed  CAS  Google Scholar 

  6. Oehninger S, Blackmore P, Mahony M, Hodgen G (1995) Effects of hydrogen peroxide on human spermatozoa. J Assist Reprod Genet 12:41–47

    Article  PubMed  CAS  Google Scholar 

  7. Aitken RJ, Buckingham D, Harkiss D (1993) Use of a xanthine oxidase oxidant generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil 97:441–450

    Article  PubMed  CAS  Google Scholar 

  8. Hsu PC, Hsu CC, Guo YL (1999) Hydrogen peroxide induces premature acrosome reaction in rat sperm and reduces their penetration of the zona pellucida. Toxicology 139:93–101

    Article  PubMed  CAS  Google Scholar 

  9. Lozano GM, Bejarano I, Espino J et al (2009) Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J Reprod Dev 55:615–621

    Article  PubMed  CAS  Google Scholar 

  10. Jones R, Mann T, Sherins R (1979) Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril 31:531–537

    PubMed  CAS  Google Scholar 

  11. Ollero M, Gil-Guzman E, Lopez MC et al (2001) Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod 16:1912–1921

    Article  PubMed  CAS  Google Scholar 

  12. Vignini A, Nanetti L, Buldreghini E et al (2006) The production of peroxynitrite by human spermatozoa may affect sperm motility through the formation of protein nitrotyrosine. Fertil Steril 85:947–953

    Article  PubMed  CAS  Google Scholar 

  13. Chigurupati S, Son TG, Hyun DH et al (2008) Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. J Endocrinol 199:333–341

    Article  PubMed  CAS  Google Scholar 

  14. Mallidis C, Agbaje IM, Rogers DA et al (2009) Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int J Androl 32:295–305

    Article  PubMed  CAS  Google Scholar 

  15. Aitken RJ, De Iuliis GN (2010) On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod 16:3–13

    Article  PubMed  CAS  Google Scholar 

  16. Aitken RJ, Curry BJ (2011) Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 14:367–381

    Article  PubMed  CAS  Google Scholar 

  17. Aitken RJ, Koopman P, Lewis SE (2004) Seeds of concern. Nature 432:48–52

    Article  PubMed  CAS  Google Scholar 

  18. Aitken RJ, Buckingham D, Brindle J, Gomez E, Baker G, Irvine DS (1995) Analysis of sperm movement in relation to the oxidative stress created by leucocytes in washed sperm preparations and seminal plasma. Hum Reprod 10:2061–2071

    PubMed  CAS  Google Scholar 

  19. Aitken RJ, West K, Buckingham D (1994) Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J Androl 15:343–352

    PubMed  CAS  Google Scholar 

  20. World Health Organization (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction, 4th edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  21. Aitken RJ, Clarkson JS (1988) Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl 9:367–376

    PubMed  CAS  Google Scholar 

  22. Aitken RJ, West KM (1990) Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int J Androl 13:433–451

    Article  PubMed  CAS  Google Scholar 

  23. Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulo K, Richardson DW (1992) Differential contribution of leucocytes and spermatozoa to the high levels of reactive oxygen species recorded in the ejaculates of oligozoospermic patients. J Reprod Fertil 94:451–462

    Article  PubMed  CAS  Google Scholar 

  24. Tremellen K, Tunc O (2010) Macrophage activity in semen is significantly correlated with sperm quality in infertile men. Int J Androl 33(6):823–831

    Article  PubMed  CAS  Google Scholar 

  25. Aitken RJ, Findlay JK, Hutt KJ, Kerr JB (2011) Apoptosis in the germ line. Reproduction 141:139–150

    Article  PubMed  CAS  Google Scholar 

  26. Ainsworth C, Nixon B, Aitken RJ (2005) Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod 20:2261–2270

    Article  PubMed  CAS  Google Scholar 

  27. Aitken RJ, Buckingham W, West K, Brindle J (1996) On the use of paramagnetic beads and ferrofluids to assess and eliminate the leukocytic contribution to oxygen radical generation by human sperm suspensions. Am J Reprod Immunol 35:541–551

    Article  PubMed  CAS  Google Scholar 

  28. Krausz C, Mills C, Rogers S, Tan SL, Aitken RJ (1994) Stimulation of oxidant generation by human sperm suspensions using phorbol esters and formyl peptides: relationships with motility and fertilization in vitro. Fertil Steril 62:599–605

    PubMed  CAS  Google Scholar 

  29. Aitken RJ, Baker MA, O’Bryan M (2004) Shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. J Androl 25:455–465

    PubMed  CAS  Google Scholar 

  30. Weese DL, Peaster ML, Hernandez RD, Leach GE, Lad PM, Zimmern PE (1993) Chemoattractant agents and nerve growth factor stimulate human spermatozoal reactive oxygen species generation. Fertil Steril 59:869–875

    PubMed  CAS  Google Scholar 

  31. Cormier MJ, Pritchard PM (1968) An investigation of the mechanism of the luminescent peroxidation of luminol by stopped flow techniques. J Biol Chem 243:4706–4714

    PubMed  CAS  Google Scholar 

  32. Aitken RJ, Buckingham DW, West KM (1992) Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol 151:466–477

    Article  PubMed  CAS  Google Scholar 

  33. Faulkner K, Fridovich I (1993) Luminol and lucigenin as detectors for O −•2 . Free Radic Biol Med 15:447–451

    Article  PubMed  CAS  Google Scholar 

  34. Gil-Guzman E, Ollero M, Lopez MC, Sharma RK, Alvarez JG, Thomas AJ Jr, Agarwal A (2001) Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod 16:1922–1930

    Article  PubMed  CAS  Google Scholar 

  35. Gomez E, Irvine DS, Aitken RJ (1998) Evaluation of a spectrophotometric assay for the measurement of malondialdehyde and 4-hydroxyalkenals in human spermatozoa: relationships with semen quality and sperm function. Int J Androl 21:81–94

    Article  PubMed  CAS  Google Scholar 

  36. Nakamura M, Nakamura S (1998) One- and two-electron oxidations of luminol by peroxidase systems. Free Radic Biol Med 24:537–544

    Article  PubMed  CAS  Google Scholar 

  37. Aitken RJ, Ryan AL, Baker MA, McLaughlin EA (2004) Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic Biol Med 36:994–1010

    Article  PubMed  CAS  Google Scholar 

  38. Gyllenhammar H (1987) Lucigenin chemiluminescence in the assessment of neutrophil superoxide production. J Immunol Methods 97:209–213

    Article  PubMed  CAS  Google Scholar 

  39. McKinney KA, Lewis SE, Thompson W (1996) Reactive oxygen species generation in human sperm: luminol and lucigenin chemiluminescence probes. Arch Androl 36:119–125

    Article  PubMed  CAS  Google Scholar 

  40. Aitken RJ, Fisher H, Fulton N, Knox W, Lewis B (1997) Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev 47:468–482

    Article  PubMed  CAS  Google Scholar 

  41. Baker MA, Krutskikh A, Curry BJ, Hetherington L, Aitken RJ (2005) Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biol Reprod 73:334–342

    Article  PubMed  CAS  Google Scholar 

  42. Baker MA, Krutskikh A, Curry BJ, McLaughlin EA, Aitken RJ (2004) Identification of cytochrome P450-reductase as the enzyme responsible for NADPH-dependent lucigenin and tetrazolium salt reduction in rat epididymal sperm preparations. Biol Reprod 71:307–318

    Article  PubMed  CAS  Google Scholar 

  43. Aitken RJ, Ryan AL, Baker MA, McLaughlin EA (2004) Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic Biol Med 36:994–1010

    Article  PubMed  CAS  Google Scholar 

  44. de Lamirande E, Gagnon C (1995) Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med 18:487–495

    Article  PubMed  Google Scholar 

  45. Tarpey MM, White CR, Suarez E, Richardson G, Radi R, Freeman BA (1999) Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84:1203–1211

    PubMed  CAS  Google Scholar 

  46. Aitken RJ, Clarkson JS (1987) Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 81:459–469

    Article  PubMed  CAS  Google Scholar 

  47. Aitken RJ, Clarkson JS, Hargreave TB, Irvine DS, Wu FC (1989) Analysis of the relationship between defective sperm function and the generation of reactive oxygen species in cases of oligozoospermia. J Androl 10:214–220

    PubMed  CAS  Google Scholar 

  48. D’Agata R, Vicari E, Moncada ML et al (1990) Generation of reactive oxygen species in subgroups of infertile men. Int J Androl 13:344–351

    Article  PubMed  Google Scholar 

  49. Ochsendorf FR, Thiele J, Fuchs J et al (1994) Chemiluminescence in semen of infertile men. Andrologia 26:289–293

    Article  PubMed  CAS  Google Scholar 

  50. Zalata A, Hafez T, Comhaire F (1995) Evaluation of the role of reactive oxygen species in male infertility. Hum Reprod 10:1444–1451

    PubMed  CAS  Google Scholar 

  51. Alkan I, Simşek F, Haklar G et al (1997) Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: relationship to seminal plasma antioxidants. J Urol 157:140–143

    Article  PubMed  CAS  Google Scholar 

  52. Henkel R, Ichikawa T, Sánchez R, Miska W, Ohmori H, Schill WB (1997) Differentiation of ejaculates showing reactive oxygen species production by spermatozoa or leukocytes. Andrologia 29:295–301

    Article  PubMed  CAS  Google Scholar 

  53. Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A (1999) Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol 161:1831–1834

    Article  PubMed  CAS  Google Scholar 

  54. Said TM, Agarwal A, Sharma RK, Mascha E, Sikka SC, Thomas AJ Jr (2004) Human sperm superoxide anion generation and correlation with semen quality in patients with male infertility. Fertil Steril 82:871–877

