Skip to main content

Skeletal Muscle Dysfunction

  • Chapter
  • First Online:
Chronic Obstructive Pulmonary Disease

Part of the book series: Respiratory Medicine ((RM))

Abstract

Chronic obstructive pulmonary disease (COPD) is highly prevalent and the burden of this disease is only expected to increase in the coming 15–20 years. Once viewed as a disease limited to the lung, COPD is now recognized as a multisystemic disease with various organ dysfunctions. Skeletal muscle dysfunction is one of the most devastating systemic manifestations of COPD. Skeletal muscle dysfunction is such a reality in COPD that, depending on the clinical situations, 20–35% of the patients refer to leg fatigue as the main cause of exercise cessation, whereas 41% consider it to be at least a major contributor to exercise limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agusti AG. Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2:367–70 [discussion 371–2].

    Article  PubMed  Google Scholar 

  2. Maltais F, Hamilton A, Marciniuk D, Hernandez P, Sciurba FC, Richter K, et al. Improvements in symptom-limited exercise performance over 8 h with once-daily tiotropium in patients with COPD. Chest. 2005;128:1168–78.

    Article  PubMed  CAS  Google Scholar 

  3. Pepin V, Saey D, Whittom F, LeBlanc P, Maltais F. Walking versus cycling: sensitivity to bronchodilation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172:1517–22.

    Article  PubMed  Google Scholar 

  4. O’Donnell DE, Laveneziana P. Dyspnea and activity limitation in COPD: mechanical factors. COPD. 2007;4:225–36.

    Article  PubMed  Google Scholar 

  5. Bernard S, LeBlanc P, Whittom F, Carrier G, Jobin J, Belleau R, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158:629–34.

    PubMed  CAS  Google Scholar 

  6. Saey D, Debigaré R, LeBlanc P, Mador MJ, Côté CH, Jobin J, et al. Contractile leg fatigue after cycle exercise: a factor limiting exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:425–30.

    Article  PubMed  Google Scholar 

  7. Mador MJ, Deniz O, Aggarwal A, Kufel TJ. Quadriceps fatigability after single muscle exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:102–8.

    Article  PubMed  Google Scholar 

  8. Saey D, Lemire BB, Gagnon P, Bombardier E, Tupling AR, Debigaré R, et al. Quadriceps metabolism during constant workrate cycling exercise in chronic obstructive pulmonary ­disease. J Appl Physiol. 2011;110:116–24.

    Article  PubMed  Google Scholar 

  9. Marquis K, Debigaré R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166:809–13.

    Article  PubMed  Google Scholar 

  10. Schols AM, Broekhuizen R, Weling-Scheepers CA, Wouters EF. Body composition and ­mortality in chronic obstructive pulmonary disease. Am J Clin Nutr. 2005;82:53–9.

    PubMed  CAS  Google Scholar 

  11. Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62:115–20.

    Article  PubMed  Google Scholar 

  12. Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard BG, Andersen T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006;173:79–83.

    Article  PubMed  Google Scholar 

  13. Mostert R, Goris A, Weling-Scheepers C, Wouters EF, Schols AM. Tissue depletion and health related quality of life in patients with chronic obstructive pulmonary disease. Respir Med. 2000;94:859–67.

    Article  PubMed  CAS  Google Scholar 

  14. Decramer M, Gosselink R, Troosters T, Verschueren M, Evers G. Muscle weakness is related to utilization of health care resources in COPD patients. Eur Respir J. 1997;10:417–23.

    Article  PubMed  CAS  Google Scholar 

  15. Schols AM, Soeters PB, Dingemans AM, Mostert R, Frantzen PJ, Wouters EF. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis. 1993;147:1151–6.

    PubMed  CAS  Google Scholar 

  16. Mathur S, Takai KP, Macintyre DL, Reid D. Estimation of thigh muscle mass with magnetic resonance imaging in older adults and people with chronic obstructive pulmonary disease. Phys Ther. 2008;88:219–30.

    Article  PubMed  Google Scholar 

  17. Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard S, et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 1998;30:1467–74.

    Article  PubMed  CAS  Google Scholar 

  18. Gosker HR, Engelen MP, van Mameren H, van Dijk PJ, van der Vusse GJ, Wouters EF, et al. Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am J Clin Nutr. 2002;76:113–9.

    PubMed  CAS  Google Scholar 

  19. Gea JG, Pasto M, Carmona MA, Orozco-Levi M, Palomeque J, Broquetas J. Metabolic ­characteristics of the deltoid muscle in patients with chronic obstructive pulmonary disease. Eur Respir J. 2001;17:939–45.

    Article  PubMed  CAS  Google Scholar 

  20. Orozco-Levi M. Structure and function of the respiratory muscles in patients with COPD: impairment or adaptation? Eur Respir J Suppl. 2003;46:41s–51.

    Article  PubMed  CAS  Google Scholar 

  21. Levine S, Kaiser L, Leferovich J, Tikunov B. Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med. 1997;337:1799–806.

    Article  PubMed  CAS  Google Scholar 

  22. Ottenheijm CA, Heunks LM, Sieck GC, Zhan WZ, Jansen SM, Degens H, et al. Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172:200–5.

    Article  PubMed  Google Scholar 

  23. Caron MA, Debigaré R, Dekhuijzen PN, Maltais F. Comparative assessment of the quadriceps and the diaphragm in patients with COPD. J Appl Physiol. 2009;107:952–61.

    Article  PubMed  CAS  Google Scholar 

  24. Larsson L. Histochemical characteristics of human skeletal muscle during aging. Acta Physiol Scand. 1983;117:469–71.

    Article  PubMed  CAS  Google Scholar 

  25. Maltais F, Sullivan MJ, LeBlanc P, Duscha BD, Schachat FH, Simard C, et al. Altered expression of myosin heavy chain in the vastus lateralis muscle in patients with COPD. Eur Respir J. 1999;13:850–4.

    Article  PubMed  CAS  Google Scholar 

  26. Gosker HR, Zeegers MP, Wouters EF, Schols AM. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax. 2007;62:944–9.

    Article  PubMed  Google Scholar 

  27. Gagnon P, Saey D, Vivodtzev I, Laviolette L, Mainguy V, Milot J, et al. Impact of preinduced quadriceps fatigue on exercise response in chronic obstructive pulmonary disease and healthy subjects. J Appl Physiol. 2009;107:832–40.

    Article  PubMed  Google Scholar 

  28. Amann M, Regan MS, Kobitary M, Eldridge MW, Boutellier U, Pegelow DF, et al. Impact of pulmonary system limitations on locomotor muscle fatigue in patients with COPD. Am J Physiol Regul Integr Comp Physiol. 2010;299:R314–24.

    Article  PubMed  CAS  Google Scholar 

  29. Maltais F, Jobin J, Sullivan MJ, Bernard S, Whittom F, Killian KJ, et al. Metabolic and hemodynamic responses of lower limb during exercise in patients with COPD. J Appl Physiol. 1998;84:1573–80.

    PubMed  CAS  Google Scholar 

  30. Hamilton AL, Killian KJ, Summers E, Jones NL. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med. 1995;152:2021–31.

    PubMed  CAS  Google Scholar 

  31. Stubbings AK, Moore AJ, Dusmet M, Goldstraw P, West TG, Polkey MI, et al. Physiological properties of human diaphragm muscle fibres and the effect of chronic obstructive pulmonary disease. J Physiol. 2008;586:2637–50.

    Article  PubMed  CAS  Google Scholar 

  32. Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch. 1985;403:369–76.

    Article  PubMed  CAS  Google Scholar 

  33. Debigaré R, Côté CH, Hould FS, LeBlanc P, Maltais F. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD. Eur Respir J. 2003;21:273–8.

    Article  PubMed  Google Scholar 

  34. Decramer M, Lacquet LM, Fagard R, Rogiers P. Corticosteroids contribute to muscle weakness in chronic airflow obstruction. Am J Respir Crit Care Med. 1994;150:11–6.

    PubMed  CAS  Google Scholar 

  35. Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F. Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med. 1991;325:917–23.

    Article  PubMed  CAS  Google Scholar 

  36. Ottenheijm CA, Heunks LM, Hafmans T, van der Ven PF, Benoist C, Zhou H, et al. Titin and diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173:527–34.

    Article  PubMed  CAS  Google Scholar 

  37. Maltais F, LeBlanc P, Whittom F, Simard C, Marquis K, Bélanger M, et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax. 2000;55:848–53.

    Article  PubMed  CAS  Google Scholar 

  38. Green HJ, Bombardier E, Burnett M, Iqbal S, D’Arsigny CL, O’Donnell DE, et al. Organization of metabolic pathways in vastus lateralis of patients with chronic obstructive pulmonary disease. Am J Physiol Regul Integr Comp Physiol. 2008;295:R935–41.

    Article  PubMed  CAS  Google Scholar 

  39. Jakobsson P, Jorfeldt L, Henriksson J. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995;151:374–7.

    PubMed  CAS  Google Scholar 

  40. Levine S, Gregory C, Nguyen T, Shrager J, Kaiser L, Rubinstein N, et al. Bioenergetic adaptation of individual human diaphragmatic myofibers to severe COPD. J Appl Physiol. 2002;92:1205–13.

    PubMed  Google Scholar 

  41. Doucet M, Debigare R, Joanisse DR, Cote C, Leblanc P, Gregoire J, et al. Adaptation of the diaphragm and the vastus lateralis in mild-to-moderate COPD. Eur Respir J. 2004;24:971–9.

    Article  PubMed  CAS  Google Scholar 

  42. Saey D, Michaud A, Couillard A, Cote CH, Mador MJ, LeBlanc P, et al. Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:1109–15.

    Article  PubMed  Google Scholar 

  43. Rasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J. Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab. 2001;280:E301–7.

    PubMed  CAS  Google Scholar 

  44. Picard M, Godin R, Sinnreich M, Baril J, Bourbeau J, Perrault H, et al. The mitochondrial phenotype of peripheral muscle in chronic obstructive pulmonary disease: disuse or dysfunction? Am J Respir Crit Care Med. 2008;178:1040–7.

    Article  PubMed  CAS  Google Scholar 

  45. Gosker HR, Hesselink MK, Duimel H, Ward KA, Schols AM. Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD. Eur Respir J. 2007;30:73–9.

    Article  PubMed  CAS  Google Scholar 

  46. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.

    Article  PubMed  CAS  Google Scholar 

  47. Puente-Maestu L, Perez-Parra J, Godoy R, Moreno N, Tejedor A, Gonzalez-Aragoneses F, et al. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J. 2009;33:1045–52.

    Article  PubMed  CAS  Google Scholar 

  48. Couillard A, Maltais F, Saey D, Debigaré R, Michaud A, Koechlin C, et al. Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167:1664–9.

    Article  PubMed  Google Scholar 

  49. Barreiro E, Peinado VI, Galdiz JB, Ferrer E, Marin-Corral J, Sanchez F, et al. Cigarette smoke-induced oxidative stress: a role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med. 2010;182:477–88.

    Article  PubMed  CAS  Google Scholar 

  50. Rabinovich RA, Ardite E, Mayer AM, Polo MF, Vilaro J, Argiles JM, et al. Training depletes muscle glutathione in patients with chronic obstructive pulmonary disease and low body mass index. Respiration. 2006;73:757–61.

    Article  PubMed  Google Scholar 

  51. Wijnhoven JH, Janssen AJ, van Kuppevelt TH, Rodenburg RJ, Dekhuijzen PN. Metabolic capacity of the diaphragm in patients with COPD. Respir Med. 2006;100:1064–71.

    Article  PubMed  CAS  Google Scholar 

  52. Ribera F, N’Guessan B, Zoll J, Fortin D, Serrurier B, Mettauer B, et al. Mitochondrial electron transport chain function is enhanced in inspiratory muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167:873–9.

    Article  PubMed  Google Scholar 

  53. Orozco-Levi M, Gea J, Lloreta JL, Felez M, Minguella J, Serrano S, et al. Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease. Eur Respir J. 1999;13: 371–8.

    Article  PubMed  CAS  Google Scholar 

  54. Barreiro E, de la Puente B, Minguella J, Corominas JM, Serrano S, Hussain SN, et al. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:1116–24.

    Article  PubMed  Google Scholar 

  55. Marin-Corral J, Minguella J, Ramirez-Sarmiento AL, Hussain SN, Gea J, Barreiro E. Oxidized proteins and superoxide anion production in the diaphragm of severe COPD patients. Eur Respir J. 2009;33:1309–19.

    Article  PubMed  CAS  Google Scholar 

  56. Wijnhoven HJ, Heunks LM, Geraedts MC, Hafmans T, Vina JR, Dekhuijzen PN. Oxidative and nitrosative stress in the diaphragm of patients with COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:173–9.

    Article  PubMed  CAS  Google Scholar 

  57. Schols AM. Nutritional and metabolic modulation in chronic obstructive pulmonary disease management. Eur Respir J Suppl. 2003;46:81s–6.

    Article  PubMed  CAS  Google Scholar 

  58. Schols AM, Soeters PB, Mostert R, Saris WH, Wouters EF. Energy balance in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1991;143:1248–52.

    PubMed  CAS  Google Scholar 

  59. Pichard C, Jeejeebhoy KN. Muscle dysfunction in malnourished patients. Q J Med. 1988;69:1021–45.

    PubMed  CAS  Google Scholar 

  60. Engelen MP, Schols AM, Baken WC, Wesseling GJ, Wouters EF. Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD. Eur Respir J. 1994;7:1793–7.

    Article  PubMed  CAS  Google Scholar 

  61. Lopes J, Russell DM, Whitwell J, Jeejeebhoy KN. Skeletal muscle function in malnutrition. Am J Clin Nutr. 1982;36:602–10.

    PubMed  CAS  Google Scholar 

  62. Ferreira IM, Brooks D, Lacasse Y, Goldstein RS, White J. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005;CD000998.

    Google Scholar 

  63. Nishimura Y, Tsutsumi M, Nakata H, Tsunenari T, Maeda H, Yokoyama M. Relationship between respiratory muscle strength and lean body mass in men with COPD. Chest. 1995;107:1232–6.

    Article  PubMed  CAS  Google Scholar 

  64. Franssen FM, Wouters EF, Schols AM. The contribution of starvation, deconditioning and ageing to the observed alterations in peripheral skeletal muscle in chronic organ diseases. Clin Nutr. 2002;21:1–14.

    Article  PubMed  CAS  Google Scholar 

  65. Lawler JM, Song W, Demaree SR. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med. 2003;35:9–16.

    Article  PubMed  CAS  Google Scholar 

  66. Remels AH, Schrauwen P, Broekhuizen R, Willems J, Kersten S, Gosker HR, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J. 2007;30:245–52.

    Article  PubMed  CAS  Google Scholar 

  67. Serres I, Gautier V, Varray A, Prefaut C. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest. 1998;113:900–5.

    Article  PubMed  CAS  Google Scholar 

  68. Pitta F, Troosters T, Spruit MA, Decramer M, Gosselink R. Activity monitoring for assessment of physical activities in daily life in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil. 2005;86:1979–85.

    Article  PubMed  Google Scholar 

  69. Walker PP, Burnett A, Flavahan PW, Calverley PM. Lower limb activity and its determinants in COPD. Thorax. 2008;63:683–9.

    Article  PubMed  CAS  Google Scholar 

  70. Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:972–7.

    Article  PubMed  Google Scholar 

  71. Troosters T, Sciurba F, Battaglia S, Langer D, Valluri SR, Martino L, et al. Physical inactivity in patients with COPD, a controlled multi-center pilot-study. Respir Med. 2010;104:1005–11.

    Article  PubMed  Google Scholar 

  72. Casaburi R. Activity monitoring in assessing activities of daily living. COPD. 2007;4:251–5.

    Article  PubMed  Google Scholar 

  73. Coronell C, Orozco-Levi M, Gea J. COPD and body weight in a Mediterranean population. Clin Nutr. 2002;21:437 [author reply 437–437; author reply 438].

    Article  PubMed  Google Scholar 

  74. Mattson JP, Poole DC. Pulmonary emphysema decreases hamster skeletal muscle oxidative enzyme capacity. J Appl Physiol. 1998;85:210–4.

    PubMed  CAS  Google Scholar 

  75. Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, et al. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med. 1990;11 Suppl 1:S3–9.

    Article  PubMed  Google Scholar 

  76. Ferretti G, Hauser H, di Prampero PE. Maximal muscular power before and after exposure to chronic hypoxia. Int J Sports Med. 1990;11 Suppl 1:S31–4.

    Article  PubMed  Google Scholar 

  77. Westerterp KR, Kayser B. Body mass regulation at altitude. Eur J Gastroenterol Hepatol. 2006;18:1–3.

    Article  PubMed  Google Scholar 

  78. Plywaczewski R, Sliwinski P, Nowinski A, Kaminski D, Zielinski J. Incidence of nocturnal desaturation while breathing oxygen in COPD patients undergoing long-term oxygen therapy. Chest. 2000;117:679–83.

    Article  PubMed  CAS  Google Scholar 

  79. Poulain M, Durand F, Palomba B, Ceugniet F, Desplan J, Varray A, et al. 6-Minute walk testing is more sensitive than maximal incremental cycle testing for detecting oxygen desaturation in patients with COPD. Chest. 2003;123:1401–7.

    Article  PubMed  Google Scholar 

  80. Gosker HR, van Mameren H, van Dijk PJ, Engelen MP, van der Vusse GJ, Wouters EF, et al. Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J. 2002;19:617–25.

    Article  PubMed  CAS  Google Scholar 

  81. Hoppeler H, Vogt M, Weibel ER, Fluck M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol. 2003;88:109–19.

    Article  PubMed  CAS  Google Scholar 

  82. Jatta K, Eliason G, Portela-Gomes GM, Grimelius L, Caro O, Nilholm L, et al. Overexpression of von Hippel-Lindau protein in skeletal muscles of patients with chronic obstructive pulmonary disease. J Clin Pathol. 2009;62:70–6.

    Article  PubMed  CAS  Google Scholar 

  83. Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91:807–19.

    Article  PubMed  CAS  Google Scholar 

  84. Demasi M, Cleland LG, Cook-Johnson RJ, Caughey GE, James MJ. Effects of hypoxia on monocyte inflammatory mediator production: Dissociation between changes in cyclooxygenase-2 expression and eicosanoid synthesis. J Biol Chem. 2003;278:38607–16.

    Article  PubMed  CAS  Google Scholar 

  85. Koechlin C, Maltais F, Saey D, Michaud A, LeBlanc P, Hayot M, et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax. 2005;60:834–41.

    Article  PubMed  CAS  Google Scholar 

  86. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001;91:534–51.

    PubMed  CAS  Google Scholar 

  87. Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.

    Article  PubMed  CAS  Google Scholar 

  88. Di Carlo A, De Mori R, Martelli F, Pompilio G, Capogrossi MC, Germani A. Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J Biol Chem. 2004;279:16332–8.

    Article  PubMed  CAS  Google Scholar 

  89. Caron MA, Thériault ME, Paré ME, Maltais F, Debigaré R. Hypoxia alters contractile protein homeostasis in L6 myotubes. FEBS Lett. 2009;583:1528–34.

    Article  PubMed  CAS  Google Scholar 

  90. Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand. 1998;162:401–9.

    Article  PubMed  CAS  Google Scholar 

  91. Koechlin C, Couillard A, Simar D, Cristol JP, Bellet H, Hayot M, et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 2004;169:1022–7.

    Article  PubMed  Google Scholar 

  92. Comellas AP, Dada LA, Lecuona E, Pesce LM, Chandel NS, Quesada N, et al. Hypoxia-mediated degradation of Na, K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system. Circ Res. 2006;98:1314–22.

    Article  PubMed  CAS  Google Scholar 

  93. Barreiro E, Sanchez D, Galdiz JB, Hussain SN, Gea J. N-acetylcysteine increases manganese superoxide dismutase activity in septic rat diaphragms. Eur Respir J. 2005;26:1032–9.

    Article  PubMed  CAS  Google Scholar 

  94. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29:222–30.

    Article  PubMed  CAS  Google Scholar 

  95. Heunks LM, Dekhuijzen PN. Respiratory muscle function and free radicals: from cell to COPD. Thorax. 2000;55:704–16.

    Article  PubMed  CAS  Google Scholar 

  96. Khawli FA, Reid MB. N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. J Appl Physiol. 1994;77:317–24.

    PubMed  CAS  Google Scholar 

  97. Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc. 2001;33:371–6.

    Article  PubMed  CAS  Google Scholar 

  98. Couillard A, Koechlin C, Cristol JP, Varray A, Préfaut C. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J. 2002;20:1123–9.

    Article  PubMed  CAS  Google Scholar 

  99. Van Helvoort HA, Heijdra YF, Thijs HM, Vina J, Wanten GJ, Dekhuijzen PN. Exercise-induced systemic effects in muscle-wasted patients with COPD. Med Sci Sports Exerc. 2006;38:1543–52.

    Article  PubMed  CAS  Google Scholar 

  100. Rahman I, Skwarska E, MacNee W. Attenuation of oxidant/antioxidant imbalance during treatment of exacerbations of chronic obstructive pulmonary disease. Thorax. 1997;52:565–8.

    Article  PubMed  CAS  Google Scholar 

  101. Rabinovich RA, Ardite E, Troosters T, Carbo N, Alonso J, Gonzalez de Suso JM, et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1114–8.

    PubMed  CAS  Google Scholar 

  102. Engelen MP, Schols AM, Does JD, Deutz NE, Wouters EF. Altered glutamate metabolism is associated with reduced muscle glutathione levels in patients with emphysema. Am J Respir Crit Care Med. 2000;161:98–103.

    PubMed  CAS  Google Scholar 

  103. Mercken EM, Hageman GJ, Schols AM, Akkermans MA, Bast A, Wouters EF. Rehabilitation decreases exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172:994–1001.

    Article  PubMed  Google Scholar 

  104. Wouters EF, Creutzberg EC, Schols AM. Systemic effects in COPD. Chest. 2002;121: 127S–30.

    Article  PubMed  Google Scholar 

  105. Li YP, Chen Y, Li AS, Reid MB. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol. 2003;285:C806–12.

    PubMed  CAS  Google Scholar 

  106. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59:574–80.

    Article  PubMed  CAS  Google Scholar 

  107. Schols AM, Buurman WA, Staal van den Brekel AJ, Dentener MA, Wouters EF. Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease. Thorax. 1996;51:819–24.

    Article  PubMed  CAS  Google Scholar 

  108. Dentener MA, Creutzberg EC, Schols AM, Mantovani A, Van’t Veer C, Buurman WA, et al. Systemic anti-inflammatory mediators in COPD: increase in soluble interleukin 1 receptor II during treatment of exacerbations. Thorax. 2001;56:721–6.

    Article  PubMed  CAS  Google Scholar 

  109. Degens H, Alway SE. Control of muscle size during disuse, disease, and aging. Int J Sports Med. 2006;27:94–9.

    Article  PubMed  CAS  Google Scholar 

  110. Spruit MA, Gosselink R, Troosters T, Kasran A, Gayan-Ramirez G, Bogaerts P, et al. Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax. 2003;58:752–6.

    Article  PubMed  CAS  Google Scholar 

  111. Anker SD, Swan JW, Volterrani M, Chua TP, Clark AL, Poole-Wilson PA, et al. The influence of muscle mass, strength, fatigability and blood flow on exercise capacity in cachectic and non-cachectic patients with chronic heart failure. Eur Heart J. 1997;18:259–69.

    PubMed  CAS  Google Scholar 

  112. Kopple JD. Pathophysiology of protein-energy wasting in chronic renal failure. J Nutr. 1999;129:247S–51.

    PubMed  CAS  Google Scholar 

  113. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89:381–410.

    Article  PubMed  CAS  Google Scholar 

  114. Debigaré R, Côté CH, Maltais F. Peripheral muscle wasting in chronic obstructive pulmonary disease. Clinical relevance and mechanisms. Am J Respir Crit Care Med. 2001;164:1712–7.

    PubMed  Google Scholar 

  115. Broekhuizen R, Wouters EF, Creutzberg EC, Schols AM. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax. 2006;61:17–22.

    Article  PubMed  CAS  Google Scholar 

  116. Pinto-Plata VM, Mullerova H, Toso JF, Feudjo-Tepie M, Soriano JB, Vessey RS, et al. C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax. 2006;61:23–8.

    Article  PubMed  CAS  Google Scholar 

  117. Yende S, Waterer GW, Tolley EA, Newman AB, Bauer DC, Taaffe DR, et al. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax. 2006;61:10–6.

    Article  PubMed  CAS  Google Scholar 

  118. Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J. 2003;21:347–60.

    Article  PubMed  CAS  Google Scholar 

  119. Sin DD, Man SF. Skeletal muscle weakness, reduced exercise tolerance, and COPD: is systemic inflammation the missing link? Thorax. 2006;61:1–3.

    Article  PubMed  CAS  Google Scholar 

  120. De Benedetti F, Alonzi T, Moretta A, Lazzaro D, Costa P, Poli V, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J Clin Invest. 1997;99: 643–50.

    Article  PubMed  Google Scholar 

  121. Ladner KJ, Caligiuri MA, Guttridge DC. Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem. 2003;278:2294–303.

    Article  PubMed  CAS  Google Scholar 

  122. Reid MB, Durham WJ. Generation of reactive oxygen and nitrogen species in contracting skeletal muscle: potential impact on aging. Ann N Y Acad Sci. 2002;959:108–16.

    Article  PubMed  CAS  Google Scholar 

  123. Wilcox P, Milliken C, Bressler B. High-dose tumor necrosis factor alpha produces an impairment of hamster diaphragm contractility. Attenuation with a prostaglandin inhibitor. Am J Respir Crit Care Med. 1996;153:1611–5.

    PubMed  CAS  Google Scholar 

  124. de Godoy I, Donahoe M, Calhoun WJ, Mancino J, Rogers RM. Elevated TNF-alpha production by peripheral blood monocytes of weight-losing COPD patients. Am J Respir Crit Care Med. 1996;153:633–7.

    PubMed  Google Scholar 

  125. Wouters EF. Chronic obstructive pulmonary disease. 5: systemic effects of COPD. Thorax. 2002;57:1067–70.

    Article  PubMed  CAS  Google Scholar 

  126. Langen RC, Van Der Velden JL, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J. 2004;18:227–37.

    Article  PubMed  CAS  Google Scholar 

  127. Vassilakopoulos T, Katsaounou P, Karatza MH, Kollintza A, Zakynthinos S, Roussos C. Strenuous resistive breathing induces plasma cytokines: role of antioxidants and monocytes. Am J Respir Crit Care Med. 2002;166:1572–8.

    Article  PubMed  Google Scholar 

  128. Broekhuizen R, Grimble RF, Howell WM, Shale DJ, Creutzberg EC, Wouters EF, et al. Pulmonary cachexia, systemic inflammatory profile, and the interleukin 1beta −511 single nucleotide polymorphism. Am J Clin Nutr. 2005;82:1059–64.

    PubMed  CAS  Google Scholar 

  129. Vassilakopoulos T, Roussos C, Zakynthinos S. The immune response to resistive breathing. Eur Respir J. 2004;24:1033–43.

    Article  PubMed  CAS  Google Scholar 

  130. Poulain M, Doucet M, Drapeau V, Fournier G, Tremblay A, Poirier P, et al. Metabolic and inflammatory profile in obese patients with chronic obstructive pulmonary disease. Chron Respir Dis. 2008;5:35–41.

    Article  PubMed  CAS  Google Scholar 

  131. Casaburi R. Skeletal muscle function in COPD. Chest. 2000;117:267S–71.

    Article  PubMed  CAS  Google Scholar 

  132. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23:932–46.

    Article  PubMed  CAS  Google Scholar 

  133. Mador MJ, Bozkanat E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res. 2001;2:216–24.

    Article  PubMed  CAS  Google Scholar 

  134. Gosker HR, Wouters EF, van der Vusse GJ, Schols AM. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr. 2000;71:1033–47.

    PubMed  CAS  Google Scholar 

  135. Man WD, Kemp P, Moxham J, Polkey MI. Skeletal muscle dysfunction in COPD: clinical and laboratory observations. Clin Sci (Lond). 2009;117:251–64.

    Article  CAS  Google Scholar 

  136. Decramer M, Rennard S, Troosters T, Mapel DW, Giardino N, Mannino D, et al. COPD as a lung disease with systemic consequences – clinical impact, mechanisms, and potential for early intervention. COPD. 2008;5:235–56.

    Article  PubMed  Google Scholar 

  137. Wagner PD. Skeletal muscles in chronic obstructive pulmonary disease: deconditioning, or myopathy? Respirology. 2006;11:681–6.

    Article  PubMed  Google Scholar 

  138. Hansen MJ, Gualano RC, Bozinovski S, Vlahos R, Anderson GP. Therapeutic prospects to treat skeletal muscle wasting in COPD (chronic obstructive lung disease). Pharmacol Ther. 2006;109:162–72.

    Article  PubMed  CAS  Google Scholar 

  139. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 1984;56:831–8.

    PubMed  CAS  Google Scholar 

  140. Casaburi R, Patessio A, Ioli F, Zanaboni S, Donner CF, Wasserman K. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991;143:9–18.

    PubMed  CAS  Google Scholar 

  141. Maltais F, LeBlanc P, Simard C, Jobin J, Berubé C, Bruneau J, et al. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154:442–7.

    PubMed  CAS  Google Scholar 

  142. Troosters T, Gosselink R, Decramer M. Short- and long-term effects of outpatient rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Am J Med. 2000;109:207–12.

    Article  PubMed  CAS  Google Scholar 

  143. Casaburi R, Bhasin S, Cosentino L, Porszasz J, Somfay A, Lewis MI, et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:870–8.

    Article  PubMed  Google Scholar 

  144. Mador MJ, Kufel TJ, Pineda LA, Steinwald A, Aggarwal A, Upadhyay AM, et al. Effect of pulmonary rehabilitation on quadriceps fatiguability during exercise. Am J Respir Crit Care Med. 2001;163:930–5.

    PubMed  CAS  Google Scholar 

  145. Bernard S, Whittom F, Leblanc P, Jobin J, Belleau R, Berubé C, et al. Aerobic and strength training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159:896–901.

    PubMed  CAS  Google Scholar 

  146. Richardson RS, Sheldon J, Poole DC, Hopkins SR, Ries AL, Wagner PD. Evidence of skeletal muscle metabolic reserve during whole body exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159:881–5.

    PubMed  CAS  Google Scholar 

  147. Siu PM, Donley DA, Bryner RW, Alway SE. Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training. J Appl Physiol. 2004;97:277–85.

    PubMed  CAS  Google Scholar 

  148. Vogiatzis I, Stratakos G, Simoes DC, Terzis G, Georgiadou O, Roussos C, et al. Effects of rehabilitative exercise on peripheral muscle TNFalpha, IL-6, IGF-I and MyoD expression in patients with COPD. Thorax. 2007;62:950–6.

    Article  PubMed  Google Scholar 

  149. Siu PM, Bryner RW, Martyn JK, Alway SE. Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J. 2004;18:1150–2.

    PubMed  CAS  Google Scholar 

  150. Léger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006;576:923–33.

    Article  PubMed  CAS  Google Scholar 

  151. Troosters T, Probst VS, Crul T, Pitta F, Gayan-Ramirez G, Decramer M, et al. Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181:1072–7.

    Article  PubMed  Google Scholar 

  152. Brooks D, Sottana R, Bell B, Hanna M, Laframboise L, Selvanayagarajah S, et al. Characterization of pulmonary rehabilitation programs in Canada in 2005. Can Respir J. 2007;14:87–92.

    PubMed  Google Scholar 

  153. Maltais F, Bourbeau J, Shapiro S, Lacasse Y, Perrault H, Baltzan M, et al. Effects of home-based pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med. 2008;149:869–78.

    PubMed  Google Scholar 

  154. Vieira DS, Maltais F, Bourbeau J. Home-based pulmonary rehabilitation in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med. 2010;16:134–43.

    Article  PubMed  Google Scholar 

  155. Prescott E, Almdal T, Mikkelsen KL, Tofteng CL, Vestbo J, Lange P. Prognostic value of weight change in chronic obstructive pulmonary disease: results from the Copenhagen City Heart Study. Eur Respir J. 2002;20:539–44.

    Article  PubMed  CAS  Google Scholar 

  156. Whittaker JS, Ryan CF, Buckley PA, Road JD. The effects of refeeding on peripheral and respiratory muscle function in malnourished chronic obstructive pulmonary disease patients. Am Rev Respir Dis. 1990;142:283–8.

    PubMed  CAS  Google Scholar 

  157. Schols AM. Nutritional modulation as part of the integrated management of chronic obstructive pulmonary disease. Proc Nutr Soc. 2003;62:783–91.

    Article  PubMed  CAS  Google Scholar 

  158. Broekhuizen R, Creutzberg EC, Weling-Scheepers CA, Wouters EF, Schols AM. Optimizing oral nutritional drink supplementation in patients with chronic obstructive pulmonary disease. Br J Nutr. 2005;93:965–71.

    Article  PubMed  CAS  Google Scholar 

  159. Schols AM, Soeters PB, Mostert R, Pluymers RJ, Wouters EF. Physiologic effects of nutritional support and anabolic steroids in patients with chronic obstructive pulmonary disease. A placebo-controlled randomized trial. Am J Respir Crit Care Med. 1995;152:1268–74.

    PubMed  CAS  Google Scholar 

  160. Fiaccadori E, Borghetti A. Pathophysiology of respiratory muscles in course of undernutrition. Ann Ital Med Int. 1991;6:402–7.

    PubMed  CAS  Google Scholar 

  161. Di Francia M, Barbier D, Mege JL, Orehek J. Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;150:1453–5.

    PubMed  Google Scholar 

  162. Fuld JP, Kilduff LP, Neder JA, Pitsiladis Y, Lean ME, Ward SA, et al. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. Thorax. 2005;60:531–7.

    Article  PubMed  CAS  Google Scholar 

  163. Matsuyama W, Mitsuyama H, Watanabe M, Oonakahara K, Higashimoto I, Osame M, et al. Effects of omega-3 polyunsaturated fatty acids on inflammatory markers in COPD. Chest. 2005;128:3817–27.

    Article  PubMed  CAS  Google Scholar 

  164. Weisberg J, Wanger J, Olson J, Streit B, Fogarty C, Martin T, et al. Megestrol acetate stimulates weight gain and ventilation in underweight COPD patients. Chest. 2002;121:1070–8.

    Article  PubMed  CAS  Google Scholar 

  165. Isgaard J, Nilsson A, Vikman K, Isaksson OG. Growth hormone regulates the level of insulin-like growth factor-I mRNA in rat skeletal muscle. J Endocrinol. 1989;120:107–12.

    Article  PubMed  CAS  Google Scholar 

  166. Cuneo RC, Salomon F, Wiles CM, Hesp R, Sonksen PH. Growth hormone treatment in growth hormone-deficient adults. I. Effects on muscle mass and strength. J Appl Physiol. 1991;70:688–94.

    PubMed  CAS  Google Scholar 

  167. Cuneo RC, Salomon F, Wiles CM, Hesp R, Sonksen PH. Growth hormone treatment in growth hormone-deficient adults. II. Effects on exercise performance. J Appl Physiol. 1991;70:695–700.

    PubMed  CAS  Google Scholar 

  168. Burdet L, de Muralt B, Schutz Y, Pichard C, Fitting JW. Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease. A prospective, randomized, controlled study. Am J Respir Crit Care Med. 1997;156:1800–6.

    PubMed  CAS  Google Scholar 

  169. Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, et al. Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab. 2006;2:146–59.

    Article  PubMed  CAS  Google Scholar 

  170. Allan G, Sbriscia T, Linton O, Lai MT, Haynes-Johnson D, Bhattacharjee S, et al. A selective androgen receptor modulator with minimal prostate hypertrophic activity restores lean body mass in aged orchidectomized male rats. J Steroid Biochem Mol Biol. 2008;110:207–13.

    Article  PubMed  CAS  Google Scholar 

  171. Tisdale MJ. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting. J Support Oncol. 2005;3:209–17.

    PubMed  CAS  Google Scholar 

  172. Decramer M, de Bock V, Dom R. Functional and histologic picture of steroid-induced myopathy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;153: 1958–64.

    PubMed  CAS  Google Scholar 

  173. Dentener MA, Creutzberg EC, Pennings HJ, Rijkers GT, Mercken E, Wouters EF. Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease: a pilot study. Respiration. 2008;76:275–82.

    Article  PubMed  CAS  Google Scholar 

  174. Rennard SI, Fogarty C, Kelsen S, Long W, Ramsdell J, Allison J, et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175:926–34.

    Article  PubMed  CAS  Google Scholar 

  175. van Hees HW, Dekhuijzen PN, Heunks LM. Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179:41–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-André Caron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Caron, MA., Thériault, ME., Debigaré, R., Maltais, F. (2012). Skeletal Muscle Dysfunction. In: Nici, L., ZuWallack, R. (eds) Chronic Obstructive Pulmonary Disease. Respiratory Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-673-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-673-3_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-672-6

  • Online ISBN: 978-1-60761-673-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics