Skip to main content

Occupational Lung Disease

  • Chapter
  • First Online:
Clinically Oriented Pulmonary Imaging

Part of the book series: Respiratory Medicine ((RM))

Abstract

The term occupational lung disease encompasses the broad category of airway, lung parenchymal, and pleural disorders that occur due to the inhalation of natural occurring and manmade agents of various chemical and physical compositions. This chapter will describe the classic mineral dust exposures of asbestos, silica, and coal. In addition, examples of immune-mediated occupational lung disease will be reviewed including berylliosis, hard metal disease, and chronic hypersensitivity pneumonitis. In more recent years, airway diseases including occupational asthma have become the leading cause of work-related lung disorders in the industrialized world. While imaging is rarely necessary in occupational asthma, several entities associated with bronchiolitis obliterans will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balmes J, Becklake M, Blanc P, et al. American thoracic society statement: occupational contribution to the burden of airway disease. Am J Respir Crit Care Med. 2003;167:787–97.

    Article  PubMed  Google Scholar 

  2. Mapp CE, Boschetto P, Maestrelli P, Fabbri LM. Occupational asthma. State of the Art. Am J Respir Crit Care Med. 2005;172:280–305.

    Article  PubMed  Google Scholar 

  3. Meyer JD, Holt DL, Chen Y, et al. SWORD’99: Surveillance of work-related respiratory disease in the UK. Occup Med. 2001;51:204–8.

    Article  CAS  Google Scholar 

  4. Yucesoy B, Luster MI. Genetic susceptibility in pneumoconiosis. Toxicol Lett. 2007;168:249–54.

    Article  PubMed  CAS  Google Scholar 

  5. Work-Related Lung Disease Surveillance Report 2002. Division of Respiratory Disease Studies. National Institute of Occupational Safety and Health. U.S. Department of Health and Human Services. Public Health Service Centers for Disease Control and Prevention. Publication Dissemination, EID May 2003.

    Google Scholar 

  6. Attfield MD, Wood JM, Antao VC, Pinheiro GA. Changing patterns of pneumoconiosis mortality, United States, 1968–2000. MMWR Weekly. 2004;53:627–32.

    Google Scholar 

  7. Leigh JP, Markowitz SB, Fahs M, Shin C, Landrigan P. Occupational injury and illness in the United States: estimates of costs, morbidity, and mortality. Arch Int Med. 1997;157:1557–68.

    Article  CAS  Google Scholar 

  8. Ohar J, Sterling DA, Bleecker E, Donahue J. Changing patterns in asbestos-induced lung disease. Chest. 2004;125:744–53.

    Article  PubMed  Google Scholar 

  9. Kazan-Allen L. Asbestos and mesothelioma: worldwide trends. Lung Cancer. 2005;49S(1):S3–8.

    Article  Google Scholar 

  10. Peacock C, Copley SJ, Hansell DM. Asbesto-related benign pleural disease. Clin Rad. 2000;55:422–32.

    Article  CAS  Google Scholar 

  11. Niklinski J, Niklinska W, Chyczewska E, Laudanski J, Naumnik W, Chyczewski L, Pluygers E. The epidemiology of asbestos-related diseases. Lung Cancer. 2004;45S:S7–15.

    Article  Google Scholar 

  12. Vathesatogkit P, Harkin TJ, Addrizzo-Harris DJ, et al. Clinical correlation of asbestos bodies in BAL fluid. Chest. 2004;126:966–71.

    Article  PubMed  Google Scholar 

  13. Churg A, Wright JL, Wiggs B, et al. Small airways disease and mineral dust exposure: prevalence, structure, and function. Am Rev Respir Dis. 1985;131:139–43.

    PubMed  CAS  Google Scholar 

  14. Martensson G, Hagberg S, Pettersson K, et al. Asbestos pleural effusion: a clinical entity. Thorax. 1987;42:646–51.

    Article  PubMed  CAS  Google Scholar 

  15. Solomon A. Radiological features of asbestos-related visceral pleural changes. Am J Ind Med. 1991;19:339–55.

    Article  PubMed  CAS  Google Scholar 

  16. Copley SJ, Wells AU, Rubens MB, Chabat F, Sheehan RE, Musk AW, Hansell DM. Functional consequences of pleural disease evaluated with chest radiography and CT. Radiology. 2001;220:237–43.

    PubMed  CAS  Google Scholar 

  17. Ameille J, Matrat M, Paris C, Joly N, Raffaelli C, Brochard P, Iwatsubo Y, Pairon JC, Letourneux M. Asbestos-related pleural diseases: dimensional criteria are not appropriate to differentiate diffuse pleural thickening from pleural plaques. Am J of Ind Med. 2004;45:289–96.

    Article  Google Scholar 

  18. Kim JS, Lynch DA. Imaging of nonmalignant occupational lung disease. J Thorac Imaging. 2002;17:238–60.

    Article  PubMed  Google Scholar 

  19. Rohs AM, Lockey JE, Dunning KK, Shukla R, Fan H, Hilbert T, Borton E, Wiot J, Meyer C, Shipley RT, LeMasters GK, Kapil V. Low-level fiber-induced radiographic changes caused by Libby vermiculite. Am J Resp Crit Care Med. 2008;177:630–7.

    Article  PubMed  Google Scholar 

  20. Sebastien P, Janson X, Gaudichet A, Hirsch A, Bignon J. Asbestos retention in human respiratory tissues: comparative measurements in lung parenchyma and in parietal pleura. IARC Sci Publ. 1980;30:237–46.

    Google Scholar 

  21. Gallego JC. Absence of left-sided predominance in asbestos-related pleural plaques. Chest. 1998;113:1034–6.

    Article  PubMed  CAS  Google Scholar 

  22. Schwartz DA, Galvin JR, Yagla SJ, Speakman SB, Merchant JA, Hunninghake GW. Restrictive lung function and asbestos-induced pleural fibrosis: a quantitative approach. J Clin Invest. 1993;91:2685–92.

    Article  PubMed  CAS  Google Scholar 

  23. Akira M, Yamamoto S, Inoue Y, et al. High-resolution CT of asbestosis and idiopathic pulmonary fibrosis. Am J Roentgenol. 2003;181:163–9.

    Google Scholar 

  24. Gevenois PA, de Maertelaer V, Madani A, et al. Asbestosis, pleural plaques and diffuse pleural thickening: three distinct benign responses to asbestos exposure. Eur Respir J. 1998;11:1021–7.

    Article  PubMed  CAS  Google Scholar 

  25. Bergin CJ, Castellino RA, Blank N, et al. Specificty of high-resolution CT findings in pulmonary asbestosis: do patients scanned for other indications have similar findings? AJR. 1994;163:551–5.

    PubMed  CAS  Google Scholar 

  26. Remy-Jardin M, Sobaszek A, Duhamel A, et al. Asbestos-related pleuropulmonary diseases: evaluation with low-dose four-detector row spiral CT. Radiology. 2004;233:182–90.

    Article  PubMed  Google Scholar 

  27. Lynch DA, Gamsu G, Ray CS, et al. Asbestos-related focal lung masses: manifestations on conventional and high-resolution CT scans. Radiology. 1988;169:603–7.

    PubMed  CAS  Google Scholar 

  28. Menzies R, Fraser R. Round atelectasis. Pathologic and pathogenetic features. Am J Surg Pathol. 1987;11:674–81.

    Article  PubMed  CAS  Google Scholar 

  29. Munden RF, Libshitz HI. Round atelectasis and mesothelioma. AJR Am J Roentgenol. 1998;170:1519–22.

    PubMed  CAS  Google Scholar 

  30. McAdams HP, Erasmus JJ, Patz EF, et al. Evaluation of patients with round atelelctasis using 2-[18F]-fluoro-2-deoxy-d-glucose PET. JCAT. 1998;22:601–4.

    CAS  Google Scholar 

  31. Gilkeson RC, Adler LP. Rounded atelectasis. Evaluation with (18)PET Scan. Clin Positron Imaging. 1998;1:229–32.

    Article  PubMed  Google Scholar 

  32. Silvestri S. Commentary: change in the world of occupational health: silica control then and now. J Public Health Policy. 2005;26:203–5.

    Article  Google Scholar 

  33. Churg A, Wright JL. Small airways disease and mineral dust exposure. Pathol Annu. 1983;18:233–51.

    PubMed  Google Scholar 

  34. Cowie RL, Mabena SK. Silicosis, chronic airflow limitation and chronic bronchitis in South African gold miners. Am Rev Respir Dis. 1991;143:80–4.

    PubMed  CAS  Google Scholar 

  35. Arakawa H, Gevenois PA, Saito Y, et al. Silicosis: expiratory thin-section CT assessment of airway obstruction. Radiology. 2005;236:1059–66.

    Article  PubMed  Google Scholar 

  36. Alper F, Akgun M, Onbas O, Araz O. CT findings in silicosis due to sandblasting. Eur Radiol. 2008;18:2739–44.

    Article  PubMed  Google Scholar 

  37. Marchiori E, Souza CA, Barbassa TG, Escuissato DL, Gasparetto EL, Souza SA. Silicoproteinosis: high-resolution CT findings in 13 patients. AJR. 2007;189:1402–6.

    Article  PubMed  Google Scholar 

  38. Hughes JM, Weill H, Checkoway H, et al. Radiographic evidence of silicosis risk in the diatomaceous earth industry. Am J Respir Crit Care Med. 1998;158:807–14.

    PubMed  CAS  Google Scholar 

  39. Remy-Jardin M, Remy J, Farre I, Marquette CH. Computed tomographic evaluation of silicosis and coal worker’s pneumoconiosis. Radiol Clin North Am. 1992;30:1155–76.

    PubMed  CAS  Google Scholar 

  40. Antao VCS, Pinheiro GA, Terra-Filho M, Kavakama J, Muller NL. High resolution CT in silicosis. Correlation with radiographic findings and functional impairment. JCAT. 2005;29:350–6.

    Google Scholar 

  41. Zeren EH, Colby TV, Roggli VL. Silica-induced pleural disease. Chest. 1997;112:1436–8.

    Article  PubMed  CAS  Google Scholar 

  42. Craighead JE, Kleinerman J, Abraham JL, Gibbs AR, Green FH, Harley RA, Ruettner JR, Vallyathan NV, Juliano EB. Diseases associated with exposure to silica and nonfibrous silicate minerals. Arch Pathol Lab Med. 1988;112:673–720.

    Google Scholar 

  43. Lopes AJ, Mogami R, Capone D, Tessarollo B, De Melo PL, Jansen JM. High-resolution computed tomography in silicosis: correlation with chest radiography and pulmonary function tests. J Bras Pneumol. 2008;34:264–72.

    Article  PubMed  Google Scholar 

  44. Cox-Ganser JM, Burchfiel CM, Fekedulegn D, Andrew ME, Ducatman BS. Silicosis in lymph nodes: the canary in the miner? J Occup Environ Med. 2009;51:164–9.

    Article  PubMed  Google Scholar 

  45. Marchiori E, Ferreira A, Saez F, et al. Conglomerated masses of silicosis in sandblasters: High-resolution CT findings. Eur J of Rad. 2006;59:56–9.

    Article  Google Scholar 

  46. Ferreira AS, Moreira VB, Ricardo HMV, Coutinho R, Gabetto JM, Marchiori E. Progressive massive fibrosis in silica-exposed workers. High-resolution computed tomography findings. J Bras Pneumol. 2006;32:523–8.

    Article  PubMed  Google Scholar 

  47. Chong S, Lee KS, Chung MJ, et al. Pneumoconiosis: comparison of imaging and pathologic findings. Radiographics. 2006;26:59–77.

    Article  PubMed  Google Scholar 

  48. Arakawa H, Johkoh T, Honma K, Saito Y, Fukushima Y, Shida H, Suganuma N. Chronic interstitial pneumonia in silicosis and mix-dust pneumoconiosis. Chest. 2007;131:1870–6.

    Article  PubMed  Google Scholar 

  49. Sirajuddin A, Kanne JP. Occupational lung disease. J Thorac Imaging. 2009;24:310–20.

    Article  PubMed  Google Scholar 

  50. Antao VCS, Petsonk EL, Sokolow LZ, et al. Rapidly progressive coal worker’s pneumoconiosis in the United States: geographic clustering and other factors. Occup Environ Med. 2005;62:670–4.

    Article  PubMed  CAS  Google Scholar 

  51. Laney AS, Attfield MD. Coal workers’ pneumoconiosis and progressive massive fibrosis are increasingly more prevalent among workers in small underground coal mines in the United States. Occup Environ Med. 2010;67:428–31.

    Article  PubMed  Google Scholar 

  52. Kleinerman J, Green F, Harley RA, Lapp L, Laqueur W, Naeye RL, Pratt P, Taylor G, Wiot J, Wyatt J. Pathology standards for coal worker’s pneumoconiosis. Arch Pathol Lab Med. 1979;103:375–85.

    Google Scholar 

  53. Carstairs LS. The interpretation of shadows in the restricted area of a lung field on the chest radiograph. Proc R Soc Med. 1961;54:978–80.

    Google Scholar 

  54. Remy-Jardin M, Degreef JM, Beauscart R, et al. Coal worker’s pneumoconiosis: CT assessment in exposed workers and correlation with radiographic findings. Radiology. 1990;177:363–71.

    PubMed  CAS  Google Scholar 

  55. Rossiter CE. Relation between content and composition of coal workers’ lungs and radiological appearances. Br J Ind Med. 1972;29:31–4.

    PubMed  CAS  Google Scholar 

  56. Collins LC, Willing S, Bretz R, Harty M, Lane E, Anderson WH. High-resolution CT in simple coal workers’ pneumoconiosis. Lack of correlation with pulmonary function tests and arterial blood gas values. Chest. 1993;104:1156–62.

    Article  PubMed  CAS  Google Scholar 

  57. Gevenois PA, Pichot E, Dargent F, Dedeire S, Vande Weyer R, De Vuyst P. Low grade coal worker’s pneumoconiosis. Comparison of CT and chest radiography. Acta Radiolgica. 1994;35:351–6.

    CAS  Google Scholar 

  58. Remy-Jardin M, Beuscart R, Sault MC, et al. Subpleural micronodules in diffuse infiltrative lung diseases: evaluation with thin-section CT scans. Radiology. 1990;177:133–9.

    PubMed  CAS  Google Scholar 

  59. Vallyathan V, Brower PS, Green FHY, et al. Radiographic and pathologic correlation of coal worker’s pneumoconiosis. Am J Respir Crit Care Med. 1996;154:741–8.

    PubMed  CAS  Google Scholar 

  60. Matsumoto S, Miyake H, Oga M, et al. Diagnosis of lung cancer in a patient with pneumoconiosis and progressive massive fibrosis using MRI. Eur Radiol. 1998;8:615–7.

    Article  PubMed  CAS  Google Scholar 

  61. Gough J, Rivers D, Seal RME. Pathological studies of modified pneumoconiosis in coal-miners with rheumatoid arthritis (Caplan’s syndrome). Thorax. 1955;10:9–18.

    Article  PubMed  CAS  Google Scholar 

  62. Wilson AG, Hansell DM. Immunologic Diseases of the Lungs in Imaging of Diseases of the Chest. In: Armstrong P, Wilson AG, Dee P, Hansell DM, editors. Philadelphia: Mosby; 2000, p. 565.

    Google Scholar 

  63. Yildiz OA, Gulbay BE, Saryal S, Karabiyiikoglu G. Evaluation of the relationship between radiological abnormalities and both pulmonary function and pulmonary hypertension in coal workers’ pneumoconiosis. Respirology. 2007;12:420–6.

    Article  Google Scholar 

  64. Bauer TT, Heyer CM, Duchna HW, Andreas K, Weber A, Schmidt EW, Ammenwerth W, Schultze-Wernignhaus G. Radiological findings, pulmonary function and dyspena in underground coal miners. Respiration. 2007;74:80–7.

    Article  PubMed  Google Scholar 

  65. Lyons JP, Ryder RC, Campbell H, et al. Significance of irregular opacities in the radiology of coal worker’s pneumoconiosis. Br J Ind Med. 1974;31:36–44.

    PubMed  CAS  Google Scholar 

  66. Amandus HE, Lapp NL, Jacobsen G, Reger RB. Significance of irregular opacities in the radiographs of coalminers in the USA. Br J Ind med. 1976;33:13–7.

    PubMed  CAS  Google Scholar 

  67. Nemery B, Verbeken EK, Demedts M. Giant cell interstitial pneumonia (hard metal lung disease, cobalt lung). Semin Resp Crit Care Med. 2001;22:435–47.

    Article  CAS  Google Scholar 

  68. Choi JW, Lee KS, Chung MP, et al. Giant cell interstitial pneumonia: high-resolution CT and pathologic findings in four adult patients. AJR. 2005;184:268–72.

    PubMed  Google Scholar 

  69. Gotway MB, Golden JA, Warnock M, Koth LL, Webb R, Reddy GP, Balmes JR. Hard metal lung disease: high-resolution computed tomography appearance. J of Thorac Imag. 2002;17:314–8.

    Article  Google Scholar 

  70. Okuno K, Kobayashi K, Kotani Y, Ohnishi H, Ohbayashi C, Nishimura Y. A case of hard metal lung disease resembling a hypersensitive pneumonia in radiological images. Int Med. 2010;49:1185–89.

    Google Scholar 

  71. Henneberger PK, Goe SK, Miller WE, Doney B, Groce DW. Industries in the United States with airborne beryllium exposure and estimates of the number of current workers potentially exposed. J Occup Environ Hyg. 2004;1:648–59.

    Article  PubMed  CAS  Google Scholar 

  72. Maier LA. Clinical approach to chronic beryllium disease and other nonpneumoconiotic interstitial lung diseases. J Thorac Imaging. 2002;17:273–84.

    Article  PubMed  Google Scholar 

  73. Newman LS, Mroz MM, Balkissoon R, Maier LA. Beryllium sensitization progresses to chronic beryllium disease: a longitudinal study of disease risk. Am J Respir Crit Care Med. 2005;171:54–60.

    Article  PubMed  Google Scholar 

  74. Tomas LHS. Beryllium hypersensitivity and chronic beryllium lung disease. Curr Opin Pulm Med. 2009;15:165–9.

    Article  Google Scholar 

  75. Newman LS, Mroz MM, Balkissoon R, Maier LA. Screening for Chronic Beryllium Disease. From the authors. Am J Respir Crit Care Med. 2005;172:1230.

    Article  Google Scholar 

  76. Sharma N, Patel J, Mohammed TLH. Chronic beryllium disease: computed tomographic findings. J Comput Assist Tomogr. 2010;34:945–8.

    Article  PubMed  Google Scholar 

  77. Metersky ML, Bean SB, Meyer JD, Mutambudzi M, Brown-Elliott BA, Wechsler ME, Wallace RJ. Trombone player’s lung: a probable new cause of hypersensitivity pneumonitis. Chest. 2010;138:754–6.

    Article  PubMed  Google Scholar 

  78. Metzger F, Haccuria A, Reboux G, Nolard N, Dalphin JC, DeVuyst P. Hypersensitivity pneumonitis due to molds in a saxophone player. Chest. 2010;138:724–6.

    Article  PubMed  Google Scholar 

  79. Spurzem JR, Romberger DJ, Von Essen SG. Agricultural lung disease. Clin Chest Med. 2002;23:795–810.

    Article  PubMed  Google Scholar 

  80. Cormier Y, Brown M, Worthy S, Racine G, Muller NL. High-resolution computed tomographic characterstics in acute farmer’s lung and in its follow-up. Eur Respir J. 2000;16:56–60.

    Article  PubMed  CAS  Google Scholar 

  81. Malinen AP, Erkinjuntti-Pekkanen RA, Partanen PLK, Rytkonen HT, Vanninen RL. Long-term sequelae of Farmer’s lung disease in HRCT: a 14 year follow-up of 88 patients and 83 matched control farmers. Eur Radiol. 2003;13:2212–21.

    Article  PubMed  CAS  Google Scholar 

  82. Lombardo LJ, Balmes JR. Occupational asthma: a review. Environ Health Perspect. 2000;108:697–704.

    PubMed  Google Scholar 

  83. Goldyn SR, Condos R, Rom WN. The burden of exposure-related diffuse lung disease. Semin Respir Crit Care Med. 2008;29:591–602.

    Article  PubMed  Google Scholar 

  84. Tarlo SM, Liss GM, Blanc PD. How to diagnose and treat work-related asthma. Pol Arch Med Wewn. 2009;119:660–5.

    PubMed  Google Scholar 

  85. Stenton SC. Review series: occupational and environmental lung disease: occupational asthma. Chronic Respir Dis. 2010;7:35–46.

    Article  CAS  Google Scholar 

  86. Boag AH, Colby TV, Fraire AE, et al. The pathology of interstitial lung disease in nylon flock workers. Am J Surg Pathol. 1999;23:1539–45.

    Article  PubMed  CAS  Google Scholar 

  87. Schachter EN. Popcorn worker’s lung. N Engl J Med. 2002;347:360–1.

    Article  PubMed  Google Scholar 

  88. Lockey J, McKay R, Bareth E, Dahlsten J, Baughman JR. Bronchiolitis obliterans in the food flavoring manufacturing industry. Am J Respir Crit Care Med. 2002;165:A461.

    Google Scholar 

  89. Kreiss K, Gomaa A, Kullman G, Fedan K, Simoes E, Enright PL. Clinical bronchiolitis obliterans in workers at a microwave-popcorn plan. N Engl J Med. 2002;5:330–8.

    Article  Google Scholar 

  90. Lockey JE, Hilbert TJ, Levin LP, Ryan PH, White KL, Borton EK, Rice CH, McKay RT, LeMasters GK. Airway obstruction related to diacetyl exposure at microwave popcorn production facilities. Eur Respir J. 2009;34:63–71.

    Article  PubMed  CAS  Google Scholar 

  91. Arakawa H, Webb WR, McCowin M, Katsou G, Lee KN, Seitz RF. Inhomogeneous lung attenuation at thin-section CT: diagnostic value of expiratory CT scans. Radiology. 1998;206:89–94.

    PubMed  CAS  Google Scholar 

  92. Hahemis N, Boskabady MH, Nazari A. Occupational exposures and obstructive lung disease: a case-control study in hairdressers. Respir Care. 2010;55:895–900.

    Google Scholar 

  93. Gebbers JO, Burkhardt A, Tetzner C, Rudiger HW, Wichert PV. Hairspray Lung. Schweiz Med Wschr. 1980;110:610.

    PubMed  CAS  Google Scholar 

  94. Nagata N, Kawajiri T, Hayashi T, Nakanishi K, Nikaido Y, Kido M. Interstitial pneumonitis and fibrosis associated with the inhalation of hair spray. Respiration. 1997;64:310–2.

    Article  PubMed  CAS  Google Scholar 

  95. Lioy PJ, Weisel CP, Millette JR, et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001. Environ Health Perspect. 2002;110:703–14.

    Article  PubMed  CAS  Google Scholar 

  96. Mann JM, Sha KK, Kline G, Breuer FU, Miller A. World trade center dyspnea: bronchiolitis obliterans with functional improvement: a case report. Am J Ind Med. 2005;48:225–9.

    Article  PubMed  Google Scholar 

  97. Mendelson DS, Roggeveen M, Levin SM, Herbert R, de la Hoz RE. Air trapping detected on end-expiratory high-resolution computed tomography in symptomatic world trade center rescue and recovery workers. J Occup Environ Med. 2007;49:840–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cris A. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meyer, C.A., Lockey, J.E. (2012). Occupational Lung Disease. In: Kanne, J. (eds) Clinically Oriented Pulmonary Imaging. Respiratory Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-542-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-542-8_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-541-1

  • Online ISBN: 978-1-61779-542-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics