Skip to main content

Metabolic Strategy in Mammalian Spermatozoa and Oxidative Stress

  • Chapter
  • First Online:
Studies on Men's Health and Fertility

Abstract

The ability of sperm to display motion and to propel itself in vivo and in vitro is highly dependent on its capability to produce ATP. Maintenance of sperm motility is not only dependent on the normal function of the contractile proteins of the axoneme and its ability to generate ATP, but also on the availability of metabolic substrate in the female reproductive tract. Metabolic enzymatic activities in sperm have kinetic properties similar to those of muscle cells. Although ATP-utilizing enzymes in these two types of cells are very different at a molecular level, they both produce contractile force. This suggests that sperm’s metabolic machinery is designed to produce energy for the contractile work of motility with only minor amounts being consumed in other reactions, including those involved in the process of fertilization. The preferential conversion of glucose to lactate through glycolysis may be an important evolutionary feature of sperm, perhaps intended to minimize the accumulation of reducing equivalents in the mitochondria and subsequent increase in oxygen radical production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson RN, Freund M. Glycolysis by washed suspensions of human spermatozoa. Effect of substrate, substrate concentration and changes in medium composition on the rate of glycolysis. Biol Reprod. 1969;1:238–46.

    Article  PubMed  CAS  Google Scholar 

  2. Murdoch RN, White IG. Studies on the metabolism of human spermatozoa. J Reprod Fertil. 1968;16:351–61.

    Article  PubMed  CAS  Google Scholar 

  3. Lardy HA, Parks RE. Phosphofructokinase. In: Gaehler O, editor. Enzymes: units of biological structure and function. New York: Academic; 1956. p. 584–92.

    Google Scholar 

  4. Storey BT, Alvarez JG, Thompson KA. Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH. Mol Reprod Dev. 1998;49:400–7.

    Article  PubMed  CAS  Google Scholar 

  5. Sarkar S, Nelson AJ, Jones OW. Glucose-6-phosphate dehydrogenase activity in human sperm. J Med Genet. 1977;14:250–5.

    Article  PubMed  CAS  Google Scholar 

  6. Murdoch RN, White IG. The metabolism of labelled glucose by rabbit spermatozoa after ­incubation in vitro. J Reprod Fertil. 1967;14:213–23.

    Article  PubMed  CAS  Google Scholar 

  7. Hess B, Brand K. Enzyme and metabolic profiles. In: Chance B, Estabrook RW, Williamson JR, editors. Control of energy metabolism. New York: Academic; 1965. p. 111–21.

    Google Scholar 

  8. Newsholme EA, Start C. Regulation of metabolism. New York: Wiley; 1973. p. 88–145.

    Google Scholar 

  9. Storey BT, Kayne FJ. Energy metabolism of spermatozoa. V. The Embden-Meyerhof pathway of glycolysis: activities of pathway enzymes in hypotonically-treated rabbit epididymal spermatozoa. Fertil Steril. 1975;26(12):1275–65.

    Google Scholar 

  10. Susor WA, Ratter WJ. Some distinctive properties of pyruvate kinase purified from rate liver. Biochem Biophys Res Commun. 1968;18:527–36.

    Google Scholar 

  11. Carminatti HL, Jimenez de Asua L, Leiderman B, Rozengurt E. Allosteric properties of skeletal muscle pyruvate kinase. J Biol Chem. 1971;246:7284–8.

    PubMed  CAS  Google Scholar 

  12. Seubert W, Schoner W. The regulation of pyruvate kinase. Curr Top Cell Regul. 1971;3:237–67.

    CAS  Google Scholar 

  13. Crisp DM, Pogson CI. Glycolytic and gluconeogenic enzyme activities in parenchymal and nonparenchymal cells from mouse liver. Biochem J. 1972;126:1009–23.

    PubMed  CAS  Google Scholar 

  14. Jimenez de Asua L, Leiderman B, Rozengurt E, Carminatti HL. Some kinetic differences between the M isozymes of pyruvate kinase from liver and muscle. Biochim Biophys Acta. 1971;135:326–34.

    Google Scholar 

  15. Imamura K, Taniuchi K, Tanaka T. Multimolecular forms of pyruvate kinase. II. Purification of M2 type pyruvate kinase from Yoshida ascitis hepatoma 130 cells and comparative studies on the enzymological properties of the three types of pyruvate kinase L, M1 and M2. J Biochem. 1972;72:1001–15.

    PubMed  CAS  Google Scholar 

  16. Berglund L, Humble E. Kinetic properties of pig pyruvate kinases type A from kidney and type M from muscle. Arch Biochem Biophys. 1979;195:347–61.

    Article  PubMed  CAS  Google Scholar 

  17. Scrutton MC, Utter MF. The regulation of glycolysis and gluconeogenesis in animal tissues. Annu Rev Biochem. 1968;37:249–302.

    Article  CAS  Google Scholar 

  18. Kayne FJ. Pyruvate kinase. In: Boyer PD, editor. The enzymes, vol. 8. New York: Academic; 1973. p. 353–50.

    Google Scholar 

  19. Terner C. Oxidation of exogenous substrate by isolated human spermatozoa. Am J Physiol. 1960;198:48–50.

    PubMed  CAS  Google Scholar 

  20. Nevo A. Relation between motility and respiration in human spermatozoa. J Reprod Fertil. 1966;11:19–26.

    Article  Google Scholar 

  21. Peterson RN, Freund M. Profile of glycolytic enzyme activities in human spermatozoa. Fertil Steril. 1970;21:151–8.

    PubMed  CAS  Google Scholar 

  22. Hamner CE, Williams WL. Identification of sperm stimulating factor of rabbit oviduct fluid. Proc Soc Exp Biol Med. 1964;117:240–3.

    PubMed  CAS  Google Scholar 

  23. Peterson RN, Freund M. ATP synthesis and oxidative metabolism in human spermatozoa. Biol Reprod. 1970;3:47–54.

    PubMed  CAS  Google Scholar 

  24. Peterson RN, Freund M. Glycolysis by human spermatozoa: levels of glycolytic intermediates. Biol Reprod. 1971;5:221–7.

    PubMed  CAS  Google Scholar 

  25. Fritz IB, Yue KTN. Long-chain carnitine acyl-transferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J Lipid Res. 1963;4:279–89.

    PubMed  CAS  Google Scholar 

  26. Bode C, Klingenberg M. [Die veratmung von fettsauren in isolierten mitochondrien]. Biochem Z. 1965;341:271–89.

    PubMed  CAS  Google Scholar 

  27. Haddock BA, Yates DW, Garland PB. The localization of some coenzyme A dependent enzymes in rat liver mitochondria. Biochem J. 1970;119:565–73.

    PubMed  CAS  Google Scholar 

  28. Yates DW, Garland PB. Carnitine palmitoyl-transferase activities of rat liver mitochondria. Biochem J. 1970;119:547–52.

    PubMed  CAS  Google Scholar 

  29. Mohri H, Mohri T, Ernster L. Isolation and enzymic properties of the midpiece of bull spermatozoa. Exp Cell Res. 1965;38:217–46.

    Article  PubMed  CAS  Google Scholar 

  30. Mohri H, Masaki J. Glycerokinase and its possible role in glycerol metabolism of bull spermatozoa. J Reprod Fertil. 1967;14:179–94.

    Article  PubMed  CAS  Google Scholar 

  31. Carey JE, Olds-Clark P, Storey BT, Storey BT. Oxidative metabolism of spermatozoa from inbred and random bred mice. J Exp Zool. 1981;216:285–92.

    Article  PubMed  CAS  Google Scholar 

  32. Borst P. Hydrogen transport and transport of metabolites. In: Karlson O, editor. Funktionelle und Morphologisshe Organization der Zelle. Berlin: Springer; 1963. p. 135–58.

    Google Scholar 

  33. LaNoue KF, Wadajtys EI, Williamson JR. Regulation of glutamate metabolism and interactions with the citric acid cycle in rat heart mitochondria. J Biol Chem. 1973;248:7171–83.

    PubMed  CAS  Google Scholar 

  34. Saling PM, Storey BT, Wolf DP. Calcium-dependent binding of mouse epididymal spermatozoa to the zona pellucida. Dev Biol. 1978;65:515–25.

    Article  PubMed  CAS  Google Scholar 

  35. Heffner LJ, Saling PM, Storey BT. Separation of calcium effects on motility and zona binding ability in mouse spermatozoa. J Exp Zool. 1980;212:53–9.

    Article  PubMed  CAS  Google Scholar 

  36. Carey J, Olds-Clark P. Differences in sperm function in vitro but not in vivo between inbred and random-bred mice. Gamete Res. 1980;3:9–15.

    Article  Google Scholar 

  37. Hamner C. Oviductal fluid-composition and physiology. In: Greep RO, editor. Handbook of physiology, section 7 (endocrinology), vol. 2, part 2. Washington, DC: American Physiological Society; 1973. p. 141–52.

    Google Scholar 

  38. Brackett BG, Mastroianni L. Composition of oviductal fluid. In: Johnson AD, Foley CW, ­editors. The oviduct and its functions. New York: Academic; 1974. p. 133–59.

    Google Scholar 

  39. Blandau RJ, Brackett B, Brenner RM, et al. The oviduct. In: Greep RO, Koblinsky MA, ­editors. Frontiers in reproduction and fertility control, part 2. Cambridge, MA: MIT; 1977. p. 132–45.

    Google Scholar 

  40. Gibbons BH, Gibbons IR. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J Cell Biol. 1972;54:75–97.

    Article  PubMed  CAS  Google Scholar 

  41. Keyhani E, Storey BT. Energy conservation capacity and morphological integrity of mitochondria in hypotonically-treated rabbit epididymal spermatozoa. Biochim Biophys Acta. 1973;305:557–69.

    Article  PubMed  CAS  Google Scholar 

  42. Tibbs J. Adenosine triphosphate and acetylcholinesterase in relation to sperm motility. In: Bishop DW, editor. Spermatozoa motility. Washington, DC: American Association for the Advancement of Science; 1962. p. 233–50.

    Google Scholar 

  43. Hayasi M. Kinetic analysis of axoneme and dynein ATPase from sea urchin sperm. Arch Biochem Biophys. 1974;165:288–96.

    Article  Google Scholar 

  44. Calvin HI. Isolation and subfractionation of mammalian sperm heads and tails. In: Prescott DM, editor. Methods in cell biology, vol. 13. New York: Academic; 1976. p. 85–104.

    Google Scholar 

  45. Hrudka F. A morphological and cytochemical study of isolated sperm mitochondria. J Ultrastruct Res. 1978;63:1–19.

    Article  Google Scholar 

  46. Osterman J, Fritz PF. Pyruvate kinase isozymes from rat intestinal mucosa. Characterization and the effect of fasting and refeeding. Biochemistry. 1974;13:1731–6.

    Article  PubMed  CAS  Google Scholar 

  47. Holmdahl TH, Mastroianni L. Continuous collection of rabbit oviductal secretions at low temperature. Fertil Steril. 1965;16:587–95.

    PubMed  CAS  Google Scholar 

  48. Alvarez JG, Storey BT. Spontaneous lipid peroxidation in rabbit epididymal spermatozoa. Biol Reprod. 1982;27:1102–8.

    Article  PubMed  CAS  Google Scholar 

  49. Holland MK, Alvarez JG, Storey BT. Production of superoxide dismutase and activity of superoxide dismutase in rabbit epididymal spermatozoa. Biol Reprod. 1982;27:1109–18.

    Article  PubMed  CAS  Google Scholar 

  50. Alvarez JG, Holland MK, Storey BT. Spontaneous lipid peroxidation in rabbit spermatozoa: a useful model for the reaction of O2 metabolites with cells. In: Lubbers DW, Acker H, Leninger-Follert E, Goldstick TK, editors. Oxygen transport to tissue—V. New York: Plenum; 1984. p. 433–43.

    Google Scholar 

  51. Alvarez JG, Storey BT. Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit spermatozoa. Biol Reprod. 1984;30:323–32.

    Article  PubMed  CAS  Google Scholar 

  52. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8:338–48.

    PubMed  CAS  Google Scholar 

  53. Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci USA. 1991;88:11003–6.

    Article  PubMed  CAS  Google Scholar 

  54. Kim YH, Haidl G, Schaefer M, Egner U, Herr JC. Compartmentalization of a unique ADP/ATP carrier protein SFEC (sperm flagellar energy carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece. Dev Biol. 2007;302:463–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan G. Alvarez MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alvarez, J.G. (2012). Metabolic Strategy in Mammalian Spermatozoa and Oxidative Stress. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_10

Download citation

Publish with us

Policies and ethics