Skip to main content

Creation of Human–Animal Entities for Translational Stem Cell Research: Scientific Explanation of Issues That Are Often Confused

  • Chapter
Translational Stem Cell Research

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

In keeping with the Nuremberg Code and the Declaration of Helsinki, the novel use of certain stem cells in patient treatments is likely to require prior testing in animals in order to minimize risks. When human cells are combined with those of other animals in a living creature, this generates something referred to as a chimera. However, a chimera is only one example of the various possible types of interspecies entities that have been used in biological research. How exactly might these different entities be used in translating basic stem cell research towards clinical therapies? Could the mixing of human and nonhuman materials threaten human identity and, if so, how might this happen? This chapter explores such questions in the light of current biological understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms “chimera” and “mosaic” are both used to describe organisms that have more than one genetically distinct population of cells, so it may be necessary to further distinguish between these. The key point is that the genetically differing cell types in a chimera originate from two or more different zygotes (in which the embryos may be members of the same or different species). By contrast, the genetically distinct cells in a mosaic all originate from the same zygote, typically acquiring different genotypes as a result of either somatic mutation or recombination events. However, the term “mosaic” is also applied to phenotypically distinct populations of cells arising from random inactivation of X chromosomes carrying different alleles in female mammals. In either case, a mosaic would only contain cells from the same species, rather than combinations of cells from different species (as in interspecies chimeras).

References

  1. DeWitt N. Biologists divided over proposal to create human-mouse embryos. Nature 2002; 420:255.

    Article  PubMed  CAS  Google Scholar 

  2. Robert JS, Baylis F. Crossing species boundaries. Am J Bioeth. 2003; 3:1–13.

    PubMed  Google Scholar 

  3. Jones DA. What does the British public think about human-animal hybrid embryos? J Med Ethics 2009; 35:168–70.

    Article  PubMed  Google Scholar 

  4. Hug K. Research on human-animal entities: ethical and regulatory aspects in Europe. Stem Cell Rev. 2009; 5:181–94.

    Article  PubMed  Google Scholar 

  5. Government proposals for the regulation of hybrid and chimera embryos. House of Commons Science and Technology Committee, Fifth Report of Session 2006–07, Volume I (HC 272-I). London: The Stationery Office; 2007. p. 5–6, 44–6.

    Google Scholar 

  6. Greely HT. Defining chimeras…and chimeric concerns. Am J Bioeth. 2003; 3:17–20.

    PubMed  Google Scholar 

  7. Lawrence E. Henderson’s Dictionary of Biological Terms. 11th ed. Harlow: Longman; 1995.

    Google Scholar 

  8. Smith AD, Datta AP, Smith GH, Campbell PN, Bentley R, McKenzie HA. Oxford Dictionary of Biochemistry and Molecular Biology. Oxford: Oxford University Press; 1997.

    Google Scholar 

  9. Evans MJ, Gurer C, Loike JD, Wilmut I, Schnieke AE, Schon EA. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet. 1999; 23:90–3.

    Article  PubMed  CAS  Google Scholar 

  10. Margulis L, Dolan MF, Guerrero R. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci USA 2000; 97:6954–9.

    Article  PubMed  CAS  Google Scholar 

  11. Collinson JM, Hill RE, West JD. Analysis of mouse eye development with chimeras and mosaics. Int J Dev Biol. 2004; 48:793–804.

    Article  PubMed  Google Scholar 

  12. Rossant J, Spence A. Chimeras and mosaics in mouse mutant analysis. Trends Genet. 1998; 14:358–63.

    Article  PubMed  CAS  Google Scholar 

  13. Wakelam MJ. The fusion of myoblasts. Biochem J. 1985; 228:1–12.

    PubMed  CAS  Google Scholar 

  14. Yanagimachi R, Yanagimachi H, Rogers BJ. The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod. 1976; 15:471–76.

    Article  PubMed  CAS  Google Scholar 

  15. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 1992; 340:17–8.

    Article  PubMed  CAS  Google Scholar 

  16. Bedford JM. Sperm/egg interaction: the specificity of human spermatozoa. Anat Rec. 1977; 188:477–87.

    Article  PubMed  CAS  Google Scholar 

  17. Rossiianov K. Beyond species: Il’ya Ivanov and his experiments on cross-breeding humans and anthropoid apes. Sci Context 2002; 15:277–316.

    Article  PubMed  Google Scholar 

  18. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256:495–7.

    Article  PubMed  Google Scholar 

  19. Ruddle FH, Kucherlapati RS. Hybrid cells and human genes. Sci Am. 1974; 231:36–44.

    Article  PubMed  CAS  Google Scholar 

  20. Goldenberg DM, Pavia RA, Tsao MC. In vivo hybridisation of human tumour and normal hamster cells. Nature 1974; 250:649–51.

    Article  PubMed  CAS  Google Scholar 

  21. Beyhan Z, Iager AE, Cibelli JB. Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell 2007; 1:502–12.

    Article  PubMed  CAS  Google Scholar 

  22. Loi P, Ptak G, Barboni B, Fulka J, Jr., Cappai P, Clinton M. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol. 2001; 19:962–4.

    Article  PubMed  CAS  Google Scholar 

  23. Camporesi S, Boniolo G. Fearing a non-existing Minotaur? The ethical challenges of research on cytoplasmic hybrid embryos. J Med Ethics 2008; 34:821–5.

    Article  PubMed  CAS  Google Scholar 

  24. Skene L, Testa G, Hyun I, Jung KW, McNab A, Robertson J, et al. Ethics report on interspecies somatic cell nuclear transfer research. Cell Stem Cell 2009; 5:27–30.

    Article  PubMed  CAS  Google Scholar 

  25. St John J, Lovell-Badge R. Human-animal cytoplasmic hybrid embryos, mitochondria, and an energetic debate. Nat Cell Biol. 2007; 9:988–92.

    Article  PubMed  CAS  Google Scholar 

  26. Fulka J, Jr., Fulka H, St John J, Galli C, Lazzari G, Lagutina I, et al. Cybrid human embryos–warranting opportunities to augment embryonic stem cell research. Trends Biotechnol. 2008; 26:469–74.

    Article  PubMed  CAS  Google Scholar 

  27. Minger S. Junk medicine: therapeutic cloning. The Times, London. 11th November 2006; Body & Soul, p. 5.

    Google Scholar 

  28. Korean women launch lawsuit over egg donation. Nature 2006; 440:1102.

    Google Scholar 

  29. Chen Y, He ZX, Liu A, Wang K, Mao WW, Chu JX, et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res. 2003; 13:251–63.

    Article  PubMed  Google Scholar 

  30. Lord Walton of Detchant, Hansard Official Report (House of Lords), 19th November 2007; Columns 708–09.

    Google Scholar 

  31. Government proposals for the regulation of hybrid and chimera embryos. House of Commons Science and Technology Committee, Fifth Report of Session 2006–07, Volume II (Oral and written evidence: HC 272-II). London: The Stationery Office; 2007. Ev 7 (Q48).

    Google Scholar 

  32. Wakayama T. On the road to therapeutic cloning. Nat Biotechnol. 2004; 22:399–400.

    Article  PubMed  CAS  Google Scholar 

  33. St John JC, Lloyd RE, Bowles EJ, Thomas EC, El Shourbagy S. The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 2004; 127:631–41.

    Google Scholar 

  34. Dennis C. Cloning: mining the secrets of the egg. Nature 2006; 439:652–5.

    Article  PubMed  CAS  Google Scholar 

  35. Cobbe N. Cross-species chimeras: exploring a possible Christian perspective. Zygon 2007; 42:599–628.

    Article  Google Scholar 

  36. Chung Y, Bishop CE, Treff NR, Walker SJ, Sandler VM, Becker S, et al. Reprogramming of human somatic cells using human and animal oocytes. Cloning Stem Cells 2009; 11:213–23.

    Article  PubMed  CAS  Google Scholar 

  37. Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Hwang WS, et al. Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 2007; 9:130–7.

    Article  PubMed  CAS  Google Scholar 

  38. Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 2009; 460:49–52.

    Article  PubMed  CAS  Google Scholar 

  39. Baker M. iPS cells: potent stuff. Nat Methods 2010; 7:17–9.

    Article  PubMed  CAS  Google Scholar 

  40. Houdebine L-M, editor. Transgenic Animals: Generation and Use. Amsterdam B.V.: Harwood Academic Publishers, OPA (Overseas Publishers Association); 1997.

    Google Scholar 

  41. Gama Sosa MA, De Gasperi R, Elder GA. Animal transgenesis: an overview. Brain Struct Funct. 2010; 214:91–109.

    Article  PubMed  CAS  Google Scholar 

  42. Al-Hasani K, Vadolas J, Knaupp AS, Wardan H, Voullaire L, Williamson R, et al. A 191-kb genomic fragment containing the human alpha-globin locus can rescue α-thalassemic mice. Mamm Genome 2005; 16:847–53.

    Article  PubMed  CAS  Google Scholar 

  43. Wallace HA, Marques-Kranc F, Richardson M, Luna-Crespo F, Sharpe JA, Hughes J, et al. Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 2007; 128:197–209.

    Article  PubMed  CAS  Google Scholar 

  44. O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 2005; 309:2033–7.

    Article  CAS  Google Scholar 

  45. Gartler SM, Waxman SH, Giblett E. An XX/XY human hermaphrodite resulting from ­double fertilization. Proc Natl Acad Sci USA 1962; 48:332–5.

    Article  PubMed  CAS  Google Scholar 

  46. Malan V, Gesny R, Morichon-Delvallez N, Aubry MC, Benachi A, Sanlaville D, et al. Prenatal diagnosis and normal outcome of a 46,XX/46,XY chimera: a case report. Hum Reprod. 2007; 22:1037–41.

    Article  PubMed  CAS  Google Scholar 

  47. Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol. 2003; 21:1200–7.

    Article  PubMed  CAS  Google Scholar 

  48. Bach FH, Ivinson AJ. A shrewd and ethical approach to xenotransplantation. Trends Biotechnol. 2002; 20:129–31.

    Article  PubMed  CAS  Google Scholar 

  49. Goldsmith I, Turpie AG, Lip GY. Valvar heart disease and prosthetic heart valves. BMJ 2002; 325:1228–31.

    Article  PubMed  Google Scholar 

  50. Bailey LL, Nehlsen-Cannarella SL, Concepcion W, Jolley WB. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA 1985; 254:3321–9.

    Article  PubMed  CAS  Google Scholar 

  51. Hisashi Y, Yamada K, Kuwaki K, Tseng YL, Dor FJ, Houser SL, et al. Rejection of cardiac xenografts transplanted from α1,3-galactosyltransferase gene-knockout (GalT-KO) pigs to baboons. Am J Transpl. 2008; 8:2516–26.

    Article  PubMed  CAS  Google Scholar 

  52. Shimizu A, Hisashi Y, Kuwaki K, Tseng YL, Dor FJ, Houser SL, et al. Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from α1,3-galactosyltransferase gene-knockout pigs in baboons. Am J Pathol. 2008; 172:1471–81.

    Article  PubMed  CAS  Google Scholar 

  53. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997; 3:282–6.

    Article  PubMed  CAS  Google Scholar 

  54. Denner J, Schuurman HJ, Patience C. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – Chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation 2009; 16:239–48.

    Article  PubMed  Google Scholar 

  55. McLean S, Williamson L. The demise of UKXIRA and the regulation of solid-organ ­xenotransplantation in the UK. J Med Ethics 2007; 33:373–5.

    Article  PubMed  Google Scholar 

  56. Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 2005; 23:1242–50.

    Article  PubMed  Google Scholar 

  57. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol Microbiol Scand. 1969; 77:758–60.

    Article  PubMed  CAS  Google Scholar 

  58. Richmond A, Su Y. Mouse xenograft models vs. GEM models for human cancer therapeutics. Dis Model Mech. 2008; 1:78–82.

    Article  PubMed  Google Scholar 

  59. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317:337.

    Article  PubMed  CAS  Google Scholar 

  60. Erdö F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab. 2003; 23:780–5.

    PubMed  Google Scholar 

  61. Shibata H, Ageyama N, Tanaka Y, Kishi Y, Sasaki K, Nakamura S, et al. Improved safety of hematopoietic transplantation with monkey embryonic stem cells in the allogeneic setting. Stem Cells 2006; 24:1450–7.

    Article  PubMed  Google Scholar 

  62. Shih CC, Forman SJ, Chu P, Slovak M. Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev. 2007; 16:893–902.

    Article  PubMed  CAS  Google Scholar 

  63. Sections 1(1) and 1(2)(a) of the Animals (Scientific Procedures) Act 1986 (c. 14).

    Google Scholar 

  64. Sections 3(3)(a) and 3(4) of the Human Fertilisation and Embryology Act 1990 (c. 37).

    Google Scholar 

  65. Le Douarin N. Particularités du noyau interphasique chez la caille japonaise (Coturnix coturnix japonica). Bull Biol Fr Belg. 1969; 103:435–52.

    PubMed  Google Scholar 

  66. Balaban E, Teillet MA, Le Douarin N. Application of the quail-chick chimera system to the study of brain development and behavior. Science 1988; 241:1339–42.

    Article  PubMed  CAS  Google Scholar 

  67. Balaban E. Changes in multiple brain regions underlie species differences in a complex, congenital behavior. Proc Natl Acad Sci USA 1997; 94:2001–6.

    Article  PubMed  CAS  Google Scholar 

  68. Rossant J, Frels WI. Interspecific chimeras in mammals: successful production of live ­chimeras between Mus musculus and Mus caroli. Science 1980; 208:419–21.

    Article  PubMed  CAS  Google Scholar 

  69. Fehilly CB, Willadsen SM, Tucker EM. Interspecific chimaerism between sheep and goat. Nature 1984; 307:634–6.

    Article  PubMed  CAS  Google Scholar 

  70. Williams TJ, Munro RK, Shelton JN. Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos. Reprod Fertil Dev 1990; 2:385–94.

    Article  PubMed  CAS  Google Scholar 

  71. Xiang AP, Mao FF, Li WQ, Park D, Ma BF, Wang T, et al. Extensive contribution of embryonic stem cells to the development of an evolutionarily divergent host. Hum Mol Genet. 2008; 17:27–37.

    Article  PubMed  CAS  Google Scholar 

  72. Guidelines for Human Embryonic Stem Cell Research. Washington: National Academies Press; 2005. p. 39–41.

    Google Scholar 

  73. Greene M, Schill K, Takahashi S, Bateman-House A, Beauchamp T, Bok H, et al. Ethics: moral issues of human-non-human primate neural grafting. Science 2005; 309:385–6.

    Article  PubMed  CAS  Google Scholar 

  74. Robert JS. The science and ethics of making part-human animals in stem cell biology. FASEB J. 2006; 20:838–45.

    Article  PubMed  CAS  Google Scholar 

  75. James D, Noggle SA, Swigut T, Brivanlou AH. Contribution of human embryonic stem cells to mouse blastocysts. Dev Biol. 2006; 295:90–102.

    Article  PubMed  CAS  Google Scholar 

  76. Goldstein RS, Drukker M, Reubinoff BE, Benvenisty N. Integration and differentiation of human embryonic stem cells transplanted to the chick embryo. Dev Dyn. 2002; 225:80–6.

    Article  PubMed  CAS  Google Scholar 

  77. Muotri AR, Nakashima K, Toni N, Sandler VM, Gage FH. Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc Natl Acad Sci USA 2005; 102:18644–8.

    Article  PubMed  CAS  Google Scholar 

  78. Greely HT, Cho MK, Hogle LF, Satz DM. Thinking about the human neuron mouse. Am J Bioeth. 2007; 7:27–40.

    PubMed  Google Scholar 

  79. Nishikawa S, Goldstein RA, Nierras CR. The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol. 2008; 9:725–9.

    Article  PubMed  CAS  Google Scholar 

  80. Daley GQ. Gametes from embryonic stem cells: a cup half empty or half full? Science 2007; 316:409–10.

    Article  PubMed  CAS  Google Scholar 

  81. Gook DA, McCully BA, Edgar DH, McBain JC. Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod. 2001; 16:417–22.

    Article  PubMed  CAS  Google Scholar 

  82. Wyns C, Van Langendonckt A, Wese FX, Donnez J, Curaba M. Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue. Hum Reprod. 2008; 23:2402–14.

    Article  PubMed  Google Scholar 

  83. Lee DM, Yeoman RR, Battaglia DE, Stouffer RL, Zelinski-Wooten MB, Fanton JW, et al. Live birth after ovarian tissue transplant. Nature 2004; 428:137–8.

    Article  PubMed  CAS  Google Scholar 

  84. Denker HW. Ethical concerns over use of new cloning technique in humans. Nature 2009; 461:341.

    Article  PubMed  CAS  Google Scholar 

  85. Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 2009; 5:135–8.

    Article  PubMed  CAS  Google Scholar 

  86. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009; 461:86–90.

    Article  PubMed  CAS  Google Scholar 

  87. Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, et al. Adult mice generated from induced pluripotent stem cells. Nature 2009; 461:91–4.

    Article  PubMed  CAS  Google Scholar 

  88. Teyssier M, Gaucherand P, Buenerd A. Prenatal diagnosis of a tetraploid fetus. Prenat Diagn. 1997; 17:474–8.

    Article  PubMed  CAS  Google Scholar 

  89. Nakamura Y, Takaira M, Sato E, Kawano K, Miyoshi O, Niikawa N. A tetraploid liveborn neonate: cytogenetic and autopsy findings. Arch Pathol Lab Med. 2003; 127:1612–4.

    PubMed  Google Scholar 

  90. Schramm RD, Paprocki AM. In vitro development and cell allocation following aggregation of split embryos with tetraploid or developmentally asynchronous blastomeres in rhesus monkeys. Cloning Stem Cells 2004; 6:302–14.

    PubMed  CAS  Google Scholar 

  91. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 1993; 90:8424–8.

    Article  PubMed  CAS  Google Scholar 

  92. Gardner RL, Papaioannou VE, Barton SC. Origin of the ectoplacental cone and secondary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass. J Embryol Exp Morphol. 1973; 30:561–72.

    PubMed  CAS  Google Scholar 

  93. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005; 437:69–87.

    Google Scholar 

  94. Knowles DG, McLysaght A. Recent de novo origin of human protein-coding genes. Genome Res. 2009; 19:1752–9.

    Article  PubMed  CAS  Google Scholar 

  95. Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet. 2006; 2:e168.

    Article  PubMed  CAS  Google Scholar 

  96. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science 1975; 188:107–16.

    Article  PubMed  CAS  Google Scholar 

  97. Pollard KS. What makes us human? Sci Am. 2009; 300:44–9.

    Article  PubMed  CAS  Google Scholar 

  98. Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD, Holt A, et al. Human-specific gain of function in a developmental enhancer. Science 2008; 321:1346–50.

    Article  PubMed  CAS  Google Scholar 

  99. Wray GA, Babbitt CC. Genetics. Enhancing gene regulation. Science 2008; 321:1300–1.

    Article  PubMed  CAS  Google Scholar 

  100. Darwin C. The Descent of Man. London: Penguin Classics; [1871] 2004. p. 151.

    Google Scholar 

  101. Gallop GG, Jr. Chimpanzees: self-recognition. Science 1970; 167:86–7.

    Article  PubMed  Google Scholar 

  102. Reiss D, Marino L. Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. Proc Natl Acad Sci USA 2001; 98:5937–42.

    Article  PubMed  CAS  Google Scholar 

  103. Plotnik JM, de Waal FB, Reiss D. Self-recognition in an Asian elephant. Proc Natl Acad Sci USA 2006; 103:17053–7.

    Article  PubMed  CAS  Google Scholar 

  104. Call J, Tomasello M. Does the chimpanzee have a theory of mind? 30 years later. Trends Cogn Sci. 2008; 12:187–92.

    Article  PubMed  Google Scholar 

  105. Connor RC. Dolphin social intelligence: complex alliance relationships in bottlenose ­dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos Trans R Soc Lond B Biol Sci. 2007; 362:587–602.

    Article  PubMed  Google Scholar 

  106. Marino L. Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav Evol. 2002; 59:21–32.

    Article  PubMed  Google Scholar 

  107. Marino L. Dolphin cognition. Curr Biol 2004; 14:R910–1.

    Article  PubMed  CAS  Google Scholar 

  108. Emery NJ, Clayton NS. The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 2004; 306:1903–7.

    Article  PubMed  CAS  Google Scholar 

  109. Taylor AH, Hunt GR, Medina FS, Gray RD. Do New Caledonian crows solve physical problems through causal reasoning? Proc Biol Sci. 2009; 276:247–54.

    Article  PubMed  CAS  Google Scholar 

  110. Inoue S, Matsuzawa T. Working memory of numerals in chimpanzees. Curr Biol. 2007; 17:R1004–5.

    Article  PubMed  CAS  Google Scholar 

  111. Ponting C, Jackson AP. Evolution of primary microcephaly genes and the enlargement of primate brains. Curr Opin Genet Dev. 2005; 15:241–8.

    Article  PubMed  CAS  Google Scholar 

  112. Cox J, Jackson AP, Bond J, Woods CG. What primary microcephaly can tell us about brain growth. Trends Mol Med. 2006; 12:358–66.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang J. Evolution of the human ASPM gene, a major determinant of brain size. Genetics 2003; 165:2063–70.

    PubMed  CAS  Google Scholar 

  114. Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S, et al. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet. 2004; 13:489–94.

    Article  PubMed  CAS  Google Scholar 

  115. Wang YQ, Su B. Molecular evolution of microcephalin, a gene determining human brain size. Hum. Mol. Genet. 2004; 13:1131–7.

    Article  PubMed  CAS  Google Scholar 

  116. Ali F, Meier R. Positive selection in ASPM is correlated with cerebral cortex evolution across primates but not with whole-brain size. Mol Biol Evol. 2008; 25:2247–50.

    Article  PubMed  CAS  Google Scholar 

  117. Semendeferi K, Lu A, Schenker N, Damasio H. Humans and great apes share a large frontal cortex. Nat Neurosci. 2002; 5:272–6.

    Article  PubMed  CAS  Google Scholar 

  118. Tramo MJ, Loftus WC, Stukel TA, Green RL, Weaver JB, Gazzaniga MS. Brain size, head size, and intelligence quotient in monozygotic twins. Neurology 1998; 50:1246–52.

    Article  PubMed  CAS  Google Scholar 

  119. Anderson SR. Doctor Dolittle’s delusion: animals and the uniqueness of human language. New Haven: Yale University Press; 2004.

    Google Scholar 

  120. Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 2002; 418:869–72.

    Article  PubMed  CAS  Google Scholar 

  121. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001; 413:519–23.

    Article  PubMed  CAS  Google Scholar 

  122. Li G, Wang J, Rossiter SJ, Jones G, Zhang S. Accelerated FoxP2 evolution in echolocating bats. PLoS ONE 2007; 2:e900.

    Article  PubMed  CAS  Google Scholar 

  123. Enard W, Gehre S, Hammerschmidt K, Hölter SM, Blass T, Somel M, et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 2009; 137:961–71.

    Article  PubMed  CAS  Google Scholar 

  124. Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F, et al. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 2009; 462:213–7.

    Article  PubMed  CAS  Google Scholar 

  125. Savage-Rumbaugh ES, Murphy J, Sevcik RA, Brakke KE, Williams SL, Rumbaugh DM. Language comprehension in ape and child. Monogr Soc Res Child Dev. 1993; 58:1–222.

    Article  PubMed  CAS  Google Scholar 

  126. Herman LM. Cognition and language competencies of bottlenosed dolphins. In: Schusterman RJ, Thomas JA, Wood FG, editors. Dolphin cognition and behavior: a comparative approach. Hillsdale: Lawrence Erlbaum; 1986. p. 221–52.

    Google Scholar 

  127. Hauser MD, Chomsky N, Fitch WT. The faculty of language: what is it, who has it, and how did it evolve? Science 2002; 298:1569–79.

    Article  PubMed  CAS  Google Scholar 

  128. Gentner TQ, Fenn KM, Margoliash D, Nusbaum HC. Recursive syntactic pattern learning by songbirds. Nature 2006; 440:1204–7.

    Article  PubMed  CAS  Google Scholar 

  129. Pollick AS, de Waal FB. Ape gestures and language evolution. Proc Natl Acad Sci USA 2007; 104:8184–9.

    Article  PubMed  CAS  Google Scholar 

  130. Premack D. Human and animal cognition: continuity and discontinuity. Proc Natl Acad Sci USA 2007; 104:13861–7.

    Article  PubMed  CAS  Google Scholar 

  131. Frey RG. Animals. In: LaFollette H, editor. Oxford handbook of practical ethics. New York: Oxford University Press; 2003. p. 171–3.

    Google Scholar 

  132. Boethius AMS. Contra Eutychen et Nestorium. In: The theological tractates and the ­consolation of philosophy, Cambridge: Harvard University Press; [c. 518–521] 1973. p. 92.

    Google Scholar 

  133. Locke J. An essay concerning human understanding. London: Thomas Tegg, Cheapside; [1689] 1825. p. 225–6.

    Google Scholar 

  134. Harris J. The concept of the person and the value of life. Kennedy Inst Ethics J. 1999; 9:293–308.

    Article  PubMed  Google Scholar 

  135. The Oxford compact English dictionary. Oxford: Oxford University Press; 1996.

    Google Scholar 

  136. Naffine N. Person. In: Cane P, Conaghan J, editors. The new Oxford companion to law. Oxford: Oxford University Press; 2008. p. 885–6.

    Google Scholar 

  137. Beauchamp TL. The failure of theories of personhood. Kennedy Inst Ethics J. 1999; 9:309–24.

    Article  PubMed  Google Scholar 

  138. Warnock M. Do human cells have rights? Bioethics 1987; 1:1–14.

    Article  PubMed  Google Scholar 

  139. Rollin BE. On Chimeras. Zygon 2007; 42:643–7.

    Article  Google Scholar 

  140. Irwin DE, Bensch S, Price TD. Speciation in a ring. Nature 2001; 409:333–7.

    Article  PubMed  CAS  Google Scholar 

  141. Irwin DE, Bensch S, Irwin JH, Price TD. Speciation by distance in a ring species. Science 2005; 307:414–6.

    Article  PubMed  CAS  Google Scholar 

  142. Moritz C, Schneider CJ, Wake DB. Evolutionary relationships within the Ensatina eschscholtzi complex confirm the ring species interpretation. Syst Zool. 1992; 41:273–91.

    Google Scholar 

  143. Kuchta SR, Parks DS, Mueller RL, Wake DB. Closing the ring: historical biogeography of the salamander ring species Ensatina eschscholtzii. J Biogeogr. 2009; 36:982–95.

    Article  Google Scholar 

  144. Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akcakaya HR, Leader-Williams N, et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol. 2008; 22:1424–42.

    Article  PubMed  Google Scholar 

  145. Avise JC. Molecular markers, natural history and evolution. London: Chapman & Hall; 1994. p. 253.

    Book  Google Scholar 

  146. Mishler BD, Donoghue MJ. Species concepts: a case for pluralism. Syst Zool. 1982; 31:491–503.

    Article  Google Scholar 

  147. Hey J. On the failure of modern species concepts. Trends Ecol Evol. 2006; 21:447–50.

    Article  PubMed  Google Scholar 

  148. LaPorte J. In defense of species. Stud Hist Philos Biol Biomed Sci. 2007; 38:255–69.

    Article  PubMed  Google Scholar 

  149. de Queiroz K. Ernst Mayr and the modern concept of species. Proc Natl Acad Sci USA 2005; 102(Suppl 1):6600–7.

    Article  PubMed  CAS  Google Scholar 

  150. Mayr E. What is a species, and what is not? Philos Sci. 1996; 63:262–77.

    Article  Google Scholar 

  151. Beirne P. Rethinking bestiality: Towards a concept of interspecies sexual assault. In: Podberscek AL, Paul ES, Serpell JA, editors. Companion animals and us: exploring the relationships between people and pets. Cambridge: Cambridge University Press; 2000. p. 313–31.

    Google Scholar 

  152. Wiley EO. The evolutionary species concept reconsidered. Syst Zool. 1978; 27:17–26.

    Article  Google Scholar 

  153. Lord Darzi of Denham, Hansard Official Report (House of Lords), 29th October 2008; Column 1625.

    Google Scholar 

  154. Streiffer R. At the edge of humanity: human stem cells, chimeras, and moral status. Kennedy Inst Ethics J. 2005; 15:347–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cobbe, N., Wilson, V. (2011). Creation of Human–Animal Entities for Translational Stem Cell Research: Scientific Explanation of Issues That Are Often Confused. In: Hug, K., Hermerén, G. (eds) Translational Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-959-8_15

Download citation

Publish with us

Policies and ethics