Skip to main content

Embryonic Stem Cells as a Potential Cure for Diabetes

  • Chapter
  • First Online:
Stem Cell Therapy for Diabetes

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Beta-cell replacement is an effective treatment for type 1 diabetes, but its applicability is limited by the lack of sufficient donor tissue, raising the need for alternative tissue sources. Deriving β cells from stem cell precursors offers an unlimited renewable source of tissue for transplantation and in recent years has become the focus of research in many laboratories. The unique state of embryonic stem (ES) cells is characterized by continuous proliferation through a cell cycle consisting of an abbreviated G1 phase. Although this cell cycle exposes ES cells to potential mutations, it also allows continuous culture of undifferentiated cells. Current protocols directing the differentiation of ES cells mimic the normal embryonic development of β cells through definitive endoderm, foregut endoderm, pancreatic precursors, and endocrine progenitor cells. At present all of these steps are suboptimal, since only some of the cells follow this pathway to the intended product. Moral concerns surrounding the use of embryonic stem cells has led to development of alternative sources of pluripotent cells. Current advances in cellular reprogramming are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aladjem MI, Spike BT, Rodewald LW et al (1998) ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 8:145–155

    Article  CAS  PubMed  Google Scholar 

  • Baetge EE (2008) Production of beta-cells from human embryonic stem cells. Diabetes Obes Metab 10 (Suppl 4):186–194

    Article  PubMed  Google Scholar 

  • Becker KA, Stein JL, Lian JB et al (2007) Establishment of histone gene regulation and cell cycle checkpoint control in human embryonic stem cells. J Cell Physiol 210:517–526

    Article  CAS  PubMed  Google Scholar 

  • Bhushan A, Itoh N, Kato S et al (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128:5109–5117

    CAS  PubMed  Google Scholar 

  • Cheng AM, Saxton TM, Sakai R et al (1998) Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95:793–803

    Article  CAS  PubMed  Google Scholar 

  • Cho YM, Lim JM, Yoo DH et al (2008) Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells. Biochem Biophys Res Commun 366:129–134

    Article  CAS  PubMed  Google Scholar 

  • D‘Amour KA, Agulnick AD ,Eliazer S et al (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • D‘Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  PubMed  CAS  Google Scholar 

  • Dannenberg JH, van Rossum RA, Schuijff L et al (2000) Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14:3051–3064

    Article  CAS  PubMed  Google Scholar 

  • Deutsch G, Jung J, Zheng M et al (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881

    CAS  PubMed  Google Scholar 

  • Docherty K, Bernardo AS, Vallier L (2007) Embryonic stem cell therapy for diabetes mellitus. Semin Cell Dev Biol 18:827–838

    Article  CAS  PubMed  Google Scholar 

  • Efrat S (2008) Beta-cell replacement for insulin-dependent diabetes mellitus. Adv Drug Deliv Rev 60:114–123

    Article  CAS  PubMed  Google Scholar 

  • Eshpeter A, Jiang J, Au M et al (2008) In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells. Cell Prolif 41:843–858

    Article  CAS  PubMed  Google Scholar 

  • Fortunel NO, Out HH, Ng HH et al (2003) Comment on “ ‘Stemness’: transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature.” Science 302:393

    Article  CAS  PubMed  Google Scholar 

  • Francini F, Del ZH, Massa ML et al (2009) Selective effect of INGAP-PP upon mouse embryonic stem cell differentiation toward islet cells. Regul Pept 153:43–48

    Article  CAS  PubMed  Google Scholar 

  • Frandsen U, Porneki AD, Floridon C et al (2007) Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies. Biochem Biophys Res Commun 362:568–574

    Article  CAS  PubMed  Google Scholar 

  • Gadue P, Huber TL, Paddison PJ et al (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA 103:16806–16811

    Article  CAS  PubMed  Google Scholar 

  • Gouon-Evans V, Boussemart L, Gadue P et al (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24:1402–1411

    Article  CAS  PubMed  Google Scholar 

  • Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127:921–932

    CAS  PubMed  Google Scholar 

  • Hallmann D, Trumper K, Trusheim H et al (2003) Altered signaling and cell cycle regulation in embryonal stem cells with a disruption of the gene for phosphoinositide 3-kinase regulatory subunit p85alpha. J Biol Chem 278:5099–5108

    Article  CAS  PubMed  Google Scholar 

  • Hardikar AA, Lees JG, Sidhu KS et al (2006) Stem-cell therapy for diabetes cure: how close are we? Curr Stem Cell Res Ther 1:425–436

    CAS  PubMed  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C et al (2002) A stem cell molecular signature. Science 298:601–604

    Article  CAS  PubMed  Google Scholar 

  • Jensen J (2007) Pathway decision-making strategies for generating pancreatic beta-cells: systems biology or hit and miss? Curr Opin Endocrinol Diabetes Obes 14:277–282

    Article  PubMed  Google Scholar 

  • Jiang J, Au M, Lu K et al (2007a) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Shi Y, Zhao D et al (2007b) In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17:333–344

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Bai Z, Zhang D et al (2008) Differentiation of mouse nuclear transfer embryonic stem cells into functional pancreatic beta cells. Diabetologia 51:1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Jirmanova L, Afanassieff M, Gobert-Gosse S et al (2002) Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21:5515–5528

    Article  CAS  PubMed  Google Scholar 

  • Johansson KA, Dursun U, Jordan N et al (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457–465

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen MC, Ahnfelt-Ronne J, Hald J et al (2007) An illustrated review of early pancreas development in the mouse. Endocr Rev 28:685–705

    Article  PubMed  CAS  Google Scholar 

  • Krishna KA, Rao GV, Rao KS (2007) Stem cell-based therapy for the treatment of Type 1 diabetes mellitus. Regen Med 2:171–177

    Article  CAS  PubMed  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  CAS  PubMed  Google Scholar 

  • Ku HT, Chai J, Kim YJ et al (2007) Insulin-expressing colonies developed from murine embryonic stem cell-derived progenitors. Diabetes 56:921–929

    Article  CAS  PubMed  Google Scholar 

  • Kubo A, Shinozaki K, Shannon JM et al (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131:1651–1662

    Article  CAS  PubMed  Google Scholar 

  • Lander AD (2007) Morpheus unbound: reimagining the morphogen gradient. Cell 128:245–256

    Article  CAS  PubMed  Google Scholar 

  • Ludwig TE, Levenstein ME, Jones JM et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  CAS  PubMed  Google Scholar 

  • McLean AB, D‘Amour KA, Jones KL et al (2007) Activin A efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25:29–38

    Article  CAS  PubMed  Google Scholar 

  • Muller FJ, Laurent LC, Kostka D et al (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455:401–405

    Article  PubMed  CAS  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  CAS  PubMed  Google Scholar 

  • Neganova I, Zhang X, Atkinson S et al (2009) Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene 28:20–30

    Article  CAS  PubMed  Google Scholar 

  • Nyeng P, Norgaard GA, Kobberup S et al (2007) FGF10 signaling controls stomach morphogenesis. Dev Biol 303:295–310

    Article  CAS  PubMed  Google Scholar 

  • Prost S, Bellamy CO, Clarke AR et al (1998) p53-independent DNA repair and cell cycle arrest in embryonic stem cells. FEBS Lett 425:499–504

    Article  CAS  PubMed  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y et al 2002. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600

    Article  CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD et al (2000) Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14:3037–3050

    Article  CAS  PubMed  Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M et al (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141

    Article  CAS  PubMed  Google Scholar 

  • Semb H (2008) Definitive endoderm: a key step in coaxing human embryonic stem cells into transplantable beta-cells. Biochem Soc Trans 36:272–275

    Article  CAS  PubMed  Google Scholar 

  • Sherwood RI, Chen TY, Melton DA (2009) Transcriptional dynamics of endodermal organ formation. Dev Dyn 238:29–42

    Article  CAS  PubMed  Google Scholar 

  • Shim JH, Kim SE, Woo DH et al (2007) Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Sordi V, Bertuzzi F, Piemonti L (2008) Diabetes mellitus: an opportunity for therapy with stem cells? Regen Med 3:377–397

    Article  CAS  PubMed  Google Scholar 

  • Spence JR, Wells JM (2007) Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells. Dev Dyn 236:3218–3227

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Lesche R, Li DM et al 1999. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 96:6199–6204

    Article  CAS  PubMed  Google Scholar 

  • Tada S, Era T, Furusawa C et al (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132:4363–4374

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • White J, Stead E, Faast R et al (2005) Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell 16:2018–2027

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Inokuma MS, Denham J et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Rosler E, Jiang J et al (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    Article  CAS  PubMed  Google Scholar 

  • Yasunaga M, Tada S, Torikai-Nishikawa S et al (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23:1542–1550

    Article  CAS  PubMed  Google Scholar 

  • Zaret KS (2008) Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet 9:329–340

    Article  CAS  PubMed  Google Scholar 

  • Zaret KS, Grompe M (2008) Generation and regeneration of cells of the liver and pancreas. Science 322:1490–1494

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Jiang W, Liu M et al (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res [Epub ahead of print]

    Google Scholar 

  • Zhou Q, Brown J, Kanarek A et al (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.J is supported by the Chicago Project, an international effort for a functional cure of diabetes. MAB is a Morgenthaler Fellow, Lerner Research institute, Cleveland Clinic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Bukys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bukys, M.A., Jensen, J. (2010). Embryonic Stem Cells as a Potential Cure for Diabetes. In: Efrat, S. (eds) Stem Cell Therapy for Diabetes. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-366-4_10

Download citation

Publish with us

Policies and ethics