    Article  PubMed  CAS  Google Scholar 

  55. Aitken RJ, Irvine DS, Wu FC (1991) Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol 164:542–551

    PubMed  CAS  Google Scholar 

  56. Yumura Y, Iwasaki A, Saito K, Ogawa T, Hirokawa M (2009) Effect of reactive oxygen species in semen on the pregnancy of infertile couples. Int J Urol 16:202–207

    Article  PubMed  Google Scholar 

  57. Desai N, Sharma R, Makker K, Sabanegh E, Agarwal A (2009) Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril 92:1626–1631

    Article  PubMed  Google Scholar 

  58. Kobayashi H, Gil-Guzman E, Mahran AM, Rakesh, Nelson DR, Thomas AJ Jr, Agarwal A (2001) Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl 22:568–574

    PubMed  CAS  Google Scholar 

  59. Quinn P, Whittingham DG, Stanger JD (1982) Interaction of semen with ova in vitro. Arch Androl 8:189–198

    Article  PubMed  CAS  Google Scholar 

  60. Holmes RP, Goodman HO, Shihabi ZK, Jarow JP (1992) The taurine and hypotaurine content of human semen. J Androl 13:289–292

    PubMed  CAS  Google Scholar 

  61. Smith R, Vantman D, Ponce J, Escobar J, Lissi E (1996) Total antioxidant capacity of human seminal plasma. Hum Reprod 11:1655–1660

    PubMed  CAS  Google Scholar 

  62. Twigg J, Irvine DS, Houston P, Fulton N, Michael L, Aitken RJ (1998) Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod 4:439–445

    Article  PubMed  CAS  Google Scholar 

  63. Aitken RJ, Buckingham DW, Carreras A, Irvine DS (1996) Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med 21:495–504

    Article  PubMed  CAS  Google Scholar 

  64. Kao SH, Chao HT, Chen HW, Hwang TI, Liao TL, Wei YH (2008) Increase of oxidative stress in human sperm with lower motility. Fertil Steril 89:1183–1190

    Article  PubMed  CAS  Google Scholar 

  65. Rhemrev JP, van Overveld FW, Haenen GR, Teerlink T, Bast A, Vermeiden JP (2000) Quantification of the nonenzymatic fast and slow TRAP in a postaddition assay in human seminal plasma and the antioxidant contributions of various seminal compounds. J Androl 21:913–920

    PubMed  CAS  Google Scholar 

  66. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A (1999) The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 14:2801–2807

    Article  PubMed  CAS  Google Scholar 

  67. Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN (1996) Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res 351:199–200

    Article  PubMed  Google Scholar 

  68. Mahfouz RZ, du Plessis SS, Aziz N, Sharma R, Sabanegh E, Agarwal A (2010) Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil Steril 93:814–821

    Article  PubMed  CAS  Google Scholar 

  69. De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ (2006) Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J Clin Endocrinol Metab 91:1968–1975

    Article  PubMed  Google Scholar 

  70. Hughes LM, Griffith R, Carey A et al (2009) The spermostatic and microbicidal actions of quinones and maleimides: toward a dual-purpose contraceptive agent. Mol Pharmacol 76:113–124

    Article  PubMed  CAS  Google Scholar 

  71. Zhao H, Kalivendi S, Zhang H et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  PubMed  CAS  Google Scholar 

  72. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ (2008) Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab 93:3199–3207

    Article  PubMed  CAS  Google Scholar 

  73. Aitken RJ, Wingate JK, De Iuliis GN, Koppers AJ, McLaughlin EA (2006) Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J Clin Endocrinol Metab 91:4154–4163

    Article  PubMed  CAS  Google Scholar 

  74. De Iuliis GN, Newey RJ, King BV, Aitken RJ (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 4:e6446

    Article  PubMed  Google Scholar 

  75. Koppers AJ, Garg ML, Aitken RJ (2010) Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med 48:112–119

    Article  PubMed  CAS  Google Scholar 

  76. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2’,7’-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575–1582

    Article  PubMed  CAS  Google Scholar 

  77. Tunc O, Thompson J, Tremellen K (2010) Development of the NBT assay as a marker of sperm oxidative stress. Int J Androl 33:13–21

    Article  PubMed  CAS  Google Scholar 

  78. Esfandiari N, Sharma RK, Saleh RA, Thomas AJ Jr, Agarwal A (2003) Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl 24:862–870

    PubMed  CAS  Google Scholar 

  79. Fridovitch I (1997) Superoxide anion radical (O −•2 ), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. John Aitken PhD, ScD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aitken, R.J., De Iuliis, G.N., Baker, M.A. (2012). Direct Methods for the Detection of Reactive Oxygen Species in Human Semen Samples. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_14

Download citation

Publish with us

Policies and ethics