Skip to main content

CLC-3 Chloride Channels in the Pulmonary Vasculature

  • Conference paper
  • First Online:
Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract Volume-sensitive outwardly rectifying anion channels (VSOACs) are expressed in pulmonary artery smooth muscle cells (PASMCs) and have been implicated in cell proliferation, growth, apoptosis and protection against oxidative stress. In this chapter, we review the properties of native VSOACs in PASMCs, and consider the evidence that ClC-3, a member of the ClC superfamily of voltage dependent Cl- channels, may be responsible for native VSOACs in PASMCs. Finally, we examine whether or not native VSOACs and heterologously expressed ClC-3 channels function as bona fide chloride channels or as chloride/proton antiporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119-147

    Article  PubMed  CAS  Google Scholar 

  2. Voets T, Wei L, De Smet P et al (1997) Downregulation of volume-activated Cl- currents during muscle differentiation. Am J Physiol 272:C667-C674

    PubMed  CAS  Google Scholar 

  3. Nelson M, Conway MA, Knot HJ, Brayden JE (1997) Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. J Physiol 502(2):259-264

    Article  PubMed  CAS  Google Scholar 

  4. Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997) Molecular identification of a volume-regulated chloride channel. Nature 390:417-421

    Article  PubMed  CAS  Google Scholar 

  5. Yamazaki J, Duan D, Janiak R, Kuenzli K, Horowitz B, Hume JR (1998) Functional and molecular expression of volume-regulated chloride channels in canine vascular smooth muscle cells. J Physiol 507:729-736

    Article  PubMed  CAS  Google Scholar 

  6. Do CW, Lu W, Mitchell CH, Civan MM (2005) Inhibition of swelling-activated Cl- currents by functional anti-ClC-3 antibody in native bovine non-pigmented ciliary epithelial cells. Invest Ophthalmol Vis Sci 46:948-955

    Article  PubMed  Google Scholar 

  7. Jin NG, Kim JK, Yang DK et al (2003) Fundamental role of ClC-3 in volume-sensitive Cl- channel function and cell volume regulation in AGS cells. Am J Physiol Gastrointest Liver Physiol 285:G938-G948

    PubMed  CAS  Google Scholar 

  8. Petrunkina AM, Harrison RA, Ekhlasi-Hundrieser M, Topfer-Petersen E (2004) Role of volume-stimulated osmolyte and anion channels in volume regulation by mammalian sperm. Mol Hum Reprod 10:815-823

    Article  PubMed  CAS  Google Scholar 

  9. Vessey JP, Shi C, Jollimore CA et al (2004) Hyposmotic activation of I Cl, swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane. Biochem Cell Biol 82:708-718

    Article  PubMed  CAS  Google Scholar 

  10. Wang L, Chen L, Jacob TJ (2000) The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition. J Physiol 524:63-75

    Article  PubMed  CAS  Google Scholar 

  11. Zhou JG, Ren JL, Qiu QY, He H, Guan YY (2005) Regulation of intracellular Cl- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells. J Biol Chem 280:7301-7308

    Article  PubMed  CAS  Google Scholar 

  12. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503-568

    PubMed  CAS  Google Scholar 

  13. Li X, Shimada K, Showalter LA, Weinman SA (2000) Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells. J Biol Chem 275:35994-35998

    Article  PubMed  CAS  Google Scholar 

  14. Weylandt KH, Valverde MA, Nobles M et al (2001) Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation. J Biol Chem 276:17461-17467

    Article  PubMed  CAS  Google Scholar 

  15. Stobrawa SM, Breiderhoff T, Takamori S et al (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185-196

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto-Mizuma S, Wang GX, Liu LL et al (2004) Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from ClCn3-/- mice. J Physiol 557:439-456

    Article  PubMed  Google Scholar 

  17. Xiong D, Wang G-X, Burkin D et al (2008) Cardiac specific overexpression of the human short ClC-3 chloride channel isoform in mice. Clin Exp Pharmacol Physiol 36:386-393, 2009

    Article  PubMed  Google Scholar 

  18. Lamb FS, Clayton GH, Liu BX, Smith RL, Barna TJ, Schutte BC (1999) Expression of CLCN voltage-gated chloride channel genes in human blood vessels. J Mol Cell Cardiol 31:657-666

    Article  PubMed  CAS  Google Scholar 

  19. Wang GL, Wang XR, Lin MJ, He H, Lan XJ, Guan YY (2002) Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res 91:e28-e32

    Article  PubMed  CAS  Google Scholar 

  20. Dai Y-P, Bongalon S, Hatton WJ, Hume JR, Yamboliev IA (2005) ClC-3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery. Br J Pharmacol 145:5-14

    Article  PubMed  CAS  Google Scholar 

  21. Guan YY, Wang GL, Zhou JG (2006) The ClC-3 Cl- channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci 27:290-296

    Article  PubMed  CAS  Google Scholar 

  22. Arianzi EA, Gpuld MN (1996) Identifying differential gene expression in monoterpene-treated mammary carcinomas using subtractive display. J Biol Chem 271:29286-29294

    Article  Google Scholar 

  23. Dutzler R, Campbell EB, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Ã… reveals the molecular basis of anion selectivity. Nature 415:287-294

    Article  PubMed  CAS  Google Scholar 

  24. Dutzler R (2006) The ClC family of chloride channels and transporters. Curr Opin Struct Biol 16:1-8

    Article  Google Scholar 

  25. Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels. Nature 427:803-807

    Article  PubMed  CAS  Google Scholar 

  26. Zdebik AA, Zifarelli G, Bersforf E-Y et al (2008) Determinants of anion-proton coupling in mammalian endosomal CLC proteins. J Biol Chem 283:4219-4227

    Article  PubMed  CAS  Google Scholar 

  27. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424-427

    Article  PubMed  CAS  Google Scholar 

  28. Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420-423

    Article  PubMed  CAS  Google Scholar 

  29. Hume JR, Duan D, Collier ML, Yamazaki J, Horowitz B (2000) Anion transport in heart. Physiol Rev 80:31-81

    PubMed  CAS  Google Scholar 

  30. Remillard CV, Yuan X-J (2005) ClC-3: more than just a volume-sensitive Cl- channel. Br J Pharmacol 145:1-2

    Article  PubMed  CAS  Google Scholar 

  31. Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB (2007) Superoxide flux in endothelial cells via the chloride channel-3 mediated intracellular signaling. Mol Biol Cell 18:2002-2012

    Article  PubMed  CAS  Google Scholar 

  32. Wang G-X, Hatton WJ, Wang GL et al (2003) Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels (VSOACs) in cardiac and smooth muscle cells. Am J Physiol 285:H1453-H1463

    CAS  Google Scholar 

Download references

Acknowledgments

Our work was supported by National Institutes of Health grants HL-49254 and P20RR1581 from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Hume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Hume, J.R., Wang, GX., Yamazaki, J., Ng, L.C., Duan, D. (2010). CLC-3 Chloride Channels in the Pulmonary Vasculature. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_15

Download citation

Publish with us

Policies and ethics