Skip to main content

Genetics of Opioid Actions

  • Chapter
  • First Online:
The Opiate Receptors

Part of the book series: The Receptors ((REC))

  • 1650 Accesses

Abstract

The actions of opioids feature robust interindividual variability in their therapeutic and side-effects, complicating the clinical management of pain. Much of this variability is assumed to be due to genetic factors, and there is tremendous current interest in identifying the responsible genes and DNA polymorphisms. This review examines the current state of knowledge regarding opioid genetics in both rodents and humans, with special focus on the results of genetic linkage mapping studies in mice and genetic association studies in humans. At present, there is tentative evidence for the involvement of a handful of genes in modulating the potency and efficacy of opioid drugs, although much of this evidence is controversial. A fuller understanding of this field may lead to advances in the idiosyncratic management of pain and the treatment of opiate addiction, but the genetic complexity of the trait suggests that much work remains to be done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lasagna L, Beecher HK (1954) The optimal dose of morphine. J Am Med Assoc 156:230–234

    PubMed  CAS  Google Scholar 

  2. Wolff BB, Kantor TG, Jarvik ME, Laska E (1965) Response of experimental pain to analgesic drugs. I. Morphine, aspirin, and placebo. Clin Pharmacol Ther 7:224–238

    Google Scholar 

  3. Chapman CR, Hill HF, Saeger L, Gavrin J (1990) Profiles of opioid analgesia in humans after intravenous bolus administration: alfentanil, fentanyl and morphine compared on experimental pain. Pain 43:47–55

    PubMed  CAS  Google Scholar 

  4. Galer BS, Coyle N, Pasternak GW, Portenoy RK (1992) Individual variability in the response to different opioids: report of five cases. Pain 49:87–91

    PubMed  CAS  Google Scholar 

  5. Bullingham RE (1985) Optimum management of post-operative pain. Drugs 29:376–386

    PubMed  CAS  Google Scholar 

  6. Aubrun F, Langeron O, Quesnel C, Coriat P, Riou B (2003) Relationships between measurement of pain using visual analog score and morphine requirements during post-operative intravenous morphine titration. Anesthesiology 98:1415–1421

    PubMed  CAS  Google Scholar 

  7. Kaiko RF, Wallenstein SL, Rogers AG, Houde RW (1983) Sources of variation in analgesic responses in cancer patients with chronic pain receiving morphine. Pain 15:191–200

    PubMed  CAS  Google Scholar 

  8. Maier C, Hildebrandt J, Klinger R, Henrich-Eberl C, Lindena G, Group MS (2002) Morphine responsiveness, efficacy and tolerability in patients with chronic non-tumor associated pain: results of a double-blind placebo-controlled trial (MONTAS). Pain 97:223–233

    PubMed  CAS  Google Scholar 

  9. Liston EH, Simpson JH, Jarvik LF, Guthrie D (1981) Morphine and experimental pain in identical twins. Prog Clin Biol Res 69:105–116

    PubMed  Google Scholar 

  10. Terman GW, Shavit Y, Lewis JW, Cannon JT, Liebeskind JC (1984) Intrinsic mechanisms of pain inhibition: activation by stress. Science 226:1270–1277

    PubMed  CAS  Google Scholar 

  11. Zubieta J-K, Smith YR, Bueller JA et al (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293:311–315

    PubMed  CAS  Google Scholar 

  12. Bruehl S, McCubbin JA, Harden RN (1999) Theoretical review: altered pain regulatory systems in chronic pain. Neurosci Biobehav Rev 23:877–890

    PubMed  CAS  Google Scholar 

  13. Amanzio M, Pollo A, Maggi G, Benedetti F (2001) Response variability to analgesics: a role for nonspecific activation of endogenous opioids. Pain 90:205–215

    PubMed  CAS  Google Scholar 

  14. Levine JD, Gordon NC, Fields HL (1978) The mechanism of placebo analgesia. Lancet 2:654–657

    PubMed  CAS  Google Scholar 

  15. Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    PubMed  CAS  Google Scholar 

  16. Lotsch J, Geisslinger G (2006) Current evidence for a genetic modulation of the response to analgesics. Pain 121:1–5

    PubMed  Google Scholar 

  17. Stamer UM, Stuber F (2007) Genetic factors in pain and its treatment. Curr Opin Anaesthesiol 20:478–484

    PubMed  Google Scholar 

  18. Skarke C, Kirchhof A, Geisslinger G, Lötsch J (2004) Comprehensive mu-opioid-receptor genotyping by pyrosequencing. Clin Chem 50:640–644

    PubMed  CAS  Google Scholar 

  19. Ikeda K, Ide S, Han W, Hayashida M, Uhl GR, Sora I (2005) How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol Sci 26:311–317

    PubMed  CAS  Google Scholar 

  20. Bond C, LaForge KS, Tian M et al (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 95:9608–9613

    PubMed  CAS  Google Scholar 

  21. Beyer A, Koch T, Schroder H, Schulz S, Hollt V (2004) Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J Neurochem 89:553–560

    PubMed  CAS  Google Scholar 

  22. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL (2001) A single nucleotide polymorphic mutation in the human μ-opioid receptor severely impairs receptor signaling. J Biol Chem 276:3130–3137

    PubMed  CAS  Google Scholar 

  23. Oertel BG, Kettner M, Scholich K et al (2009) A common human μ-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J Biol Chem 284:6530–6535

    PubMed  CAS  Google Scholar 

  24. Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W (2005) Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem 280:32618–32624

    PubMed  CAS  Google Scholar 

  25. Caraco Y, Maroz Y, Davidson E (2001) Variability in alfentanil analgesia may be attributed to polymorphism in the μ opioid receptor. Clin Pharmacol Ther 69:63/OII-A–4

    Google Scholar 

  26. Chou W-Y, Wang C-H, Liu P-H, Liu C-C, Tseng C-C, Jawan B (2006) Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 105:334–337

    PubMed  CAS  Google Scholar 

  27. Chou W-Y, Yang L-C, Lu H-F et al (2006) Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 50:787–792

    PubMed  CAS  Google Scholar 

  28. Klepstad P, Rakvag TT, Kaasa S et al (2004) The 118A>G polymorphism in the human μ-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 48:1232–1239

    PubMed  CAS  Google Scholar 

  29. Ross JR, Rutter D, Welsh K et al (2005) Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J 5:324–336

    PubMed  CAS  Google Scholar 

  30. Coulbault L, Beaussier M, Verstuyft C et al (2006) Environmental and genetic factors associated with morphine response in the post-operative period. Clin Pharmacol Ther 79:316–324

    PubMed  CAS  Google Scholar 

  31. Romberg R, Olofsen E, Sarton E, den Hartigh J, Taschner PE, Dahan A (2004) Pharmacokinetic-pharmacodynamic modeling of morphine-6-glucuronide-induced analgesia in healthy volunteers: absence of sex differences. Anesthesiology 100:120–133

    PubMed  CAS  Google Scholar 

  32. Skarke C, Darimont J, Schmidt H, Geisslinger G, Lotsch J (2003) Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther 73:107–121

    PubMed  CAS  Google Scholar 

  33. Janicki PK, Schuler G, Francis D et al (2006) A genetic association study of the functional A118G polymorphism of the human μ-opioid receptor gene in patients with acute and chronic pain. Anesth Analg 103:1011–1017

    PubMed  CAS  Google Scholar 

  34. Landau R (2006) One size does not fit all: genetic variability of mu-opioid receptor and post-operative morphine consumption. Anesthesiology 105:235–237

    PubMed  Google Scholar 

  35. Mague SD, Isiegas C, Huang P, Liu-Chen L-Y, Lerman C, Blendy JA (2009) Mouse model of OPRM1 (A118G) polymorphism has sex-specific effects on drug-mediated behavior. Proc Natl Acad Sci USA 106:10847–10852

    PubMed  CAS  Google Scholar 

  36. Miller GM, Bendor J, Tiefenbacher S, Yang H, Novak MA, Madras BK (2004) A mu-opioid receptor single nucleotide polymorphism in rhesus monkey: association with stress response and aggression. Mol Psychiatry 9:99–108

    PubMed  CAS  Google Scholar 

  37. George SR, Kertesz M (1987) Met-enkephalin concentrations in striatum respond reciprocally to alterations in dopamine neurotransmission. Peptides 8:487–492

    PubMed  CAS  Google Scholar 

  38. Berthele A, Platzer S, Jochim B et al (2005) COMT Val108/158Met genotype affects the mu-opioid receptor system in the human brain: evidence from ligand-binding, G-protein activation and preproenkephalin mRNA expression. Neuroimage 28:185–193

    PubMed  Google Scholar 

  39. Zubieta J-K, Heitzeg MM, Smith YR et al (2003) COMT val158met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science 299:1240–1243

    PubMed  CAS  Google Scholar 

  40. Diatchenko L, Nackley AG, Slade GD et al (2006) Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli. Pain 125:216–224

    PubMed  CAS  Google Scholar 

  41. Diatchenko L, Slade GD, Nackley AG et al (2005) Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14:135–143

    PubMed  CAS  Google Scholar 

  42. Gursoy S, Erdal E, Herken H, Madenci E, Alasehirli B, Erdal N (2003) Significance of catechol-O-methyltransferase gene polymorphism in fibromyalgia syndrome. Rheumatol Int 23:104–107

    PubMed  Google Scholar 

  43. Kim H, Neubert JK, San Miguel A et al (2004) Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain 109:488–496

    PubMed  Google Scholar 

  44. Kim H, Mittal DP, Iadarola MJ, Dionne RA (2006) Genetic predictors for acute experimental cold and heat pain sensitivity in humans. J Med Genet 43:e40

    PubMed  CAS  Google Scholar 

  45. Kim H, Lee H, Rowan J, Brahim J, Dionne RA (2006) Genetic polymorphisms in monoamine neurotransmitter systems show only weak association with acute post-surgical pain in humans. Mol Pain 2:24

    PubMed  Google Scholar 

  46. Armero P, Muriel C, Santos J, Sanchez-Montero FJ, Rodriguez RE, Gonzalez-Sarmiento R (2005) COMT (Val158Met) polymorphism is not associated to neuropathic pain in a Spanish population. Eur J Pain 9:229–232

    PubMed  CAS  Google Scholar 

  47. Rakvag TT, Klepstad P, Baar C et al (2005) The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 116:73–78

    PubMed  CAS  Google Scholar 

  48. Kambur O, Mannisto PT, Viljakka K et al (2008) Stress-induced analgesia and morphine responses are changed in catechol-O-methyltransferase-deficient male mice. Basic Clin Pharmacol Toxicol 103:367–373

    PubMed  CAS  Google Scholar 

  49. Valverde P, Healy E, Jackson I, Rees JL, Thody AJ (1995) Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 11:328–330

    PubMed  CAS  Google Scholar 

  50. Mogil JS, Wilson SG, Chesler EJ et al (2003) The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc Natl Acad Sci USA 100:4867–4872

    PubMed  CAS  Google Scholar 

  51. Mogil JS, Ritchie J, Smith SB et al (2005) Melanocortin-1 receptor gene variants affect pain and μ-opioid analgesia in mice and humans. J Med Genet 42:583–587

    PubMed  CAS  Google Scholar 

  52. Mitrovic I, Margeta-Mitrovic M, Bader S, Stoffel M, Jan LY, Basbaum AI (2003) Contribution of GIRK2-mediated postsynaptic signaling to opiate and α2-adrenergic analgesia and analgesic sex differences. Proc Natl Acad Sci USA 100:271–276

    PubMed  CAS  Google Scholar 

  53. Kobayashi T, Ikeda K, Kojima H et al (1999) Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci 2:1091–1097

    PubMed  CAS  Google Scholar 

  54. Marker CL, Stoffel M, Wickman K (2004) Spinal G-protein-gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J Neurosci 24:2806–2812

    PubMed  CAS  Google Scholar 

  55. Nishizawa D, Nagashima M, Katoh R et al (2009) Association between KCNJ6 (GIRK2) gene polymorphisms and post-operative analgesic requirements after major abdominal surgery. PLoS One 4:e7060

    PubMed  Google Scholar 

  56. Lotsch J, Pruss H, Veh RW, Doehring A (2010) A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size. Pharmacogenet Genomics 20(5):291–297

    PubMed  Google Scholar 

  57. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61

    PubMed  CAS  Google Scholar 

  58. Ioannidis JP (2007) Non-replication and inconsistency in the genome-wide association setting. Hum Hered 64:203–213

    PubMed  CAS  Google Scholar 

  59. Fillingim RB, Kaplan L, Staud R et al (2005) The A118G single nucleotide polymorphism of the μ-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. J Pain 6:159–167

    PubMed  CAS  Google Scholar 

  60. Bruehl S, Chung OY, Donahue BS, Burns JW (2006) Anger regulation style, post-operative pain, and relationship to the A118G mu opioid receptor gene polymorphism: a preliminary study. J Behav Med 29:161–169

    PubMed  Google Scholar 

  61. Reyes-Gibby CC, Shete S, Rakvag T et al (2007) Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain 130:25–30

    PubMed  CAS  Google Scholar 

  62. Mogil JS, McCarson KE (2000) Finding pain genes: bottom-up and top-down approaches. J Pain 1(suppl 1):66–80

    PubMed  CAS  Google Scholar 

  63. Mogil JS, Yu L, Basbaum AI (2000) Pain genes?: natural variation and transgenic mutants. Annu Rev Neurosci 23:777–811

    PubMed  CAS  Google Scholar 

  64. Mogil JS, Grisel JE (1998) Transgenic studies of pain. Pain 77:107–128

    PubMed  CAS  Google Scholar 

  65. LaCroix-Fralish ML, Ledoux JB, Mogil JS (2007) The Pain Genes Database: an interactive web browser of pain-related transgenic knockout studies. Pain 131:3.e1–3.e4

    Google Scholar 

  66. Beck JA, Lloyd S, Hafezparast M et al (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25

    PubMed  CAS  Google Scholar 

  67. Twigger SN, Pasko D, Nie J et al (2005) Tools and strategies for physiological genomics – The Rat Genome Database. Physiol Genomics 23:246–256

    PubMed  CAS  Google Scholar 

  68. Mogil JS (1999) The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci USA 96:7744–7751

    PubMed  CAS  Google Scholar 

  69. Mogil JS, Sternberg WF, Marek P, Sadowski B, Belknap JK, Liebeskind JC (1996) The genetics of pain and pain inhibition. Proc Natl Acad Sci USA 93:3048–3055

    PubMed  CAS  Google Scholar 

  70. Belknap JK, O’Toole LA (1991) Studies of genetic differences in response to opioid drugs. In: Harris RA, Crabbe JC (eds) The genetic basis of alcohol and drug actions. Plenum, New York, pp 225–252

    Google Scholar 

  71. Frischknecht H-R, Siegfried B, Waser PG (1988) Opioids and behavior: genetic aspects. Experientia 44:473–481

    PubMed  CAS  Google Scholar 

  72. Shuster L (1989) Pharmacogenetics of drugs of abuse. Ann N Y Acad Sci 562:56–73

    PubMed  CAS  Google Scholar 

  73. Takagi H, Inukai T, Nakama M (1966) A modification of Haffner’s method for testing analgesics. Jpn J Pharmacol 16:287–294

    PubMed  CAS  Google Scholar 

  74. Oliverio A, Castellano C (1974) Genotype-dependent sensitivity and tolerance to morphine and heroin: dissociation between opiate-induced running and analgesia in the mouse. Psychopharmacologia (Berl) 39:13–22

    CAS  Google Scholar 

  75. Brase DA, Loh HH, Way EL (1977) Comparison of the effects of morphine on locomotor activity, analgesia and primary and protracted physical dependence in six mouse strains. J Pharmacol Exp Ther 201:368–374

    PubMed  CAS  Google Scholar 

  76. Frischknecht H-R, Siegfried B, Riggio G, Waser PG (1983) Inhibition of morphine-induced analgesia and locomotor activity in strains of mice: a comparison of long-acting opiate antagonists. Pharmacol Biochem Behav 19:939–944

    PubMed  CAS  Google Scholar 

  77. Belknap JK, Noordewier B, Lamé M (1989) Genetic dissociation of multiple morphine effects among C57BL/6J, DBA/2J and C3H/HeJ inbred mouse strains. Physiol Behav 46:69–74

    PubMed  CAS  Google Scholar 

  78. Belknap JK, Lamé M, Danielson PW (1990) Inbred strain differences in morphine-induced analgesia with the hot plate assay: a reassessment. Behav Genet 20:333–338

    PubMed  CAS  Google Scholar 

  79. Racagni G, Bruno F, Iuliano E, Paoletti R (1979) Differential sensitivity to morphine analgesia and motor activity in two inbred strains of mice: behavioral and biochemical correlations. J Pharmacol Exp Ther 209:111–116

    PubMed  CAS  Google Scholar 

  80. Frigeni V, Bruno F, Carenzi A, Racagni G, Santini V (1978) Analgesia and motor activity elicited by morphine and enkephalins in two inbred strains of mice. J Pharm Pharmacol 30:310–311

    PubMed  CAS  Google Scholar 

  81. Filibeck U, Castellano C, Oliverio A (1981) Differential effects of opiate agonists-antagonists on morphine-induced hyperexcitability and analgesia in mice. Psychopharmacology 73:134–136

    PubMed  CAS  Google Scholar 

  82. Alleva E, Castellano C, Oliverio A (1980) Effects of l- and d-amino acids on analgesia and locomotor activity of mice: their interactions with morphine. Brain Res 198:249–252

    PubMed  CAS  Google Scholar 

  83. Gwynn GJ, Domino EF (1984) Genotype-dependent behavioral sensitivity to mu vs. kappa opiate agonists. II. Antinociceptive tolerance and physical dependence. J Pharmacol Exp Ther 231:312–316

    PubMed  CAS  Google Scholar 

  84. Eidelberg E, Erspamer R, Kreinick CJ, Harris J (1975) Genetically determined differences in the effects of morphine on mice. Eur J Pharmacol 32:329–336

    PubMed  CAS  Google Scholar 

  85. Wilson SG, Smith SB, Chesler EJ et al (2003) The heritability of antinociception: common pharmacogenetic mediation of five neurochemically distinct analgesics. J Pharmacol Exp Ther 304:547–559

    PubMed  CAS  Google Scholar 

  86. Elmer GI, Pieper JO, Negus SS, Woods JH (1998) Genetic variance in nociception and its relationship to the potency of morphine-induced analgesia in thermal and chemical tests. Pain 75:129–140

    PubMed  CAS  Google Scholar 

  87. Liang D-Y, Guo TZ, Liao G, Kingery WS, Peltz G, Clark JD (2006) Chronic pain and genetic background interact and influence opioid analgesia, tolerance, and physical dependence. Pain 121:232–240

    PubMed  CAS  Google Scholar 

  88. Michael-Titus A, Dourmap N, Caline H, Costentin J, Schwartz J-C (1989) Role of endogenous enkephalins in locomotion and nociception studied with peptidase inhibitors in two inbred strains of mice (C57BL/6J and DBA/2J). Neuropharmacology 28:117–122

    PubMed  CAS  Google Scholar 

  89. Ninomiya Y, Kawamura H, Nomura T, Uebayashi H, Sabashi K, Funakoshi M (1990) Analgesic effects of d-amino acids in four inbred strains of mice. Comp Biochem Physiol C 97:341–343

    PubMed  CAS  Google Scholar 

  90. Neilan CL, King MA, Rossi G et al (2003) Differential sensitivities of mouse strains to morphine and [Dmt1]DALDA analgesia. Brain Res 974:254–257

    PubMed  CAS  Google Scholar 

  91. Riba P, Ben Y, Smith AP, Furst S, Lee NM (2002) Morphine tolerance in spinal cord is due to interaction between μ- and δ-receptors. J Pharmacol Exp Ther 300:265–272

    PubMed  CAS  Google Scholar 

  92. Rady JJ, Elmer GI, Fujimoto JM (1999) Opioid receptor selectivity of heroin given intracerebroventricularly differs in six strains of inbred mice. J Pharmacol Exp Ther 288:438–445

    PubMed  CAS  Google Scholar 

  93. Ramabadran K (1985) Stereoselective enhancement of nociception by opioids in different strains of mice. Jpn J Pharmacol 37:296–299

    PubMed  CAS  Google Scholar 

  94. Bansinath M, Ramabadran K, Turndorf H, Puig MM (1991) κ-Opiate agonist-induced inhibition of gastrointestinal transit in different strains of mice. Pharmacology 42:97–102

    PubMed  CAS  Google Scholar 

  95. Vaccarino AL, Tasker RAR, Melzack R (1988) Systemic administration of naloxone produces analgesia in BALB/c mice in the formalin pain test. Neurosci Lett 84:103–107

    PubMed  CAS  Google Scholar 

  96. Pick CG, Cheng J, Paul D, Pasternak GW (1991) Genetic influences in opioid analgesic sensitivity in mice. Brain Res 566:295–298

    PubMed  CAS  Google Scholar 

  97. Hynes MD, Berkowitz BA (1981) Lack of an opiate response to nitrous oxide in mice resistant to the activity-stimulating effects of morphine. J Pharmacol Exp Ther 220:499–503

    Google Scholar 

  98. Quock RM, Mueller JL, Vaughn LK (1993) Strain-dependent differences in responsiveness of mice to nitrous oxide antinociception. Brain Res 614:52–56

    PubMed  CAS  Google Scholar 

  99. Reggiani A, Battaini F, Kobayashi H, Spano P, Trabucchi M (1980) Genotype-dependent sensitivity to morphine: role of different opiate receptor populations. Brain Res 189:289–294

    PubMed  CAS  Google Scholar 

  100. Petruzzi R, Ferraro TN, Kurschner VC, Golden GT, Berrettini WH (1997) The effects of repeated morphine exposure on mu opioid receptor number and affinity in C57BL/6 and DBA/2J mice. Life Sci 61:2057–2064

    PubMed  CAS  Google Scholar 

  101. Jamensky NT, Gianoulakis C (1997) Content of dynorphins and κ-opioid receptors in distinct brain regions of C57BL/6 and DBA/2 mice. Alcohol Clin Exp Res 21:1455–1464

    PubMed  CAS  Google Scholar 

  102. de Waele J-P, Gianoulakis C (1997) Characterization of the μ and δ opioid receptors in the brain of C57BL/6 and DBA/2 mice, selected for their differences in voluntary ethanol consumption. Alcohol Clin Exp Res 21:754–762

    PubMed  Google Scholar 

  103. Kest B, Hopkins E, Palmese CA, Adler MW, Mogil JS (2002) Genetic variation in morphine analgesic tolerance: a survey of 11 inbred mouse strains. Pharmacol Biochem Behav 73:821–828

    PubMed  CAS  Google Scholar 

  104. Kest B, Palmese CA, Hopkins E, Adler MW, Juni A, Mogil JS (2002) Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience 115:463–469

    PubMed  CAS  Google Scholar 

  105. Roerig SC, Fujimoto JM (1988) Morphine antinociception in different strains of mice: relationship of supraspinal-spinal multiplicative interaction to tolerance. J Pharmacol Exp Ther 247:603–608

    PubMed  CAS  Google Scholar 

  106. Kulling P, Frischknecht H-R, Pasi A, Waser PG, Siegfried B (1988) Social conflict-induced changes in nociception and β-endorphin-like immunoreactivity in pituitary and discrete brain areas of C57BL/6 and DBA/2 mice. Brain Res 450:237–246

    PubMed  CAS  Google Scholar 

  107. Pavone F, Castellano C, Oliverio A (1986) Strain-dependent effects of shock-induced release of opioids: dissociation between analgesia and behavioral seizures. Brain Res 366:326–328

    PubMed  CAS  Google Scholar 

  108. Takeshige C, Murai M, Tanaka M, Hachisu M (1983) Parallel individual variations in the effectiveness of acupuncture, morphine analgesia, and dorsal PAG-SPA and their abolition by d-phenylalanine. Adv Pain Res Ther 5:563–569

    CAS  Google Scholar 

  109. Huang C, Wang Y, Han JS, Wan Y (2002) Characteristics of electroacupuncture-induced analgesia in mice: variation with strain, frequency, intensity and opioid involvement. Brain Res 945:20–25

    PubMed  CAS  Google Scholar 

  110. Wan Y, Wilson SG, Han J, Mogil JS (2001) The effect of genotype on sensitivity to electroacupuncture analgesia. Pain 91:5–13

    PubMed  CAS  Google Scholar 

  111. Popova NK, Koriakina LA (1986) Genetic and seasonal characteristics of the effect of stress on pain sensitivity in mice. Biulletin Eksperimentalnoi Biologii i Meditsiny 191:11–13

    Google Scholar 

  112. Mogil JS, Belknap JK (1997) Sex and genotype determine the selective activation of neurochemically distinct mechanisms of swim stress-induced analgesia. Pharmacol Biochem Behav 56:61–66

    PubMed  CAS  Google Scholar 

  113. Siegfried B, Frischknecht H-R (1989) Place avoidance learning and stress-induced analgesia in the attacked mouse: role of endogenous opioids. Behav Neural Biol 52:95–107

    PubMed  CAS  Google Scholar 

  114. Wilson SG, Bryant CD, Lariviere WR et al (2003) The heritability of antinociception II: pharmacogenetic mediation of three over-the-counter analgesics in mice. J Pharmacol Exp Ther 305:755–764

    PubMed  CAS  Google Scholar 

  115. Pick CG (1996) Strain differences in mice antinociception: relationship between alprazolam and opioid receptor subtypes. Eur Neuropsychopharmacol 6:201–205

    PubMed  CAS  Google Scholar 

  116. Flores CM, Wilson SG, Mogil JS (1999) Pharmacogenetic variability in neuronal nicotinic receptor-mediated antinociception. Pharmacogenetics 9:619–625

    PubMed  CAS  Google Scholar 

  117. Damaj MI, Fonck C, Marks MJ et al (2007) Genetic approaches identify differential roles for α4β2* nicotinic receptors in acute models of antinociception in mice. J Pharmacol Exp Ther 321:1161–1169

    PubMed  CAS  Google Scholar 

  118. Mogil JS, Nessim LA, Wilson SG (1999) Strain-dependent effects of supraspinal orphanin FQ/nociceptin on thermal nociceptive sensitivity in mice. Neurosci Lett 261:147–150

    PubMed  CAS  Google Scholar 

  119. Pavone F, Fagioli S (1992) Serotonergic influence on cholinergic-induced analgesia: differences in two inbred strains of mice. Brain Res 577:347–350

    PubMed  CAS  Google Scholar 

  120. Pavone F, Consorti D, Fagioli S (1989) Developmental differences of antinociceptive effects of oxotremorine in two inbred strains of mice. Dev Brain Res 49:156–160

    CAS  Google Scholar 

  121. Gebhart GF, Mitchell CL (1973) Strain differences in the analgesic response to morphine as measured on the hot plate. Arch Int Pharmacodyn Ther 201:128–140

    PubMed  CAS  Google Scholar 

  122. Mogil JS, Chesler EJ, Wilson SG, Juraska JM, Sternberg WF (2000) Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci Biobehav Rev 24:375–389

    PubMed  CAS  Google Scholar 

  123. Ko IK, Loh HH, Way EL (1977) Morphine analgesia, tolerance and dependence in mice from different strains and vendors. J Pharm Pharmacol 29:583–584

    Google Scholar 

  124. Yoburn BC, Kreuscher SP, Inturrisi CE, Sierra V (1989) Opioid receptor upregulation and supersensitivity in mice: effects of morphine sensitivity. Pharmacol Biochem Behav 32:727–731

    PubMed  CAS  Google Scholar 

  125. Mas M, Sabater E, Olaso MJ, Horga JF, Faura CC (2000) Genetic variability in morphine sensitivity and tolerance between different strains of rats. Brain Res 866:109–115

    PubMed  CAS  Google Scholar 

  126. Hoffmann O, Plesan A, Wiesenfeld-Hallin Z (1998) Genetic differences in morphine sensitivity, tolerance and withdrawal in rats. Brain Res 806:232–237

    PubMed  CAS  Google Scholar 

  127. Fender C, Fujinaga M, Maze M (2000) Strain differences in the antinociceptive effect of nitrous oxide on the tail flick test in rats. Anesth Analg 90:195–199

    PubMed  CAS  Google Scholar 

  128. Plesan A, Hoffmann O, Xu X-J, Wiesenfeld-Hallin Z (1999) Genetic differences in the antinociceptive effect of morphine and its potentiation by dextromethorphan in rats. Neurosci Lett 263:53–56

    PubMed  CAS  Google Scholar 

  129. Kasson BG, George R (1984) Endocrine influences on the actions of morphine. IV. Effects of sex and strain. Life Sci 34:1627–1634

    PubMed  CAS  Google Scholar 

  130. Tilson HA, Rech RH (1974) The effects of p-chlorophenylalanine on morphine analgesia, tolerance and dependence development in two strains of rats. Psychopharmacologia (Berl) 35:45–60

    CAS  Google Scholar 

  131. Rosecrans JA, Robinson SE, Johnson JH, Mokler DJ, Hong J-S (1986) Neuroendocrine, biogenic amine and behavioral responsiveness to a repeated foot-shock-induced analgesia (FSIA) stressor in Sprague-Dawley (CD) and Fischer-344 (CDF) rats. Brain Res 382:71–80

    PubMed  CAS  Google Scholar 

  132. Sudakov SK, Goldberg SR, Borisova EV et al (1993) Differences in morphine reinforcement property in two inbred rat strains: associations with cortical receptors, behavioral activity, analgesia and the cataleptic effects of morphine. Psychopharmacology 112:183–188

    PubMed  CAS  Google Scholar 

  133. Bonnet KA, Peterson KE (1975) A modification of the jump-flinch technique for measuring pain sensitivity in rats. Pharmacol Biochem Behav 3:47–55

    PubMed  CAS  Google Scholar 

  134. Woolfolk DR, Holtzman SG (1995) Rat strain differences in the potentiation of morphine-induced analgesia by stress. Pharmacol Biochem Behav 51:699–703

    PubMed  CAS  Google Scholar 

  135. Morgan D, Cook CD, Picker MJ (1999) Sensitivity to the discriminative stimulus and antinociceptive effects of μ opioids: role of strain of rat, stimulus intensity, and intrinsic efficacy at the μ opioid receptor. J Pharmacol Exp Ther 289:965–975

    PubMed  CAS  Google Scholar 

  136. Terner JM, Lomas LM, Smith ES, Barrett AC, Picker MJ (2003) Pharmacogenetic analysis of sex differences in opioid antinociception in rats. Pain 106:381–391

    PubMed  CAS  Google Scholar 

  137. Sudakov SK, Borisova EV, Lyupina YV (1996) Influence of inheritance and fostering on sensitivity to effects of morphine on nociception and locomotor activity in two inbred rat strains. Neuropharmacology 35:1131–1134

    PubMed  CAS  Google Scholar 

  138. Urca G, Segev S, Sarne Y (1985) Footshock-induced analgesia: its opioid nature depends on the strain of rat. Brain Res 329:109–116

    PubMed  CAS  Google Scholar 

  139. Urca G, Segev S, Sarne Y (1985) Footshock-induced analgesia: neurochemical correlates and pharmacological profile. Eur J Pharmacol 114:283–290

    PubMed  CAS  Google Scholar 

  140. Urca G, Segev S, Sarne Y (1985) Stress-induced analgesia: its opioid nature depends on the strain of rat but not on the mode of induction. Brain Res 343:216–222

    PubMed  CAS  Google Scholar 

  141. Helmstetter FJ, Fanselow MS (1987) Strain differences in reversal of conditional analgesia by opioid antagonists. Behav Neurosci 101:735–737

    PubMed  CAS  Google Scholar 

  142. Kunos G, Mosqueda-Garcia R, Mastrianni JA, Abbott FV (1987) Endorphinergic mechanism in the central cardiovascular and analgesic effects of clonidine. Can J Physiol Pharmacol 65:1624–1632

    PubMed  CAS  Google Scholar 

  143. Fromm MF, Hofmann U, Griese EU, Mikus G (1995) Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin Pharmacol Ther 58:374–382

    PubMed  CAS  Google Scholar 

  144. Rady JJ, Roerig SC, Fujimoto JM (1991) Heroin acts on different opioid receptors than morphine in Swiss Webster and ICR mice to produce antinociception. J Pharmacol Exp Ther 256:448–457

    PubMed  CAS  Google Scholar 

  145. Clark FM, Proudfit HK (1992) Anatomical evidence for genetic differences in the innervation of the rat spinal cord by noradrenergic locus coeruleus neurons. Brain Res 591:44–53

    PubMed  CAS  Google Scholar 

  146. Clark FM, Yeomans DC, Proudfit HK (1991) The noradrenergic innervation of the spinal cord: differences between two substrains of Sprague-Dawley rats determined using retrograde tracers combined with immunocytochemistry. Neurosci Lett 125:155–158

    PubMed  CAS  Google Scholar 

  147. Grupe A, Germer S, Usuka J et al (2001) In silico mapping of complex disease-related traits in mice. Science 292:1915–1918

    PubMed  CAS  Google Scholar 

  148. Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    PubMed  CAS  Google Scholar 

  149. Cuppen E (2005) Haplotype-based genetics in mice and rats. Trends Genet 21:318–322

    PubMed  CAS  Google Scholar 

  150. Crabbe JC, Phillips TJ, Kosobud A, Belknap JK (1990) Estimation of genetic correlation: interpretation of experiments using selectively bred and inbred animals. Alcohol Clin Exp Res 14:141–151

    PubMed  CAS  Google Scholar 

  151. Hegmann JP, Possidente B (1981) Estimating genetic correlations from inbred strains. Behav Genet 11:103–114

    PubMed  CAS  Google Scholar 

  152. Sergienko SI, Viglinskaya IV, Zhukov VN, Osipova NA (1987) Individual differences in pain sensitivity and the analgesic effect of morphine in noninbred mice. Bull Exp Biol Med 104:944–946

    Google Scholar 

  153. Belknap JK, Haltli NR, Goebel DM, Lamé M (1983) Selective breeding for high and low levels of opiate-induced analgesia in mice. Behav Genet 13:383–396

    PubMed  CAS  Google Scholar 

  154. Panocka I, Marek P, Sadowski B (1986) Inheritance of stress-induced analgesia in mice. Selective breeding study. Brain Res 397:152–155

    PubMed  CAS  Google Scholar 

  155. Mogil JS, Kest B, Sadowski B, Belknap JK (1996) Differential genetic mediation of sensitivity to morphine in genetic models of opiate antinociception: influence of nociceptive assay. J Pharmacol Exp Ther 276:532–544

    PubMed  CAS  Google Scholar 

  156. Kest B, Wilson SG, Mogil JS (1999) Sex differences in supraspinal morphine analgesia are dependent on genotype. J Pharmacol Exp Ther 289:1370–1375

    PubMed  CAS  Google Scholar 

  157. Dirig DM, Yaksh TL (1995) Differential right shifts in the dose-response curve for intrathecal morphine and sufentanil as a function of stimulus intensity. Pain 62:321–328

    PubMed  CAS  Google Scholar 

  158. Chesler EJ, Ritchie J, Kokayeff A, Lariviere WR, Wilson SG, Mogil JS (2003) Genotype-dependence of gabapentin and pregabalin sensitivity: the pharmacogenetic mediation of analgesia is specific to the type of pain being inhibited. Pain 106:325–335

    PubMed  CAS  Google Scholar 

  159. Hsu Y-W, Somma J, Hung Y-C, Tsai P-S, Yang C-H, Chen C-C (2005) Predicting post-operative pain by preoperative pressure pain assessment. Anesthesiology 103:613–618

    PubMed  Google Scholar 

  160. Werner MU, Duun P, Kehlet H (2004) Prediction of post-operative pain by preoperative nociceptive responses to heat stimulation. Anesthesiology 100:115–119

    PubMed  Google Scholar 

  161. Granot M, Lowenstein L, Yarnitsky D, Tamir A, Zimmer EZ (2003) Post-cesarean section pain prediction by preoperative experimental pain assessment. Anesthesiology 98:1422–1426

    PubMed  Google Scholar 

  162. Edwards RR, Haythornthwaite JA, Tella P, Max MB, Raja S (2006) Basal heat pain thresholds predict opioid analgesia in patients with postherpetic neuralgia. Anesthesiology 104:1243–1248

    PubMed  Google Scholar 

  163. Smith SB, Marker CL, Perry C et al (2008) Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes. Pharmacogenet Genomics 18:231–241

    PubMed  CAS  Google Scholar 

  164. Mogil JS, Chanda ML (2005) The case for the inclusion of female subjects in basic science studies of pain. Pain 117:1–5

    PubMed  Google Scholar 

  165. Mogil JS (2003) Interaction between sex and genotype in the mediation of pain and pain inhibition. Semin Pain Med 1:197–205

    Google Scholar 

  166. Mogil JS, Richards SP, O’Toole LA et al (1997) Identification of a sex-specific quantitative trait locus mediating nonopioid stress-induced analgesia in female mice. J Neurosci 17:7995–8002

    PubMed  CAS  Google Scholar 

  167. Bergeson SE, Helms ML, O’Toole LA et al (2001) Quantitative trait loci influencing morphine antinociception in four mapping populations. Mamm Genome 12:546–553

    PubMed  CAS  Google Scholar 

  168. Taylor BA (1978) Recombinant-inbred strains: use in gene mapping. In: Morse HC III (ed) Origin of inbred mice. Academic, New York, pp 423–428

    Google Scholar 

  169. Taylor BA, Reifsnyder PC (1993) Typing recombinant inbred mouse strains for microsatellite markers. Mamm Genome 4:239–242

    PubMed  CAS  Google Scholar 

  170. Belknap JK, Mitchell SR, O’Toole LA, Helms ML, Crabbe JC (1996) Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behav Genet 26:149–160

    PubMed  CAS  Google Scholar 

  171. Belknap JK, Mogil JS, Helms ML et al (1995) Localization to chromosome 10 of a locus influencing morphine analgesia in crosses derived from C57BL/6 and DBA/2 mouse strains. Life Sci 57:PL117–PL124

    PubMed  CAS  Google Scholar 

  172. Berrettini WH, Ferraro TN, Alexander RC, Buchberg AM, Vogel WH (1994) Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nat Genet 7:54–58

    PubMed  CAS  Google Scholar 

  173. Belknap JK, Richards SP, O’Toole LA, Helms ML, Phillips TJ (1996) Short-term selective breeding as a tool for QTL mapping: ethanol preference drinking in mice. Behav Genet 27:55–66

    Google Scholar 

  174. Markel P, Shu P, Ebeling C et al (1997) Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17:280–284

    PubMed  CAS  Google Scholar 

  175. Hain HS, Belknap JK, Mogil JS (1999) Pharmacogenetic evidence for the involvement of 5-hydroxytryptamine (serotonin)-1B receptors in the mediation of morphine antinociceptive sensitivity. J Pharmacol Exp Ther 291:444–449

    PubMed  CAS  Google Scholar 

  176. Mogil JS, Sternberg WF, Kest B, Marek P, Liebeskind JC (1993) Sex differences in the antagonism of swim stress-induced analgesia: effects of gonadectomy and estrogen replacement. Pain 53:17–25

    PubMed  CAS  Google Scholar 

  177. Kavaliers M, Choleris E (1997) Sex differences in N-methyl-d-aspartate involvement in κ opioid and non-opioid predator-induced analgesia in mice. Brain Res 768:30–36

    PubMed  CAS  Google Scholar 

  178. Gear RW, Miaskowski C, Gordon NC, Paul SM, Heller PH, Levine JD (1996) Kappa-opioids produce significantly greater analgesia in women than in men. Nat Med 2:1248–1250

    PubMed  CAS  Google Scholar 

  179. Angst MS, Clark JD (2006) Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 104:570–587

    PubMed  CAS  Google Scholar 

  180. Liang D-Y, Liao G, Wang J et al (2006) A genetic analysis of opioid-induced hyperalgesia in mice. Anesthesiology 104:1054–1062

    PubMed  CAS  Google Scholar 

  181. Liang D-Y, Liao G, Lighthall GK, Peltz G, Clark DJ (2006) Genetic variants of the P-glycoprotein gene ABCB1B modulate opioid-induced hyperalgesia, tolerance and dependence. Pharmacogenet Genomics 16:825–835

    PubMed  CAS  Google Scholar 

  182. Weinshilboum R (2003) Inheritance and drug response. N Engl J Med 6:529–537

    Google Scholar 

  183. Weinshilboum R, Wang L (2004) Pharmacogenomics: bench to bedside. Nat Rev Drug Discov 3:739–748

    PubMed  CAS  Google Scholar 

  184. Abbott A (2003) With your genes? Take one of these, three times a day. Nature 425:760–762

    PubMed  CAS  Google Scholar 

  185. Evans WE, McLeod HL (2003) Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 348:538–549

    PubMed  CAS  Google Scholar 

  186. Lötsch J, Geisslinger G (2006) Relevance of frequent mu-opioid receptor polymorphisms for opioid activity in healthy volunteers. Pharmacogenomics J 6:200–210

    PubMed  Google Scholar 

  187. Lötsch J, Stuck B, Hummel T (2006) The human mu-opioid receptor gene polymorphism 118A>G decreases cortical activation in response to specific nociceptive stimulation. Behav Neurosci 120:1218–1224

    PubMed  Google Scholar 

  188. Kroslak T, LaForge KS, Gianotti RJ, Ho A, Nielsen DA, Kreek MJ (2007) The single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor. J Neurochem 103:77–87

    PubMed  CAS  Google Scholar 

  189. LaForge KS, Shick V, Spangler R et al (2000) Detection of single nucleotide polymorphisms of the human mu opioid receptor gene by hybridization or single nucleotide extension on custom oligonucleotide gelpad microchips: potential in studies of addiction. Am J Med Genet 96:604–615

    PubMed  CAS  Google Scholar 

  190. Wendel B, Hoehe MR (1998) The human μ opioid receptor gene: 5′ regulatory and intronic sequences. J Mol Med 76:525–532

    PubMed  CAS  Google Scholar 

  191. Hoehe MR, Kopke K, Wendel B et al (2000) Sequence variability and candidate gene analysis in complex disease: association of mu opioid receptor gene variation with substance dependence. Hum Mol Genet 9:2895–2908

    PubMed  CAS  Google Scholar 

  192. Wang D, Quillan JM, Winans K, Lucas JL, Sadee W (2001) Single nucleotide polymorphisms in the human mu opioid receptor gene alter basal G protein coupling and calmodulin binding. J Biol Chem 276:34624–34630

    PubMed  CAS  Google Scholar 

  193. Koch T, Kroslak T, Averbeck M et al (2000) Allelic variation S268P of the human mu-opioid receptor affects both desensitization and G protein coupling. Mol Pharmacol 58:328–334

    PubMed  CAS  Google Scholar 

  194. Brown DL (1985) Post-operative analgesia following thoracotomy: danger of delayed respiratory depression. Chest 88:779–780

    PubMed  CAS  Google Scholar 

  195. Romberg RR, Olofsen E, Bijl H et al (2005) Polymorphism of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology 102:522–530

    PubMed  CAS  Google Scholar 

  196. Oertel BG, Schmidt R, Schneider A, Geisslinger G, Lötsch J (2006) The mu-opioid receptor gene polymorphism 118A>G depletes alfentanil induced analgesia and protects against respiratory depression in homozygous carriers. Pharmacogenet Genomics 16:625–636

    PubMed  CAS  Google Scholar 

  197. Lötsch J, Zimmermann M, Darimont J et al (2002) Does the A118G polymorphism at the mu-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology 97:814–819

    PubMed  Google Scholar 

  198. Berrettini WH, Hoehe MR, Ferraro TN, Demaria PA, Gottheil E (1997) Human mu opioid receptor gene polymorphisms and vulnerability to substance abuse. Addict Biol 2:303–308

    CAS  Google Scholar 

  199. Szeto CY, Tang NL, Lee DT, Stadlin A (2001) Association between mu opioid receptor gene polymorphisms and Chinese heroin addicts. Neuroreport 12:1103–1106

    PubMed  CAS  Google Scholar 

  200. Tan EC, Tan CH, Karupathivan U, Yap EP (2003) Mu opioid receptor gene polymorphisms and heroin dependence in Asian populations. Neuroreport 14:569–572

    PubMed  CAS  Google Scholar 

  201. Shi J, Hui L, Xu Y, Wang F, Huang W, Hu G (2002) Sequence variations in the mu-opioid receptor gene (OPRM1) associated with human addiction to heroin. Hum Mutat 19:459–460

    PubMed  Google Scholar 

  202. Oslin DW, Berrettini W, Kranzler HR et al (2003) A functional polymorphism of the mu-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients. Neuropsychopharmacology 28:1546–1552

    PubMed  CAS  Google Scholar 

  203. Gelernter J, Kranzler H, Cubells J (1999) Genetics of two mu opioid receptor gene (OPRM1) exon I polymorphisms: population studies, and allele frequencies in alcohol- and drug-dependent subjects. Mol Psychiatry 4:476–483

    PubMed  CAS  Google Scholar 

  204. Li T, Liu X, Zhu HZ et al (2000) Association analysis of polymorphism in the mu-opioid gene and heroin abuse in Chinese subjects. Addict Biol 5:181–186

    PubMed  CAS  Google Scholar 

  205. Franke P, Wang T, Nothen MM et al (2001) Nonreplication of association between mu-opioid-receptor gene (OPRM1) A118G polymorphism and substance dependence. Am J Med Genet 105:114–119

    PubMed  CAS  Google Scholar 

  206. Monory K, Greiner E, Sartania N et al (1999) Opioid binding profiles of new hydrazone, oxime, carbazone and semicarbazone derivatives of 14-alkoxymorphinans. Life Sci 64:2011–2020

    PubMed  CAS  Google Scholar 

  207. Drakenberg K, Nikoshkov A, Horvath MC et al (2006) Mu opioid receptor A118G polymorphism in association with striatal opioid neuropeptide gene expression in heroin abusers. Proc Natl Acad Sci USA 103:7883–7888

    PubMed  CAS  Google Scholar 

  208. Murray RB, Adler MW, Korczyn AD (1983) The pupillary effects of opioids. Life Sci 33:495–509

    PubMed  CAS  Google Scholar 

  209. Fliegert F, Kurth B, Gohler K (2005) The effects of tramadol on static and dynamic pupillometry in healthy subjects: the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol 61:257–266

    PubMed  CAS  Google Scholar 

  210. Kharasch ED, Walker A, Hoffer C, Sheffels P (2004) Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3A activity: noninvasive assessment by use of pupillary miosis. Clin Pharmacol Ther 76:452–466

    PubMed  CAS  Google Scholar 

  211. Lötsch J, Skarke C, Wieting J et al (2006) Modulation of the central nervous effects of levomethadone by genetic polymorphisms potentially affecting its metabolism, distribution, and drug action. Clin Pharmacol Ther 79:72–89

    PubMed  Google Scholar 

  212. Lötsch J, Skarke C, Grösch S, Darimont J, Schmidt H, Geisslinger G (2002) The polymorphism A118G of the human mu-opioid receptor gene decreases the clinical activity of morphine-6-glucuronide but not that of morphine. Pharmacogenetics 12:3–9

    PubMed  Google Scholar 

  213. Rossi GC, Pan Y-X, Brown GP, Pasternak GW (1995) Antisense mapping the MOR-1 opioid receptor: evidence for alternative splicing and a novel morphine-6β-glucuronide receptor. FEBS Lett 369:192–196

    PubMed  CAS  Google Scholar 

  214. van Dorp EL, Kest B, Kowalczyk WJ et al (2009) Morphine-6 beta-glucuronide rapidly increases pain sensitivity independently of opioid receptor activity in mice and humans. Anesthesiology 110:1356–1363

    PubMed  Google Scholar 

  215. Cascorbi I (2003) Pharmacogenetics of cytochrome p4502D6: genetic background and clinical implication. Eur J Clin Invest 33(suppl 2):17–22

    PubMed  CAS  Google Scholar 

  216. Sachse C, Brockmöller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295

    PubMed  CAS  Google Scholar 

  217. Bathum L, Johansson I, Ingelman-Sundberg M, Horder M, Brosen K (1998) Ultrarapid metabolism of sparteine: frequency of alleles with duplicated CYP2D6 genes in a Danish population as determined by restriction fragment length polymorphism and long polymerase chain reaction. Pharmacogenetics 8:119–123

    PubMed  CAS  Google Scholar 

  218. Lovlie R, Daly AK, Molven A, Idle JR, Steen VM (1996) Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett 392:30–34

    PubMed  CAS  Google Scholar 

  219. Allorge D, Harlow J, Boulet O et al (2001) In vitro analysis of the contribution of CYP2D6.35 to ultra-rapid metabolism. Pharmacogenetics 11:739–741

    PubMed  CAS  Google Scholar 

  220. Ingelman-Sundberg M (2005) Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 5:6–13

    PubMed  CAS  Google Scholar 

  221. Zanger UM, Fischer J, Raimundo S et al (2001) Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 11:573–585

    PubMed  CAS  Google Scholar 

  222. Schmidt H, Vormfelde SV, Walchner-Bonjean M et al (2003) The role of active metabolites in dihydrocodeine effects. Int J Clin Pharmacol Ther 41:95–106

    PubMed  CAS  Google Scholar 

  223. Eckhardt K, Li S, Ammon S, Schanzle G, Mikus G, Eichelbaum M (1998) Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 76:27–33

    PubMed  CAS  Google Scholar 

  224. Dayer P, Desmeules J, Leemann T, Striberni R (1988) Bioactivation of the narcotic drug codeine in human livers is mediated by the polymorphic monoxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P450db1/bufI). Biochem Biophys Res Commun 152:411–416

    PubMed  CAS  Google Scholar 

  225. Lötsch J, Skarke C, Schmidt H et al (2006) Evidence for morphine-independent central nervous opioid effects after administration of codeine: contribution of other codeine metabolites. Clin Pharmacol Ther 79:35–48

    PubMed  Google Scholar 

  226. Gasche Y, Daali Y, Fathi M et al (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351:2827–28531

    PubMed  CAS  Google Scholar 

  227. Dalen P, Frengell C, Dahl ML, Sjoqvist F (1997) Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 19:543–544

    PubMed  CAS  Google Scholar 

  228. Voronov P, Przybylo HJ, Jagannathan N (2007) Apnea in a child after oral codeine: a genetic variant – an ultra-rapid metabolizer. Paediatr Anaesth 17:684–687

    PubMed  Google Scholar 

  229. Madadi P, Koren G, Cairns J et al (2007) Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam Physician 53:33–35

    PubMed  Google Scholar 

  230. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368:704

    PubMed  Google Scholar 

  231. Sindrup SH, Brosen K, Bjerring P et al (1990) Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 48:686–693

    PubMed  CAS  Google Scholar 

  232. Lai J, Ma SW, Porreca F, Raffa RB (1996) Tramadol, M1 metabolite and enantiomer affinities for cloned human opioid receptors expressed in transfected HN9.10 neuroblastoma cells. Eur J Pharmacol 316:369–372

    PubMed  CAS  Google Scholar 

  233. Garrido MJ, Sayar O, Segura C et al (2003) Pharmacokinetic/pharmacodynamic modeling of the antinociceptive effects of (+)-tramadol in the rat: role of cytochrome P450 2D activity. J Pharmacol Exp Ther 305:710–718

    PubMed  CAS  Google Scholar 

  234. Poulsen L, Brosen K, Arendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH (1996) Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 51:289–295

    PubMed  CAS  Google Scholar 

  235. Collart L, Luthy C, Favario-Constantin C, Dayer P (1993) Duality of the analgesic effect of tramadol in humans. Schweiz Med Wochenschr 123:2241–2243

    PubMed  CAS  Google Scholar 

  236. Enggaard TP, Poulsen L, Arendt-Nielsen L, Brosen K, Ossig J, Sindrup SH (2006) The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg 102:146–150

    PubMed  CAS  Google Scholar 

  237. Stamer UM, Lehnen K, Hothker F et al (2003) Impact of CYP2D6 genotype on post-operative tramadol analgesia. Pain 105:231–238

    PubMed  CAS  Google Scholar 

  238. Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F (2007) Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82:41–47

    PubMed  CAS  Google Scholar 

  239. Schmidt H, Vormfelde SV, Klinder K et al (2002) Affinities of dihydrocodeine and its metabolites to opioid receptors. Pharmacol Toxicol 91:57–63

    PubMed  CAS  Google Scholar 

  240. Mignat C, Wille U, Ziegler A (1995) Affinity profiles of morphine, codeine, dihydrocodeine and their glucuronides at opioid receptor subtypes. Life Sci 56:793–799

    PubMed  CAS  Google Scholar 

  241. Fromm MF, Hofmann U, Griese EU, Mikus G (1995) Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin Pharmacol Ther 58:374–382

    PubMed  CAS  Google Scholar 

  242. Wilder-Smith CH, Hufschmid E, Thormann W (1998) The visceral and somatic antinociceptive effects of dihydrocodeine and its metabolite, dihydromorphine. A cross-over study with extensive and quinidine-induced poor metabolizers. Br J Clin Pharmacol 45:575–581

    PubMed  CAS  Google Scholar 

  243. Mikus G, Ulmer A, Griese EU, Hofmann U (1994) Identification of the enzyme involved in dihydrocodeine O-demethylation to dihydromorphine. Naunyn Schmiedebergs Arch Pharmacol 349

    Google Scholar 

  244. Platten HP, Schweizer E, Dilger K, Mikus G, Klotz U (1998) Pharmacokinetics and the pharmacodynamic action of midazolam in young and elderly patients undergoing tooth extraction. Clin Pharmacol Ther 63:552–560

    PubMed  CAS  Google Scholar 

  245. Webb JA, Rostami-Hodjegan A, Abdul-Manap R, Hofmann U, Mikus G, Kamali F (2001) Contribution of dihydrocodeine and dihydromorphine to analgesia following dihydrocodeine administration in man: a PK-PD modelling analysis. Br J Clin Pharmacol 52:35–43

    PubMed  CAS  Google Scholar 

  246. Susce MT, Murray-Carmichael E, de Leon J (2006) Response to hydrocodone, codeine, and oxycodone in a CYP2D6 poor metabolizer. Prog Neuropsychopharmacol Biol Psychiatry 30:1356–1358

    PubMed  CAS  Google Scholar 

  247. Heiskanen T, Olkkola KT, Kalso E (1998) Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 64:603–611

    PubMed  CAS  Google Scholar 

  248. Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD (2006) Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 79:461–479

    PubMed  CAS  Google Scholar 

  249. Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, Rossier MF, Hochstrasser D, Dayer P, Desmeules JA. (2010) Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. Br J Pharmacol. 160:919–30.

    Google Scholar 

  250. Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, Rossier MF, Hochstrasser D, Dayer P, Desmeules JA. (2010) The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol. 160:907–18.

    Google Scholar 

  251. Kaplan HL, Busto UE, Baylon GJ et al (1997) Inhibition of cytochrome P450 2D6 metabolism of hydrocodone to hydromorphone does not importantly affect abuse liability. J Pharmacol Exp Ther 281:103–108

    PubMed  CAS  Google Scholar 

  252. Srinivasan V, Wielbo D, Simpkins J, Karlix J, Sloan K, Tebbett I (1996) Analgesic and immunomodulatory effects of codeine and codeine 6-glucuronide. Pharm Res 13:296–300

    PubMed  CAS  Google Scholar 

  253. Paul D, Standifer KM, Inturrisi CE, Pasternak GW (1989) Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 251:477–483

    PubMed  CAS  Google Scholar 

  254. Coffman BL, Rios GR, King CD, Tephly TR (1997) Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 25:1–4

    PubMed  CAS  Google Scholar 

  255. Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR (1998) Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos 26:507–512

    PubMed  CAS  Google Scholar 

  256. Ritter JK, Sheen YY, Owens IS (1990) Cloning and expression of human liver UDP-glucuronosyltransferase in COS-1 cells. 3, 4-Catechol estrogens and estriol as primary substrates. J Biol Chem 265:7900–7906

    PubMed  CAS  Google Scholar 

  257. Bhasker CR, McKinnon W, Stone A et al (2000) Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 10:679–685

    PubMed  CAS  Google Scholar 

  258. Innocenti F, Iyer L, Ramirez J, Green MD, Ratain MJ (2001) Epirubicin glucuronidation is catalyzed by human UDP-glucuronosyltransferase 2B7. Drug Metab Dispos 29:686–692

    PubMed  CAS  Google Scholar 

  259. Holthe M, Rakvag TN, Klepstad P et al (2003) Sequence variations in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene: identification of 10 novel single nucleotide polymorphisms (SNPs) and analysis of their relevance to morphine glucuronidation in cancer patients. Pharmacogenomics J 3:17–26

    PubMed  CAS  Google Scholar 

  260. Coffman BL, King CD, Rios GR, Tephly TR (1998) The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos 26:73–77

    PubMed  CAS  Google Scholar 

  261. Jin C, Miners JO, Lillywhite KJ, Mackenzie PI (1993) Complementary deoxyribonucleic acid cloning and expression of a human liver uridine diphosphate-glucuronosyltransferase glucuronidating carboxylic acid-containing drugs. J Pharmacol Exp Ther 264:475–479

    PubMed  CAS  Google Scholar 

  262. Holthe M, Klepstad P, Zahlsen K et al (2002) Morphine glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1*28 polymorphisms in cancer patients on chronic morphine therapy. Eur J Clin Pharmacol 58:353–356

    PubMed  CAS  Google Scholar 

  263. Court MH, Krishnaswamy S, Hao Q et al (2003) Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 31:1125–1133

    PubMed  CAS  Google Scholar 

  264. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM (1999) Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 99:552–557

    PubMed  CAS  Google Scholar 

  265. Cordon-Cardo C, O’Brien JP, Casals D et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86:695–698

    PubMed  CAS  Google Scholar 

  266. Wandel C, Kim R, Wood M, Wood A (2002) Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology 96:913–920

    PubMed  CAS  Google Scholar 

  267. Park JJ, Lee J, Kim MA, Back SK, Hong SK, Na HS (2007) Induction of total insensitivity to capsaicin and hypersensitivity to garlic extract in human by decreased expression of TRPV1. Neurosci Lett 411:87–91

    PubMed  CAS  Google Scholar 

  268. King M, Su W, Chang A, Zuckerman A, Pasternak GW (2001) Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci 4:268–274

    PubMed  CAS  Google Scholar 

  269. Dagenais C, Zong J, Ducharme J, Pollack GM (2001) Effect of mdr1a P-glycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm Res 18:957–963

    PubMed  CAS  Google Scholar 

  270. Cisternino S, Rousselle C, Dagenais C, Scherrmann JM (2001) Screening of multidrug-resistance sensitive drugs by in situ brain perfusion in P-glycoprotein-deficient mice. Pharm Res 18:183–190

    PubMed  CAS  Google Scholar 

  271. Thompson SJ, Koszdin K, Bernards CM (2000) Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 92:1392–1399

    PubMed  CAS  Google Scholar 

  272. Lotsch J, Tegeder I, Angst MS, Geisslinger G (2000) Antinociceptive effects of morphine-6-glucuronide in homozygous MDR1a P-glycoprotein knockout and in wildtype mice in the hotplate test. Life Sci 66:2393–2403

    PubMed  CAS  Google Scholar 

  273. Huwyler J, Drewe J, Klusemann C, Fricker G (1996) Evidence for P-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br J Pharmacol 118:1879–1885

    PubMed  CAS  Google Scholar 

  274. Lotsch J, Schmidt R, Vetter G et al (2002) The influence of inhibition of probenecid sensitive transporters on the central nervous system (CNS) uptake and the antinociceptive activity of morphine-6-glucuronide in rats. Neurosci Lett 329:145–148

    PubMed  CAS  Google Scholar 

  275. Bourasset F, Cisternino S, Temsamani J, Scherrmann JM (2003) Evidence for an active transport of morphine-6-β-d-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J Neurochem 86:1564–1567

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Mogil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lötsch, J., Mogil, J.S. (2011). Genetics of Opioid Actions. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_17

Download citation

Publish with us

Policies and ethics