Skip to main content

Fundamental Concepts in Exercise Genomics

  • Chapter
  • First Online:
Exercise Genomics

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 1106 Accesses

Abstract

This introductory chapter on Exercise Genomics outlines key terms and definitions for students, academicians, and professionals in kinesiology, public health, and sports medicine beginning to engage in work involving the genetic aspects of exercise science. Exercise genomics is the study of genetic aspects of exercise adaptation and performance. The topics included in this chapter are discussion of the human genome and basic aspects of DNA biology; gene sequence variation; contributions of environmental and genetic factors to trait variability; approaches to studying the genetic contribution to complex traits, including “unmeasured” familial aggregation and heritability approaches and “measured” linkage analysis and genetic association approaches; and genome-wide association studies. The chapter concludes by introducing emerging areas of investigation or more comprehensive approaches to the study of genetics including whole genome sequencing, functional genomics, epigenomics, and systems biology. When combined with Chap. 2, readers will have a strong foundation in the study of the genetic aspects of complex traits, preparing them for the more specific chapters dedicated to the various exercise- and health-related traits that are included in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth SM. Genetics primer for exercise science and health. Champaign: Human Kinetics; 2007.

    Google Scholar 

  2. Bouchard C, Malina RM, Perusse L. Genetics of fitness and physical performance. Champaign: Human Kinetics; 1997.

    Google Scholar 

  3. Attia J, Ioannidis JP, Thakkinstian A, McEvoy M, Scott RJ, Minelli C, et al. How to use an article about genetic association: A: background concepts. JAMA. 2009;301(1):74–81.

    Article  PubMed  CAS  Google Scholar 

  4. Carninci P, Hayashizaki Y. Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev. 2007;17(2):139–44.

    Article  PubMed  CAS  Google Scholar 

  5. Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One. 2009;4(5):e5610.

    Article  PubMed  Google Scholar 

  6. Large V, Hellstrom L, Reynisdottir S, Lonnqvist F, Eriksson P, Lannfelt L, et al. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest. 1997;100(12):3005–13.

    Article  PubMed  CAS  Google Scholar 

  7. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, et al. The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc. 2009;41(1):35–73.

    Article  PubMed  Google Scholar 

  8. Nelson KA, Witte JS. Androgen receptor CAG repeats and prostate cancer. Am J Epidemiol. 2002;155(10):883–90.

    Article  PubMed  Google Scholar 

  9. Woods D. Angiotensin-converting enzyme, renin-angiotensin system and human performance. Med Sport Sci. 2009;54:72–87.

    Article  PubMed  CAS  Google Scholar 

  10. Ionita-Laza I, Rogers AJ, Lange C, Raby BA, Lee C. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics. 2009;93(1):22–6.

    Article  PubMed  CAS  Google Scholar 

  11. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464(7289):704–12.

    Article  PubMed  CAS  Google Scholar 

  12. McKinney C, Merriman ME, Chapman PT, Gow PJ, Harrison AA, Highton J, et al. Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis. 2008;67(3):409–13.

    Article  PubMed  CAS  Google Scholar 

  13. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet. 1999;21(4):353–4.

    Article  PubMed  CAS  Google Scholar 

  14. Yang N, Garton F, North K. Alpha-actinin-3 and performance. Med Sport Sci. 2009;54:88–101.

    Article  PubMed  CAS  Google Scholar 

  15. Crawford DC, Nickerson DA. Definition and clinical importance of haplotypes. Annu Rev Med. 2005;56:303–20.

    Article  PubMed  CAS  Google Scholar 

  16. Green RC, Roberts JS, Cupples LA, Relkin NR, Whitehouse PJ, Brown T, et al. Disclosure of APOE genotype for risk of Alzheimer’s disease. N Engl J Med. 2009;361(3):245–54.

    Article  PubMed  CAS  Google Scholar 

  17. Rovio S, Kareholt I, Helkala E-L, Viitanen M, Winblad B, Tuomilehto J, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4(11):705–11.

    Article  PubMed  Google Scholar 

  18. Schuit AJ, Feskens EJ, Launer LJ, Kromhout D. Physical activity and cognitive decline, the role of the apolipoprotein e4 allele. Med Sci Sports Exerc. 2001;33(5):772–7.

    PubMed  CAS  Google Scholar 

  19. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S446–51. discussion S452–3.

    PubMed  CAS  Google Scholar 

  20. Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, et al. Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc. 2005;37(6):964–72.

    PubMed  Google Scholar 

  21. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of VO2 max response to exercise training: results from the HERITAGE family study. J Appl Physiol. 1999;87(3):1003–8.

    PubMed  CAS  Google Scholar 

  22. Leon AS, Gaskill SE, Rice T, Bergeron J, Gagnon J, Rao DC, et al. Variability in the response of HDL cholesterol to exercise training in the HERITAGE family study. Int J Sports Med. 2002;23(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  23. Boule NG, Weisnagel SJ, Lakka TA, Tremblay A, Bergman RN, Rankinen T, et al. Effects of exercise training on glucose homeostasis: the HERITAGE family study. Diabetes Care. 2005;28(1):108–14.

    Article  PubMed  Google Scholar 

  24. Hemminki K, Lorenzo Bermejo J, Forsti A. The balance between heritable and environmental aetiology of human disease. Nat Rev Genet. 2006;7(12):958–65.

    Article  PubMed  CAS  Google Scholar 

  25. Sing CF, Boerwinkle EA. Genetic architecture of inter-individual variability in apolipoprotein, lipoprotein and lipid phenotypes. Ciba Found Symp. 1987;130:99–127.

    PubMed  CAS  Google Scholar 

  26. Neale MC, Cardon LR, North Atlantic Treaty Organization, Scientific Affairs Division. Methodology for genetic studies of twins and families. Boston: Kluwer Academic Publishers; 1992.

    Google Scholar 

  27. Zimmerman R, Pal DK, Tin A, Ahsan H, Greenberg DA. Methods for assessing familial aggregation: family history measures and confounding in the standard cohort, reconstructed cohort and case-control designs. Hum Hered. 2009;68(3):201–8.

    Article  PubMed  Google Scholar 

  28. Bouchard C, Perusse L, Leblanc C. Using MZ twins in experimental research to test for the presence of a genotype-environment interaction effect. Acta Genet Med Gemellol (Roma). 1990;39(1):85–9.

    CAS  Google Scholar 

  29. Bouchard C, Tremblay A. Genetic influences on the response of body fat and fat distribution to positive and negative energy balances in human identical twins. J Nutr. 1997;127(5 Suppl):943S–7.

    PubMed  CAS  Google Scholar 

  30. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet. 1998;63(3):861–9.

    Article  PubMed  CAS  Google Scholar 

  31. Ferreira MA. Linkage analysis: principles and methods for the analysis of human quantitative traits. Twin Res. 2004;7(5):513–30.

    Article  PubMed  Google Scholar 

  32. Sham P. Statistics in human genetics. London: Wiley; 1997.

    Google Scholar 

  33. Sham PC, Purcell S, Cherny SS, Abecasis GR. Powerful regression-based quantitative-trait linkage analysis of general pedigrees. Am J Hum Genet. 2002;71(2):238–53.

    Article  PubMed  CAS  Google Scholar 

  34. Windelinckx A, Vlietinck R, Aerssens J, Beunen G, Thomis MA. Selection of genes and single nucleotide polymorphisms for fine mapping starting from a broad linkage region. Twin Res Hum Genet. 2007;10(6):871–85.

    Article  PubMed  Google Scholar 

  35. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.

    Article  PubMed  CAS  Google Scholar 

  36. Bouchard C. Gene-environment interactions in the etiology of obesity: defining the fundamentals. Obesity (Silver Spring). 2008;16 Suppl 3:S5–10.

    Article  CAS  Google Scholar 

  37. Vimaleswaran KS, Li S, Zhao JH, Luan J, Bingham SA, Khaw KT, et al. Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene. Am J Clin Nutr. 2009;90(2):425–8.

    Article  PubMed  CAS  Google Scholar 

  38. Grocott M, Montgomery H. Genetophysiology: using genetic strategies to explore hypoxic adaptation. High Alt Med Biol. 2008;9(2):123–9.

    Article  PubMed  CAS  Google Scholar 

  39. Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet. 2007;8(9):657–62.

    Article  PubMed  CAS  Google Scholar 

  40. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768–75.

    Article  PubMed  CAS  Google Scholar 

  41. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62.

    Article  PubMed  CAS  Google Scholar 

  42. De Moor MHM, Liu YJ, Boomsma DI, Li J, Hamilton JJ, Hottenga JJ, et al. Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc. 2009;41:1887–95.

    Article  PubMed  Google Scholar 

  43. Loos RJ, Bouchard C. FTO: the first gene contributing to common forms of human obesity. Obes Rev. 2008;9(3):246–50.

    Article  PubMed  CAS  Google Scholar 

  44. McCarroll SA. Extending genome-wide association studies to copy-number variation. Hum Mol Genet. 2008;17(R2):R135–42.

    Article  PubMed  CAS  Google Scholar 

  45. Plagnol V. Association tests and software for copy number variant data. Hum Genomics. 2009;3(2):191–4.

    PubMed  CAS  Google Scholar 

  46. Sha BY, Yang TL, Zhao LJ, Chen XD, Guo Y, Chen Y, et al. Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population. J Hum Genet. 2009;54(4):199–202.

    Article  PubMed  CAS  Google Scholar 

  47. Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. 2008;40(6):695–701.

    Article  PubMed  CAS  Google Scholar 

  48. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627–31.

    Article  PubMed  CAS  Google Scholar 

  49. Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in finnish elite endurance and sprint athletes. Eur J Hum Genet. 2005;13(8):965–9.

    Article  PubMed  CAS  Google Scholar 

  50. Roth SM, Walsh S, Liu D, Metter EJ, Ferrucci L, Hurley BF. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum Genet. 2008;16(3):391–4.

    Article  PubMed  CAS  Google Scholar 

  51. Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, Hespel P, et al. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics. 2007;32(1):58–63.

    Article  PubMed  CAS  Google Scholar 

  52. Norman B, Esbjornsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol. 2009;106(3):959–65.

    Article  PubMed  CAS  Google Scholar 

  53. MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, et al. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive ­selection in humans. Nat Genet. 2007;39(10):1261–5.

    Article  PubMed  CAS  Google Scholar 

  54. MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N, et al. An Actn3 ­knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet. 2008;17(8):1076–86.

    Article  PubMed  CAS  Google Scholar 

  55. Feinberg AP. Epigenetics at the epicenter of modern medicine. JAMA. 2008;299(11):1345–50.

    Article  PubMed  CAS  Google Scholar 

  56. Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5(7):401–8.

    Article  PubMed  CAS  Google Scholar 

  57. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. 2007;97(3):435–9.

    Article  PubMed  CAS  Google Scholar 

  58. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135(6):1382–6.

    PubMed  CAS  Google Scholar 

  59. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006;174(3):341–8.

    Article  PubMed  Google Scholar 

  60. Foley DL, Craig JM, Morley R, Olsson CJ, Dwyer T, Smith K, et al. Prospects for epigenetic epidemiology. Am J Epidemiol. 2009;169(4):389–400.

    Article  PubMed  Google Scholar 

  61. Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009;461(7261):218–23.

    Article  PubMed  CAS  Google Scholar 

  62. Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and healthcare. Genome Med. 2009;1(1):2.

    Article  PubMed  Google Scholar 

  63. Beunen G, Thomis M. Gene powered? where to go from heritability (h2) in muscle strength and power? Exerc Sport Sci Rev. 2004;32(4):148–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roth, S.M., Thomis, M.A. (2011). Fundamental Concepts in Exercise Genomics. In: Pescatello, L., Roth, S. (eds) Exercise Genomics. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-355-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-355-8_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-354-1

  • Online ISBN: 978-1-60761-355-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics