Skip to main content

Inflammatory Disorders of the Skin

  • Chapter
  • First Online:
Molecular Diagnostics in Dermatology and Dermatopathology

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 1362 Accesses

Abstract

Inflammatory disorders of the skin, including eczematous, psoriasiform, lichenoid-interface, ­autoimmune, and neutrophilic dermatoses, probably represent the group of cutaneous diseases in which molecular pathology currently has the least impact in daily clinical practice. Many of these diseases are readily diagnosed through the correlation of clinical features with histopathological findings on hematoxylin and eosin (H + E)-stained tissue sections. In general, microscopic pattern analysis offers a very useful and reliable method to diagnose inflammatory skin diseases. The application of additional histochemical stains, immunohistochemistry, and/or immunofluorescence analysis is occasionally required. However, in some instances, diagnostic difficulties do arise. For example, the clinical and/or microscopic distinction of allergic contact dermatitis (ACD) from irritant contact dermatitis (ICD), pompholyx (dyshidrotic eczema) from pustular psoriasis, and even classic chronic psoriasis from chronic atopic dermatitis (AD) may be challenging. Although chronic psoriasis and AD show distinct differences with respect to cytokine milieu (i.e., Th1 in AD vs. Th2 in psoriasis), bacterial superinfection, surface pH, transepidermal water loss and itch, it is well known that these disorders share many morphological and molecular features [1, 2]. For example, from a dermatopathologist’s perspective, the lesional skin of both conditions can ­demonstrate the presence of T-cell and CD1a+/CD11c+ dendritic cell infiltrates associated with hyperplasia/altered differentiation of keratinocytes [1, 2]. In addition, cutaneous T-cell dyscrasias (i.e., lymphomas) can occasionally masquerade, both clinically and histopathologically, as inflammatory dermatoses (i.e., cutaneous lupus erythematosus) [3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamsteeg M, Jansen PA, van Vlijmen-Willems IM, et al. Molecular diagnostics of psoriasis, atopic dermatitis, allergic contact dermatitis and irritant contact dermatitis. Br J Dermatol. 2010;162:568–78.

    PubMed  CAS  Google Scholar 

  2. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J Allergy Clin Immunol. 2007;119:1210–7.

    PubMed  CAS  Google Scholar 

  3. Veysey EC, Wilkinson JD. Mycosis fungoides masquerading as cutaneous lupus erythematosus and associated with antiphospholipid syndrome. Clin Exp Dermatol. 2008;33:26–9.

    PubMed  CAS  Google Scholar 

  4. Park HS, Choi JW, Kim BK, et al. Lupus erythematosus panniculitis: clinicopathological, immunophenotypic, and molecular studies. Am J Dermatopathol. 2010;32:24–30.

    PubMed  Google Scholar 

  5. Pincus LB, LeBoit PE, McCalmont TH, et al. Subcutaneous panniculitis-like T-cell lymphoma with overlapping clinicopathologic features of lupus erythematosus: coexistence of 2 entities? Am J Dermatopathol. 2009;31:520–6.

    PubMed  Google Scholar 

  6. Kunz M. DNA microarray technology in Dermatology. Semin Cutan Med Surg. 2008;27:16–24.

    PubMed  CAS  Google Scholar 

  7. Sellheyer K, Belbin TJ. DNA microarrays: from structural genomics to functional genomics. The applications of gene chips in dermatology and dermatopathology. J Am Acad Dermatol. 2004;51:681–92.

    PubMed  Google Scholar 

  8. Sugiura H, Ebise H, Tazawa T, et al. Large-scale DNA microarray analysis of atopic skin lesions shows ­overexpression of an epidermal differentiation gene cluster in the alternative pathway and lack of protective gene expression in the cornified envelope. Br J Dermatol. 2005;152:146–9.

    PubMed  CAS  Google Scholar 

  9. Sonkoly E, Ståhle M, Pivarcsi A. MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol. 2008;33:312–5.

    PubMed  CAS  Google Scholar 

  10. Wenzel J, Peters P, Zahn S, et al. Gene expression profiling of lichen planus reflects CXCL9+ -mediated inflammation and distinguishes this disease from atopic dermatitis and psoriasis. J Invest Dermatol. 2008;128:67–78.

    PubMed  CAS  Google Scholar 

  11. Nomura I, Gao B, Boguniewicz M, et al. Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis: A gene microarray analysis. J Allergy Clin Immunol. 2003;112:1195–202.

    PubMed  CAS  Google Scholar 

  12. Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis? PLoS One. 2007;2:e610.

    PubMed  Google Scholar 

  13. Kulski JK, Kenworthy W, Bellgard M, et al. Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals. J Mol Med. 2005;83:964–75.

    PubMed  CAS  Google Scholar 

  14. Quekenborn-Trinquet V, Fogel P, Aldana-Jammayrac O, et al. Gene expression profiles in psoriasis: analysis of impact of body site location and clinical severity. Br J Dermatol. 2005;152:489–504.

    PubMed  CAS  Google Scholar 

  15. Haider AS, Lowes MA, Suárez-Fariñas M, et al. Identification of cellular pathways of “type 1”, Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J Immunol. 2008;180:1913–20.

    PubMed  CAS  Google Scholar 

  16. Haider AS, Lowes MA, Gardner H, et al. Novel insight into the agonistic mechanism of alefacept in vivo: differentially expressed genes may serve as biomarkers of response in psoriasis patients. J Immunol. 2007;178:7442–9.

    PubMed  CAS  Google Scholar 

  17. Hochberg M, Zeligson S, Amariglio N, et al. Genomic-scale analysis of psoriatic skin reveals differentially expressed insulin-like growth factor-binding protein-7 after phototherapy. Br J Dermatol. 2007;156:289–300.

    PubMed  CAS  Google Scholar 

  18. Jung M, Sabat R, Krätzschmar J, et al. Expression profiling of IL-10-regulated genes in human monocytes and peripheral blood mononuclear cells from psoriatic patients during IL-10 therapy. Eur J Immunol. 2004;34:481–93.

    PubMed  CAS  Google Scholar 

  19. Rappersberger K, Komar M, Ebelin ME, et al. Pimecrolimus identifies a common genomic anti-inflammatory profile, is clinically highly effective in psoriasis and is well tolerated. J Invest Dermatol. 2002;119:876–87.

    PubMed  CAS  Google Scholar 

  20. Oestreicher JL, Walters IB, Kikuchi T, et al. Molecular classification of psoriasis disease-associated genes through pharmacogenomic expression profiling. Pharmacogenomics J. 2001;1:272–87.

    PubMed  CAS  Google Scholar 

  21. Koczan D, Guthke R, Thiesen HJ, et al. Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules. Eur J Dermatol. 2005;15:251–7.

    PubMed  CAS  Google Scholar 

  22. Kiyohara C, Tanaka K, Miyake Y. Genetic susceptibility to atopic dermatitis. Allergol Int. 2008;57:39–56.

    PubMed  CAS  Google Scholar 

  23. Hanifin JM. Evolving concepts of pathogenesis in atopic dermatitis and other eczemas. J Invest Dermatol. 2009;129:320–2.

    PubMed  CAS  Google Scholar 

  24. Sääf AM, Tangvall-Linder M, Chang HY, et al. Global expression profiling in atopic eczema reveals reciprocal expression of inflammatory and lipid genes. PLoS One. 2008;3:e4017.

    PubMed  Google Scholar 

  25. Sand M, Gambichler T, Sand D, et al. MicroRNAs and the skin: tiny players in the body’s largest organ. J Dermatol Sci. 2009;53:169–75.

    PubMed  CAS  Google Scholar 

  26. Zibert JR, Løvendorf MB, Litman T, et al. MicroRNAs and potential target interactions in psoriasis. J Dermatol Sci. 2010;58:177–85.

    PubMed  CAS  Google Scholar 

  27. Li Y, Sawalha AH, Lu Q. Aberrant DNA methylation in skin diseases. J Dermatol Sci. 2009;54:143–9.

    PubMed  CAS  Google Scholar 

  28. Guttman-Yassky E, Suárez-Fariñas M, Chiricozzi A, et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol. 2009;124:1235–44.e58.

    PubMed  CAS  Google Scholar 

  29. Kamsteeg M, Zeeuwen PL, de Jongh GJ, et al. Increased expression of carbonic anhydrase II (CA II) in lesional skin of atopic dermatitis: regulation by Th2 cytokines. J Invest Dermatol. 2007;127:1786–9.

    PubMed  CAS  Google Scholar 

  30. Tracey L, Villuendas R, Dotor AM, et al. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. Blood. 2003;102:1042–50.

    PubMed  CAS  Google Scholar 

  31. de Jongh GJ, Zeeuwen PL, Kucharekova M, et al. High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol. 2005;125:1163–73.

    PubMed  Google Scholar 

  32. de Sousa Abreu R, Penalva LO, Marcotte EM, et al. Global signatures of protein and mRNA expression levels. Mol Biosyst. 2009;5:1512–26.

    PubMed  Google Scholar 

  33. Szameit S, Vierlinger K, Farmer L, et al. Microarray-based in vitro test system for the discrimination of contact allergens and irritants: Identification of potential marker genes. Clin Chem. 2008;54:525–33.

    PubMed  CAS  Google Scholar 

  34. Rácz E, Prens EP. Molecular pathophysiology of psoriasis and molecular targets of antipsoriatic therapy. Expert Rev Mol Med. 2009;11:e38.

    PubMed  Google Scholar 

  35. Elder JT, Bruce AT, Gudjonsson JE, et al. Molecular dissection of psoriasis: integrating genetics and biology. J Invest Dermatol. 2010;130:1213–26.

    PubMed  CAS  Google Scholar 

  36. Das RP, Jain AK, Ramesh V. Current concepts in the pathogenesis of psoriasis. Indian J Dermatol. 2009;54:7–12.

    PubMed  Google Scholar 

  37. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129:1339–50.

    PubMed  Google Scholar 

  38. Bowcock AM, Shannon W, Du F, et al. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet. 2001;10:1793–805.

    PubMed  CAS  Google Scholar 

  39. Zhou X, Krueger JG, Kao MC, et al. Novel mechanisms of T-cell and dendritic cell activation revealed by­ profiling of psoriasis on the 63, 100-element oligonucleotide array. Physiol Genomics. 2003;13:69–78.

    PubMed  CAS  Google Scholar 

  40. Reischl J, Schwenke S, Beekman JM, et al. Increased expression of Wnt5a in psoriatic plaques. J Invest Dermatol. 2007;127:163–9.

    PubMed  CAS  Google Scholar 

  41. Gudjonsson JE, Johnston A, Stoll SW, et al. Evidence for altered Wnt signaling in psoriatic skin. J Invest Dermatol. 2010;130:1849–59.

    PubMed  CAS  Google Scholar 

  42. Gudjonsson JE, Ding J, Johnston A, et al. Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. J Invest Dermatol. 2010;130:1829–40.

    PubMed  CAS  Google Scholar 

  43. Yao Y, Richman L, Morehouse C, et al. Type I interferon: potential therapeutic target for psoriasis? PLoS One. 2008;3:e2737. Erratum in: PLoS One. 2009;4.

    PubMed  Google Scholar 

  44. Gudjonsson JE, Ding J, Li X, et al. Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin. J Invest Dermatol. 2009;129:2795–804.

    PubMed  CAS  Google Scholar 

  45. Ito M, Ogawa K, Takeuchi K, et al. Gene expression of enzymes for tryptophan degradation pathway is upregulated in the skin lesions of patients with atopic dermatitis or psoriasis. J Dermatol Sci. 2004;36:157–64.

    PubMed  CAS  Google Scholar 

  46. Lehman JS, Tollefson MM, Gibson LE. Lichen planus. Int J Dermatol. 2009;48:682–94.

    PubMed  Google Scholar 

  47. Sontheimer RD. Lichenoid tissue reaction/interface dermatitis: clinical and histological perspectives. J Invest Dermatol. 2009;129:1088–99.

    PubMed  CAS  Google Scholar 

  48. Meller S, Gilliet M, Homey B. Chemokines in the pathogenesis of lichenoid tissue reactions. J Invest Dermatol. 2009;129:315–9.

    PubMed  CAS  Google Scholar 

  49. Wenzel J, Tüting T. An IFN-associated cytotoxic cellular immune response against viral, self-, or tumor antigens is a common pathogenetic feature in “interface dermatitis”. J Invest Dermatol. 2008;128:2392–402.

    PubMed  CAS  Google Scholar 

  50. de Vries HJ, Teunissen MB, Zorgdrager F, et al. Lichen planus remission is associated with a decrease of human herpes virus type 7 protein expression in plasmacytoid dendritic cells. Arch Dermatol Res. 2007;299:213–9.

    PubMed  Google Scholar 

  51. Kurokawa M, Hidaka T, Sasaki H, et al. Analysis of hepatitis C virus (HCV) RNA in the lesions of lichen planus in patients with chronic hepatitis C: detection of anti-genomic- as well as genomic-strand HCV RNAs in lichen planus lesions. J Dermatol Sci. 2003;32:65–70.

    PubMed  CAS  Google Scholar 

  52. Lazaro P, Olalquiaga J, Bartolomé J, et al. Detection of hepatitis C virus RNA and core protein in keratinocytes from patients with cutaneous lichen planus and chronic hepatitis C. J Invest Dermatol. 2002;119:798–803.

    PubMed  CAS  Google Scholar 

  53. Tao XA, Li CY, Xia J, et al. Differential gene expression profiles of whole lesions from patients with oral lichen planus. J Oral Pathol Med. 2009;38:427–33.

    PubMed  CAS  Google Scholar 

  54. Ichimura M, Hiratsuka K, Ogura N, et al. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. J Oral Pathol Med. 2006;35:167–74.

    PubMed  CAS  Google Scholar 

  55. Schrager JJ, Vnencak-Jones CL, Graber SE, et al. Use of short tandem repeats for DNA fingerprinting to rapidly diagnose graft-versus-host disease in solid organ transplant patients. Transplantation. 2006;81:21–5.

    PubMed  CAS  Google Scholar 

  56. Hayakawa S, Chishima F, Sakata H, et al. A rapid molecular diagnosis of posttransfusion graft-versus-host disease by polymerase chain reaction. Transfusion. 1993;33:413–7.

    PubMed  CAS  Google Scholar 

  57. Wang L, Juji T, Tokunaga K, et al. Brief report: polymorphic microsatellite markers for the diagnosis of graft-versus-host disease. N Engl J Med. 1994;330:398–401.

    PubMed  CAS  Google Scholar 

  58. Warren LJ, Simmer K, Roxby D, et al. DNA polymorphism analysis in transfusion-associated graft-versus-host disease. J Paediatr Child Health. 1999;35:98–101.

    PubMed  CAS  Google Scholar 

  59. Niino D, Nakashima M, Kondo H, et al. Correlation of donor-derived keratinocytes and severity of graft-versus-host disease (GVHD) in epidermis. Pathol Res Pract. 2005;200:775–81.

    PubMed  Google Scholar 

  60. Au WY, Ma SK, Kwong YL, et al. Graft-versus-host disease after liver transplantation: documentation by fluorescent in situ hybridisation and human leucocyte antigen typing. Clin Transplant. 2000;14:174–7.

    PubMed  CAS  Google Scholar 

  61. Murata H, Janin A, Leboeuf C, et al. Donor-derived cells and human graft-versus-host disease of the skin. Blood. 2007;109:2663–5.

    PubMed  CAS  Google Scholar 

  62. Akay MO, Temiz G, Teke HU, et al. Rapid molecular cytogenetic diagnosis of transfusion associated graft-versus-host disease by fluorescent in situ hybridization (FISH). Transfus Apher Sci. 2008;38:189–92.

    PubMed  Google Scholar 

  63. Kanehira K, Riegert-Johnson DL, Chen D, et al. FISH diagnosis of acute graft-versus-host disease following living-related liver transplant. J Mol Diagn. 2009;11:355–8.

    PubMed  Google Scholar 

  64. Meves A, el-Azhary RA, Talwalkar JA, et al. Acute graft-versus-host disease after liver transplantation diagnosed by fluorescent in situ hybridization testing of skin biopsy specimens. J Am Acad Dermatol. 2006;55:642–6.

    PubMed  Google Scholar 

  65. Wu D, Vu Q, Nguyen A, et al. In situ genetic analysis of cellular chimerism. Nat Med. 2009;15:215–9.

    PubMed  CAS  Google Scholar 

  66. Beck RC, Wlodarski M, Gondek L, et al. Efficient identification of T-cell clones associated with graft-versus-host disease in target tissue allows for subsequent detection in peripheral blood. Br J Haematol. 2005;129:411–9.

    PubMed  CAS  Google Scholar 

  67. French LE, Alcindor T, Shapiro M, et al. Identification of amplified clonal T cell populations in the blood of patients with chronic graft-versus-host disease: positive correlation with response to photopheresis. Bone Marrow Transplant. 2002;30:509–15.

    PubMed  CAS  Google Scholar 

  68. D’hauw A, Seyger MM, Groenen PJ, et al. Cutaneous graft-versus-host-like histology in childhood. Importance of clonality analysis in differential diagnosis. A case report. Br J Dermatol. 2008;158:1153–6.

    PubMed  Google Scholar 

  69. Takahashi N, Sato N, Takahashi S, et al. Gene-expression profiles of peripheral blood mononuclear cell subpopulations in acute graft-vs-host disease following cord blood transplantation. Exp Hematol. 2008;36:1760–70.

    PubMed  CAS  Google Scholar 

  70. Kuhn A, Sontheimer RD. Cutaneous lupus erythematosus: molecular and cellular basis of clinical findings. Curr Dir Autoimmun. 2008;10:119–40.

    PubMed  CAS  Google Scholar 

  71. Walling HW, Sontheimer RD. Cutaneous lupus erythematosus: issues in diagnosis and treatment. Am J Clin Dermatol. 2009;10:365–81.

    PubMed  Google Scholar 

  72. Wenzel J, Zahn S, Bieber T, et al. Type I interferon-associated cytotoxic inflammation in cutaneous lupus erythematosus. Arch Dermatol Res. 2009;301:83–6.

    PubMed  CAS  Google Scholar 

  73. Magro CM, Dyrsen ME. The use of C3d and C4d immunohistochemistry on formalin-fixed tissue as a diagnostic adjunct in the assessment of inflammatory skin disease. J Am Acad Dermatol. 2008;59:822–33.

    PubMed  Google Scholar 

  74. Franz B, Fritzsching B, Riehl A, et al. Low number of regulatory T cells in skin lesions of patients with cutaneous lupus erythematosus. Arthritis Rheum. 2007;56:1910–20.

    PubMed  CAS  Google Scholar 

  75. Guitart J, Magro C. Cutaneous T-cell lymphoid dyscrasia: a unifying term for idiopathic chronic dermatoses with persistent T-cell clones. Arch Dermatol. 2007;143:921–32.

    PubMed  CAS  Google Scholar 

  76. Nakou M, Knowlton N, Frank MB, et al. Gene expression in systemic lupus erythematosus. Arthritis Rheum. 2008;58:3541–9.

    PubMed  CAS  Google Scholar 

  77. Sandrin-Garcia P, Moraes Junta C, Fachin AL, et al. Shared and unique gene expression in systemic lupus ­erythematosus depending on disease activity. Ann NY Acad Sci. 2009;1173:493–500.

    PubMed  CAS  Google Scholar 

  78. Assassi S, Mayes MD, Arnett FC, et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum. 2010;62:589–98.

    PubMed  CAS  Google Scholar 

  79. Granel B, Bernard F, Chevillard C. Genetic susceptibility to systemic sclerosis. From clinical aspect to genetic factor analyses. Eur J Int Med. 2009;20:242–52.

    CAS  Google Scholar 

  80. Milano A, Pendergrass SA, Sargent JL, et al. Molecular subsets in the gene expression signature of scleroderma skin. PLoS One. 2008;3:e2696.

    PubMed  Google Scholar 

  81. Sargent JL, Milano A, Connolly MK, et al. Scleroderma gene expression and pathway signatures. Curr Rheumatol Rep. 2008;10:205–11.

    PubMed  CAS  Google Scholar 

  82. Whitfield ML, Finlay DR, Murray JI, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci USA. 2003;100:12319–24.

    PubMed  CAS  Google Scholar 

  83. Sargent JL, Milano A, Bhattacharyya S, et al. A TGFbeta-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J Invest Dermatol. 2010;130:694–705.

    PubMed  CAS  Google Scholar 

  84. Chung L, Fiorentino DF, Benbarak MJ, et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum. 2009;60:584–91.

    PubMed  CAS  Google Scholar 

  85. Tan FK, Hildebrand BA, Lester MS, et al. Classification analysis of the transcriptosome of nonlesional cultured dermal fibroblasts from systemic sclerosis patients with early disease. Arthritis Rheum. 2005;52:865–76.

    PubMed  CAS  Google Scholar 

  86. French LE, Lessin SR, Addya K, et al. Identification of clonal T cells in the blood of patients with systemic sclerosis: positive correlation with response to photopheresis. Arch Dermatol. 2001;137:1309–13.

    PubMed  CAS  Google Scholar 

  87. Marie I, Cordel N, Lenormand B, et al. Clonal T cells in the blood of patients with systemic sclerosis. Arch Dermatol. 2005;141:88–9.

    PubMed  Google Scholar 

  88. Kreuter A, Höxtermann S, Tigges C, et al. Clonal T-cell populations are frequent in the skin and blood of patients with systemic sclerosis. Br J Dermatol. 2009;161:785–90.

    PubMed  CAS  Google Scholar 

  89. Sakkas LI, Xu B, Artlett CM, et al. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol. 2002;168:3649–59.

    PubMed  CAS  Google Scholar 

  90. Kreuter A, Höxtermann S, Gambichler T, et al. Detection of clonal T cells in the circulation of patients with nephrogenic systemic fibrosis. Arch Dermatol. 2009;145:1164–9.

    PubMed  Google Scholar 

  91. Wallach D, Vignon-Pennamen MD. From acute febrile neutrophilic dermatosis to neutrophilic disease: forty years of clinical research. J Am Acad Dermatol. 2006;55:1066–71.

    PubMed  Google Scholar 

  92. Cohen PR. Sweet’s syndrome–a comprehensive review of an acute febrile neutrophilic dermatosis. Orphanet J Rare Dis. 2007;2:34.

    PubMed  Google Scholar 

  93. Magro CM, Kiani B, Li J, et al. Clonality in the setting of Sweet’s syndrome and pyoderma gangrenosum is not limited to underlying myeloproliferative disease. J Cutan Pathol. 2007;34:526–34.

    PubMed  Google Scholar 

  94. Magro CM, De Moraes E, Burns F. Sweet’s syndrome in the setting of CD34-positive acute myelogenous ­leukemia treated with granulocyte colony stimulating factor: evidence for a clonal neutrophilic dermatosis. J Cutan Pathol. 2001;28:90–6.

    PubMed  CAS  Google Scholar 

  95. Requena L, Kutzner H, Palmedo G, et al. Histiocytoid Sweet syndrome: a dermal infiltration of immature ­neutrophilic granulocytes. Arch Dermatol. 2005;141:834–42.

    PubMed  Google Scholar 

  96. Kaune KM, Baumgart M, Gesk S, et al. Bullous Sweet syndrome in a patient with t(9;22)(q34;q11)-positive chronic myeloid leukemia treated with the tyrosine kinase inhibitor nilotinib: interphase cytogenetic detection of BCR-ABL- positive lesional cells. Arch Dermatol. 2008;144:361–4.

    PubMed  Google Scholar 

  97. van Kamp H, van den Berg E, Timens W, et al. Sweet’s syndrome in myeloid malignancy: a report of two cases. Br J Haematol. 1994;86:415–7.

    PubMed  Google Scholar 

  98. Liu D, Seiter K, Mathews T, et al. Sweet’s syndrome with CML cell infiltration of the skin in a patient with chronic-phase CML while taking Imatinib Mesylate. Leuk Res. 2004;28 Suppl 1:S61–63.

    PubMed  CAS  Google Scholar 

  99. Urano Y, Miyaoka Y, Kosaka M, et al. Sweet’s syndrome associated with chronic myelogenous leukemia: ­demonstration of leukemic cells within a skin lesion. J Am Acad Dermatol. 1999;40:275–9.

    PubMed  CAS  Google Scholar 

  100. Nogita T, Morioka N, Ishibashi Y, et al. Pelgeroid-like anomalous cells in the diagnosis of neutrophilic dermatosis associated with myelodysplastic syndrome. Int J Dermatol. 1992;31:864–5.

    PubMed  CAS  Google Scholar 

  101. Cappel MA, Gibson LE. Myeloid leukemia cutis diagnosed by fluorescent in-situ hybridization: presenting with pathergy and mimicking ‘histiocytoid Sweet’s syndrome. Am J Dermatopathol. 2009;31:412 [abstract].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Phelps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murphy, M.J., Phelps, A., Braun-Falco, M. (2011). Inflammatory Disorders of the Skin. In: Murphy, M. (eds) Molecular Diagnostics in Dermatology and Dermatopathology. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60761-171-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-171-4_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-170-7

  • Online ISBN: 978-1-60761-171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics