Skip to main content

The Detection and Significance of Minimal Residual Disease

  • Chapter
  • First Online:
Leukemia and Related Disorders

Part of the book series: Contemporary Hematology ((CH))

Abstract

Minimal residual disease (MRD) is detected in many leukemia patients who have achieved complete remission. The detection of MRD by polymerase chain reaction (PCR) or flow cytometric assays is associated with a high risk of relapse following chemotherapy or hematopoietic stem cell transplantation (SCT). The systematic monitoring for MRD can identify cases at high risk of relapse that should be offered more aggressive or investigational therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arthur CK, Apperley JF, Guo AP, Rassool F, Gao LM, Goldman JM. Cytogenetic events after bone marrow transplantation for chronic myeloid leukemia in chronic phase. Blood. 1988;71(5):1179–86.

    PubMed  CAS  Google Scholar 

  2. Hook EB. Exclusion of chromosomal mosaicism: tables of 90%, 95% and 99% confidence limits and comments on use. Am J Hum Genet. 1977;29(1):94–7.

    PubMed  CAS  Google Scholar 

  3. Campana D, Coustan-Smith E. Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res. 2002;15(1):1–19.

    Google Scholar 

  4. Dworzak J, Lamecker H, von Berg J, Klinder T, Lorenz C, Kainmuller D, et al. 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model. Int J Comput Assist Radiol Surg. 2010;5(2):111–24.

    PubMed  Google Scholar 

  5. Gaipa G, Basso G, Aliprandi S, Migliavacca M, Vallinoto C, Maglia O, et al. Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells. Cytometry B Clin Cytom. 2008;74(3):150–5.

    PubMed  Google Scholar 

  6. Langebrake C, Brinkmann I, Teigler-Schlegel A, Creutzig U, Griesinger F, Puhlmann U, et al. Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring. Cytometry B Clin Cytom. 2005;63(1):1–9.

    PubMed  Google Scholar 

  7. Voskova D, Schoch C, Schnittger S, Hiddemann W, Haferlach T, Kern W. Stability of leukemia-associated aberrant immunophenotypes in patients with acute myeloid leukemia between diagnosis and relapse: comparison with cytomorphologic, cytogenetic, and molecular genetic findings. Cytometry B Clin Cytom. 2004;62(1):25–38.

    PubMed  Google Scholar 

  8. Wood B. 9-color and 10-color flow cytometry in the clinical laboratory. Arch Pathol Lab Med. 2006;130(5):680–90.

    PubMed  Google Scholar 

  9. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.

    PubMed  CAS  Google Scholar 

  10. Claxton DF, Liu P, Hsu HB, Marlton P, Hester J, Collins F, et al. Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia. Blood. 1994;83(7):1750–6.

    PubMed  CAS  Google Scholar 

  11. Hebert J, Cayuela JM, Daniel MT, Berger R, Sigaux F. Detection of minimal residual disease in acute myelomonocytic leukemia with abnormal marrow eosinophils by nested polymerase chain reaction with allele specific amplification. Blood. 1994;84(7):2291–6.

    PubMed  CAS  Google Scholar 

  12. Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, et al. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA. 1988;85(15):5698–702.

    PubMed  CAS  Google Scholar 

  13. Kusec R, Laczika K, Knobl P, Friedl J, Greinix H, Kahls P, et al. AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia. 1994;8(5):735–9.

    PubMed  CAS  Google Scholar 

  14. Lee MS, Chang KS, Cabanillas F, Freireich EJ, Trujillo JM, Stass SA. Detection of minimal residual cells carrying the t(14;18) by DNA sequence amplification. Science. 1987;237(4811):175–8.

    PubMed  CAS  Google Scholar 

  15. Maruyama F, Stass SA, Estey EH, Cork A, Hirano M, Ino T, et al. Detection of AML1/ETO fusion transcript as a tool for diagnosing t(8;21) positive acute myelogenous leukemia. Leukemia. 1994;8(1):40–5.

    PubMed  CAS  Google Scholar 

  16. Miller Jr WH, Levine K, DeBlasio A, Frankel SR, Dmitrovsky E, Warrell Jr RP. Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcription polymerase chain reaction assay for the PML/RAR-alpha fusion mRNA. Blood. 1993;82(6):1689–94.

    PubMed  CAS  Google Scholar 

  17. Pallisgaard N, Hokland P, Riishoj DC, Pedersen B, Jorgensen P. Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood. 1998;92(2):574–88.

    PubMed  CAS  Google Scholar 

  18. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339(9):591–8.

    PubMed  CAS  Google Scholar 

  19. Roberts WM, Estrov Z, Ouspenskaia MV, Johnston DA, McClain KL, Zipf TF. Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med. 1997;336(5):317–23.

    PubMed  CAS  Google Scholar 

  20. Radich J, Gehly G, Lee A, Avery R, Bryant E, Edmands S, et al. Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood. 1997;89(7):2602–9.

    PubMed  CAS  Google Scholar 

  21. Brisco MJ, Sykes PJ, Hughes E, Story CJ, Rice MS, Schwarer AP, et al. Molecular relapse can be detected in blood in a sensitive and timely fashion in B-lineage acute lymphoblastic leukemia. Leukemia. 2001;15(11):1801–2.

    PubMed  CAS  Google Scholar 

  22. Coustan-Smith E, Sancho J, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK, et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood. 2002;100(7):2399–402.

    PubMed  CAS  Google Scholar 

  23. van der Velden VH, Jacobs DC, Wijkhuijs AJ, Comans-Bitter WM, Willemse MJ, Hahlen K, et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia. 2002;16(8):1432–6.

    PubMed  Google Scholar 

  24. Maurillo L, Buccisano F, Spagnoli A, Del Poeta G, Panetta P, Neri B, et al. Monitoring of minimal residual disease in adult acute myeloid leukemia using peripheral blood as an alternative source to bone marrow. Haematologica. 2007;92(5):605–11.

    PubMed  Google Scholar 

  25. Rawstron AC, Kennedy B, Moreton P, Dickinson AJ, Cullen MJ, Richards SJ, et al. Early prediction of outcome and response to alemtuzumab therapy in chronic lymphocytic leukemia. Blood. 2004;103(6):2027–31.

    PubMed  CAS  Google Scholar 

  26. Diverio D, Rossi V, Avvisati G, De Santis S, Pistilli A, Pane F, et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP multicenter “AIDA” trial. Blood. 1998;92(3):784–9.

    PubMed  CAS  Google Scholar 

  27. Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C, et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell’Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood. 1997;90(3):1014–21.

    PubMed  CAS  Google Scholar 

  28. Lee S, Kim YJ, Eom KS, Min CK, Kim HJ, Cho SG, et al. The significance of minimal residual disease kinetics in adults with newly diagnosed PML-RARalpha-positive acute promyelocytic leukemia: results of a prospective trial. Haematologica. 2006;91(5):671–4.

    PubMed  CAS  Google Scholar 

  29. Gallagher RE, Yeap BY, Bi W, Livak KJ, Beaubier N, Rao S, et al. Quantitative real-time RT-PCR analysis of PML-RAR alpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood. 2003;101(7):2521–8.

    PubMed  CAS  Google Scholar 

  30. Nucifora G, Larson RA, Rowley JD. Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood. 1993;82(3):712–5.

    PubMed  CAS  Google Scholar 

  31. Berger R. Differences between blastic chronic myeloid leukemia and Ph-positive acute leukemia. Leuk Lymphoma. 1993;11 Suppl 1:235–7.

    PubMed  Google Scholar 

  32. Downing JR, Head DR, Curcio-Brint AM, Hulshof MG, Motroni TA, Raimondi SC, et al. An AML1/ETO fusion transcript is consistently detected by RNA-based polymerase chain reaction in acute myelogenous leukemia containing the (8;21)(q22;q22) translocation. Blood. 1993;81(11):2860–5.

    PubMed  CAS  Google Scholar 

  33. Zhang T, Hillion J, Tong JH, Cao Q, Chen SJ, Berger R, et al. AML-1 gene rearrangement and AML-1-ETO gene expression as molecular markers of acute myeloblastic leukemia with t(8;21). Leukemia. 1994;8(5):729–34.

    PubMed  CAS  Google Scholar 

  34. Sugimoto T, Das H, Imoto S, Murayama T, Gomyo H, Chakraborty S, et al. Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR. Am J Hematol. 2000;64(2):101–6.

    PubMed  CAS  Google Scholar 

  35. Jurlander J, Caligiuri MA, Ruutu T, Baer MR, Strout MP, Oberkircher AR, et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood. 1996;88(6):2183–91.

    PubMed  CAS  Google Scholar 

  36. Marcucci G, Livak KJ, Bi W, Strout MP, Bloomfield CD, Caligiuri MA. Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia. 1998;12(9):1482–9.

    PubMed  CAS  Google Scholar 

  37. Gaiger A, Schmid D, Heinze G, Linnerth B, Greinix H, Kalhs P, et al. Detection of the WT1 transcript by RT-PCR in complete remission has no prognostic relevance in de novo acute myeloid leukemia. Leukemia. 1998;12(12):1886–94.

    PubMed  CAS  Google Scholar 

  38. Costello R, Sainty D, Blaise D, Gastaut JA, Gabert J, Poirel H, et al. Prognosis value of residual disease monitoring by polymerase chain reaction in patients with CBF beta/MYH11-positive acute myeloblastic leukemia. Blood. 1997;89(6):2222–3.

    PubMed  CAS  Google Scholar 

  39. Buonamici S, Ottaviani E, Testoni N, Montefusco V, Visani G, Bonifazi F, et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood. 2002;99(2):443–9.

    PubMed  CAS  Google Scholar 

  40. Krauter J, Gorlich K, Ottmann O, Lubbert M, Dohner H, Heit W, et al. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol. 2003;21(23):4413–22.

    PubMed  CAS  Google Scholar 

  41. Marcucci G, Caligiuri MA, Dohner H, Archer KJ, Schlenk RF, Dohner K, et al. Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia. 2001;15(7):1072–80.

    PubMed  CAS  Google Scholar 

  42. Stentoft J, Hokland P, Ostergaard M, Hasle H, Nyvold CG. Minimal residual core binding factor AMLs by real time quantitative PCR–initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leuk Res. 2006;30(4):389–95.

    PubMed  CAS  Google Scholar 

  43. Tobal K, Newton J, Macheta M, Chang J, Morgenstern G, Evans PA, et al. Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8;21) can identify patients in durable remission and predict clinical relapse. Blood. 2000;95(3):815–9.

    PubMed  CAS  Google Scholar 

  44. Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W. New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood. 2003;102(8):2746–55.

    PubMed  CAS  Google Scholar 

  45. Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006;24(10):1507–15.

    PubMed  CAS  Google Scholar 

  46. Ostergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P. WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients – results from a single-centre study. Br J Haematol. 2004;125(5):590–600.

    PubMed  CAS  Google Scholar 

  47. Trka J, Kalinova M, Hrusak O, Zuna J, Krejci O, Madzo J, et al. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia. 2002;16(7):1381–9.

    PubMed  CAS  Google Scholar 

  48. Weisser M, Kern W, Rauhut S, Schoch C, Hiddemann W, Haferlach T, et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia. 2005;19(8):1416–23.

    PubMed  CAS  Google Scholar 

  49. Scholl C, Schlenk RF, Eiwen K, Dohner H, Frohling S, Dohner K. The prognostic value of MLL-AF9 detection in patients with t(9;11)(p22;q23)-positive acute myeloid leukemia. Haematologica. 2005;90(12):1626–34.

    PubMed  CAS  Google Scholar 

  50. Scholl S, Loncarevic IF, Krause C, Kunert C, Clement JH, Hoffken K. Minimal residual disease based on patient specific Flt3-ITD and -ITT mutations in acute myeloid leukemia. Leuk Res. 2005;29(7):849–53.

    PubMed  CAS  Google Scholar 

  51. Beretta C, Gaipa G, Rossi V, Bernasconi S, Spinelli O, Dell’Oro MG, et al. Development of a quantitative-PCR method for specific FLT3/ITD monitoring in acute myeloid leukemia. Leukemia. 2004;18(8):1441–4.

    PubMed  CAS  Google Scholar 

  52. Stirewalt DL, Willman CL, Radich JP. Quantitative, real-time polymerase chain reactions for FLT3 internal tandem duplications are highly sensitive and specific. Leuk Res. 2001;25(12):1085–8.

    PubMed  CAS  Google Scholar 

  53. Chakraverty R, Peggs K, Chopra R, Milligan DW, Kottaridis PD, Verfuerth S, et al. Limiting transplantation-related mortality following unrelated donor stem cell transplantation by using a nonmyeloablative conditioning regimen. Blood. 2002;99(3):1071–8.

    PubMed  CAS  Google Scholar 

  54. Gorello P, Cazzaniga G, Alberti F, Dell’Oro MG, Gottardi E, Specchia G, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20(6):1103–8.

    PubMed  CAS  Google Scholar 

  55. Kern W, Danhauser-Riedl S, Ratei R, Schnittger S, Schoch C, Kolb HJ, et al. Detection of minimal residual disease in unselected patients with acute myeloid leukemia using multiparameter flow cytometry for definition of leukemia-associated immunophenotypes and determination of their frequencies in normal bone marrow. Haematologica. 2003;88(6):646–53.

    PubMed  Google Scholar 

  56. Feller N, van der Pol MA, van Stijn A, Weijers GW, Westra AH, Evertse BW, et al. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia. 2004;18(8):1380–90.

    PubMed  CAS  Google Scholar 

  57. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood. 2004;104(10):3078–85.

    PubMed  CAS  Google Scholar 

  58. San Miguel JF, Vidriales MB, Lopez-Berges C, Diaz-Mediavilla J, Gutierrez N, Canizo C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001;98(6):1746–51.

    PubMed  CAS  Google Scholar 

  59. Coustan-Smith E, Ribeiro RC, Rubnitz JE, Razzouk BI, Pui CH, Pounds S, et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol. 2003;123(2):243–52.

    PubMed  Google Scholar 

  60. Sievers EL, Lange BJ, Alonzo TA, Gerbing RB, Bernstein ID, Smith FO, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood. 2003;101(9):3398–406.

    PubMed  CAS  Google Scholar 

  61. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol. 2011;29:1190–7.

    PubMed  Google Scholar 

  62. Diez-Campelo M, Perez-Simon JA, Perez J, Alcoceba M, Richtmon J, Vidriales B, et al. Minimal residual disease monitoring after allogeneic transplantation may help to individualize post-transplant therapeutic strategies in acute myeloid malignancies. Am J Hematol. 2009;84(3):149–52.

    PubMed  Google Scholar 

  63. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543–52.

    PubMed  CAS  Google Scholar 

  64. Cortes J, Talpaz M, O’Brien S, Jones D, Luthra R, Shan J, et al. Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin Cancer Res. 2005;11(9):3425–32.

    PubMed  CAS  Google Scholar 

  65. Osborne D, Frost L, Tobal K, Liu JAY. Elevated levels of WT1 transcripts in bone marrow harvests are associated with a high relapse risk in patients autografted for acute myeloid leukaemia. Bone Marrow Transplant. 2005;36(1):67–70.

    PubMed  CAS  Google Scholar 

  66. Ogawa H, Tamaki H, Ikegame K, Soma T, Kawakami M, Tsuboi A, et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101(5):1698–704.

    PubMed  CAS  Google Scholar 

  67. Venditti A, Maurillo L, Buccisano F, Del Poeta G, Mazzone C, Tamburini A, et al. Pretransplant minimal residual disease level predicts clinical outcome in patients with acute myeloid leukemia receiving high-dose chemotherapy and autologous stem cell transplantation. Leukemia. 2003;17(11):2178–82.

    PubMed  CAS  Google Scholar 

  68. Feller N, Jansen-van der Weide MC, van der Pol MA, Westra GA, Ossenkoppele GJ, Schuurhuis GJ. Purging of peripheral blood stem cell transplants in AML: a predictive model based on minimal residual disease burden. Exp Hematol. 2005;33(1):120–30.

    PubMed  Google Scholar 

  69. O’Brien SG, Deininger MW. Imatinib in patients with newly diagnosed chronic-phase chronic myeloid leukemia. Semin Hematol. 2003;40(2 Suppl 2):26–30.

    PubMed  Google Scholar 

  70. Kantarjian H, Talpaz M, Cortes J, Susan OB, Faderl S, Thomas D, et al. Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI517; Gleevec) in chronic-phase chronic myelogenous leukemia. Clin Cancer Res. 2003;9:160–6.

    PubMed  CAS  Google Scholar 

  71. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–32.

    PubMed  CAS  Google Scholar 

  72. Marin D, Kaeda J, Szydlo R, Saunders S, Fleming A, Howard J, et al. Monitoring patients in complete cytogenetic remission after treatment of CML in chronic phase with imatinib: patterns of residual leukaemia and prognostic factors for cytogenetic relapse. Leukemia. 2005;19(4):507–12.

    PubMed  CAS  Google Scholar 

  73. Branford S, Rudzki Z, Harper A, Grigg A, Taylor K, Durrant S, et al. Imatinib produces significantly superior molecular responses compared to interferon alfa plus cytarabine in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Leukemia. 2003;17(12):2401–9.

    PubMed  CAS  Google Scholar 

  74. Merx K, Muller MC, Kreil S, Lahaye T, Paschka P, Schoch C, et al. Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia. 2002;16(9):1579–83.

    PubMed  CAS  Google Scholar 

  75. Wang L, Pearson K, Ferguson JE, Clark RE. The early molecular response to imatinib predicts cytogenetic and clinical outcome in chronic myeloid leukaemia. Br J Haematol. 2003;120(6):990–9.

    PubMed  CAS  Google Scholar 

  76. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35.

    PubMed  CAS  Google Scholar 

  77. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–83.

    PubMed  CAS  Google Scholar 

  78. Hughes TP, Morgan GJ, Martiat P, Goldman JM. Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood. 1991;77(4):874–8.

    PubMed  CAS  Google Scholar 

  79. Lion T, Henn T, Gaiger A, Kalhs P, Gadner H. Early detection of relapse after bone marrow transplantation in patients with chronic myelogenous leukaemia. Lancet. 1993;341(8840):275–6.

    PubMed  CAS  Google Scholar 

  80. Miyamura K, Tahara T, Tanimoto M, Morishita Y, Kawashima K, Morishima Y, et al. Long persistent bcr-abl positive transcript detected by polymerase chain reaction after marrow transplant for chronic myelogenous leukemia without clinical relapse: a study of 64 patients. Blood. 1993;81(4):1089–93.

    PubMed  CAS  Google Scholar 

  81. Pichert G, Roy DC, Gonin R, Alyea EP, Belanger R, Gyger M, et al. Distinct patterns of minimal residual disease associated with graft- versus-host disease after allogeneic bone marrow transplantation for chronic myelogenous leukemia. J Clin Oncol. 1995;13(7):1704–13.

    PubMed  CAS  Google Scholar 

  82. Radich J, Ladne P, Gooley T. Polymerase chain reaction-based detection of minimal residual disease in acute lymphoblastic leukemia predicts relapse after allogeneic BMT. Biol Blood Marrow Transplant. 1995;1(1):24–31.

    PubMed  CAS  Google Scholar 

  83. Roth MS, Antin JH, Ash R, Terry VH, Gotlieb M, Silver SM, et al. Prognostic significance of Philadelphia chromosome-positive cells detected by the polymerase chain reaction after allogeneic bone marrow transplant for chronic myelogenous leukemia. Blood. 1992;79(1):276–82.

    PubMed  CAS  Google Scholar 

  84. Sawyers CL, Timson L, Kawasaki ES, Clark SS, Witte ON, Champlin R. Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci USA. 1990;87(2):563–7.

    PubMed  CAS  Google Scholar 

  85. Radich JP, Gehly G, Gooley T, Bryant E, Clift RA, Collins S, et al. Polymerase chain reaction detection of the BCR-ABL fusion transcript after allogeneic marrow transplantation for chronic myeloid leukemia: results and implications in 346 patients. Blood. 1995;85(9):2632–8.

    PubMed  CAS  Google Scholar 

  86. Branford S, Hughes TP, Rudzki Z. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol. 1999;107(3):587–99.

    PubMed  CAS  Google Scholar 

  87. Lin YT, Lin DT, Jou ST, Lin KS, Lin KH. Allogeneic bone marrow transplantation for Philadelphia chromosome-positive chronic myelogenous leukemia in childhood. J Formos Med Assoc. 1997;96(5):320–4.

    PubMed  CAS  Google Scholar 

  88. Mensink E, van de Locht A, Schattenberg A, Linders E, Schaap N, Geurts van Kessel A, et al. Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br J Haematol. 1998;102(3):768–74.

    PubMed  CAS  Google Scholar 

  89. Mughal TI, Yong A, Szydlo RM, Dazzi F, Olavarria E, van Rhee F, et al. Molecular studies in patients with chronic myeloid leukaemia in remission 5 years after allogeneic stem cell transplant define the risk of subsequent relapse. Br J Haematol. 2001;115(3):569–74.

    PubMed  CAS  Google Scholar 

  90. Olavarria E, Kanfer E, Szydlo R, Kaeda J, Rezvani K, Cwynarski K, et al. Early detection of BCR-ABL transcripts by quantitative reverse transcriptase-polymerase chain reaction predicts outcome after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood. 2001;97(6):1560–5.

    PubMed  CAS  Google Scholar 

  91. Preudhomme C, Chams-Eddine L, Roumier C, Duflos-Grardel N, Denis C, Cosson A, et al. Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using an in situ RT-PCR assay. Leukemia. 1999;13(5):818–23.

    PubMed  CAS  Google Scholar 

  92. Radich JP, Gooley T, Bryant E, Chauncey T, Clift R, Beppu L, et al. The significance of bcr-abl molecular detection in chronic myeloid leukemia patients “late,” 18 months or more after transplantation. Blood. 2001;98(6):1701–7.

    PubMed  CAS  Google Scholar 

  93. Lin F, van Rhee F, Goldman JM, Cross NC. Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood. 1996;87(10):4473–8.

    PubMed  CAS  Google Scholar 

  94. Costello RT, Kirk J, Gabert J. Value of PCR analysis for long term survivors after allogeneic bone marrow transplant for chronic myelogenous leukemia: a comparative study. Leuk Lymphoma. 1996;20(3–4):239–43.

    PubMed  CAS  Google Scholar 

  95. van Rhee F, Lin F, Cross NC, Reid CD, Lakhani AK, Szydlo RM, et al. Detection of residual leukaemia more than 10 years after allogeneic bone marrow transplantation for chronic myelogenous leukaemia. Bone Marrow Transplant. 1994;14(4):609–12.

    PubMed  Google Scholar 

  96. Sobrinho-Simoes M, Wilczek V, Score J, Cross NC, Apperley JF, Melo JV. In search of the original leukemic clone in chronic myeloid leukemia patients in complete molecular remission after stem cell transplantation or imatinib. Blood. 2010;116(8):1329–35.

    PubMed  CAS  Google Scholar 

  97. Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood. 2002;99(7):2315–23.

    PubMed  CAS  Google Scholar 

  98. Imashuku S, Terui K, Matsuyama T, Asami K, Tsuchiya S, Ishii E, et al. Lack of clinical utility of minimal residual disease detection in allogeneic stem cell recipients with childhood acute lymphoblastic leukemia: multi-institutional collaborative study in Japan. Bone Marrow Transplant. 2003;31(12):1127–35.

    PubMed  CAS  Google Scholar 

  99. Szczepanski T, Pongers-Willemse MJ, Langerak AW, van Dongen JJ. Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr Top Microbiol Immunol. 1999;246:205–13. discussion 14–5.

    PubMed  CAS  Google Scholar 

  100. Bjorklund E, Mazur J, Soderhall S, Porwit-MacDonald A. Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia. 2003;17(1):138–48.

    PubMed  CAS  Google Scholar 

  101. Kerst G, Kreyenberg H, Roth C, Well C, Dietz K, Coustan-Smith E, et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol. 2005;128(6):774–82.

    PubMed  CAS  Google Scholar 

  102. Neale GA, Coustan-Smith E, Stow P, Pan Q, Chen X, Pui CH, et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2004;18(5):934–8.

    PubMed  CAS  Google Scholar 

  103. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95(3):790–4.

    PubMed  CAS  Google Scholar 

  104. Marshall GM, Haber M, Kwan E, Zhu L, Ferrara D, Xue C, et al. Importance of minimal residual disease testing during the second year of therapy for children with acute lymphoblastic leukemia. J Clin Oncol. 2003;21(4):704–9.

    PubMed  Google Scholar 

  105. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood. 2000;96(8):2691–6.

    PubMed  CAS  Google Scholar 

  106. Dworzak MN, Froschl G, Printz D, Mann G, Potschger U, Muhlegger N, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–8.

    PubMed  CAS  Google Scholar 

  107. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–8.

    PubMed  Google Scholar 

  108. Nyvold C, Madsen HO, Ryder LP, Seyfarth J, Svejgaard A, Clausen N, et al. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood. 2002;99(4):1253–8.

    PubMed  CAS  Google Scholar 

  109. Vilmer E, Suciu S, Ferster A, Bertrand Y, Cave H, Thyss A, et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group. Leukemia. 2000;14(12):2257–66.

    PubMed  CAS  Google Scholar 

  110. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008;111(12):5477–85.

    PubMed  CAS  Google Scholar 

  111. Uckun FM, Nachman JB, Sather HN, Sensel MG, Kraft P, Steinherz PG, et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children’s Cancer Group. Cancer. 1998;83(9):2030–9.

    PubMed  CAS  Google Scholar 

  112. Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B, et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet. 2001;358(9289):1239–41.

    PubMed  CAS  Google Scholar 

  113. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351(9102):550–4.

    PubMed  CAS  Google Scholar 

  114. Coustan-Smith E, Gajjar A, Hijiya N, Razzouk BI, Ribeiro RC, Rivera GK, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia. 2004;18(3):499–504.

    PubMed  CAS  Google Scholar 

  115. Raetz EA, Borowitz MJ, Devidas M, Linda SB, Hunger SP, Winick NJ, et al. Reinduction platform for children with first marrow relapse of acute lymphoblastic leukemia: a Children’s Oncology Group Study [corrected]. J Clin Oncol. 2008;26(24):3971–8.

    PubMed  CAS  Google Scholar 

  116. Campana D, Neale GA, Coustan-Smith E, Pui CH. Detection of minimal residual disease in acute lymphoblastic leukemia: the St Jude experience. Leukemia. 2001;15(2):278–9.

    PubMed  CAS  Google Scholar 

  117. Gameiro P, Mortuza FY, Hoffbrand AV, Foroni L. Minimal residual disease monitoring in adult T-cell acute lymphoblastic leukemia: a molecular based approach using T-cell receptor G and D gene rearrangements. Haematologica. 2002;87(11):1126–34.

    PubMed  CAS  Google Scholar 

  118. Specchia G, Liso A, Pannunzio A, Albano F, Mestice A, Pastore D, et al. Molecular detection of minimal residual disease is associated with early relapse in adult acute lymphoblastic leukemia. Haematologica. 2004;89(10):1271–3.

    PubMed  CAS  Google Scholar 

  119. Toubai T, Tanaka J, Ota S, Fukuhara T, Hashino S, Kondo T, et al. Minimal residual disease (MRD) monitoring using rearrangement of T-cell receptor and immunoglobulin H gene in the treatment of adult acute lymphoblastic leukemia patients. Am J Hematol. 2005;80(3):181–7.

    PubMed  CAS  Google Scholar 

  120. Bruggemann M, Raff T, Flohr T, Gokbuget N, Nakao M, Droese J, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107(3):1116–23.

    PubMed  Google Scholar 

  121. Vidriales MB, Orfao A, San-Miguel JF. Immunologic monitoring in adults with acute lymphoblastic leukemia. Curr Oncol Rep. 2003;5(5):413–8.

    PubMed  Google Scholar 

  122. Holowiecki J, Krawczyk-Kulis M, Giebel S, Jagoda K, Stella-Holowiecka B, Piatkowska-Jakubas B, et al. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4–2002 MRD study. Br J Haematol. 2008;142(2):227–37.

    PubMed  Google Scholar 

  123. Yokota H, Tsuno NH, Tanaka Y, Fukui T, Kitamura K, Hirai H, et al. Quantification of minimal residual disease in patients with e1a2 BCR-ABL-positive acute lymphoblastic leukemia using a real-time RT-PCR assay. Leukemia. 2002;16(6):1167–75.

    PubMed  CAS  Google Scholar 

  124. Pane F, Cimino G, Izzo B, Camera A, Vitale A, Quintarelli C, et al. Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia. 2005;19(4):628–35.

    PubMed  CAS  Google Scholar 

  125. Krampera M, Vitale A, Vincenzi C, Perbellini O, Guarini A, Annino L, et al. Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. Br J Haematol. 2003;120(1):74–9.

    PubMed  Google Scholar 

  126. Vidriales MB, Perez JJ, Lopez-Berges MC, Gutierrez N, Ciudad J, Lucio P, et al. Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: early immunophenotypic evaluation has high clinical value. Blood. 2003;101(12):4695–700.

    PubMed  CAS  Google Scholar 

  127. Krejci O, van der Velden VH, Bader P, Kreyenberg H, Goulden N, Hancock J, et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the Pre-BMT MRD Study Group. Bone Marrow Transplant. 2003;32(8):849–51.

    PubMed  CAS  Google Scholar 

  128. Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A, et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia. 2002;16(9):1668–72.

    PubMed  CAS  Google Scholar 

  129. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ, et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood. 1998;92(11):4072–9.

    PubMed  CAS  Google Scholar 

  130. Uzunel M, Mattsson J, Jaksch M, Remberger M, Ringden O. The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia. Blood. 2001;98(6):1982–4.

    PubMed  CAS  Google Scholar 

  131. Sramkova L, Muzikova K, Fronkova E, Krejci O, Sedlacek P, Formankova R, et al. Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;48:93–100.

    PubMed  Google Scholar 

  132. van der Velden VH, Joosten SA, Willemse MJ, van Wering ER, Lankester AW, van Dongen JJ, et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia. 2001;15(9):1485–7.

    PubMed  Google Scholar 

  133. Sanchez J, Serrano J, Gomez P, Martinez F, Martin C, Madero L, et al. Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br J Haematol. 2002;116(3):686–94.

    PubMed  Google Scholar 

  134. Miyamura K, Tanimoto M, Morishima Y, Horibe K, Yamamoto K, Akatsuka M, et al. Detection of Philadelphia chromosome-positive acute lymphoblastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation. Blood. 1992;79(5):1366–70.

    PubMed  CAS  Google Scholar 

  135. Stirewalt DL, Guthrie KA, Beppu L, Bryant EM, Doney K, Gooley T, et al. Predictors of relapse and overall survival in Philadelphia chromosome-positive acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant. 2003;9(3):206–12.

    PubMed  Google Scholar 

  136. Bottcher S, Ritgen M, Pott C, Bruggemann M, Raff T, Stilgenbauer S, et al. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation. Leukemia. 2004;18(10):1637–45.

    PubMed  CAS  Google Scholar 

  137. Rawstron AC, Kennedy B, Evans PA, Davies FE, Richards SJ, Haynes AP, et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood. 2001;98(1):29–35.

    PubMed  CAS  Google Scholar 

  138. Moreton P, Kennedy B, Lucas G, Leach M, Rassam SM, Haynes A, et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol. 2005;23(13):2971–9.

    PubMed  CAS  Google Scholar 

  139. Bottcher S, Ritgen M, Dreger P. Allogeneic stem cell transplantation for chronic lymphocytic leukemia: lessons to be learned from minimal residual disease studies. Blood Rev. 2011;25(2):91–6.

    PubMed  Google Scholar 

  140. Esteve J, Villamor N, Colomer D, Montserrat E. Different clinical value of minimal residual disease after autologous and allogenic stem cell transplantation for chronic lymphocytic leukemia. Blood. 2002;99(5):1873–4.

    PubMed  Google Scholar 

  141. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood. 2001;97(11):3390–400.

    PubMed  CAS  Google Scholar 

  142. Goldman JM, Majhail NS, Klein JP, Wang Z, Sobocinski KA, Arora M, et al. Relapse and late mortality in 5-year survivors of myeloablative allogeneic hematopoietic cell transplantation for chronic myeloid leukemia in first chronic phase. J Clin Oncol. 2010;28(11):1888–95.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerald P. Radich M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Radich, J.P., Wood, B.L. (2012). The Detection and Significance of Minimal Residual Disease. In: Estey, E., Appelbaum, F. (eds) Leukemia and Related Disorders. Contemporary Hematology. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-565-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-565-1_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-564-4

  • Online ISBN: 978-1-60761-565-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics