Skip to main content

Pathophysiology and Mechanisms Whereby Hypertension May Cause Stroke

  • Chapter
  • First Online:
Hypertension and Stroke

Abstract

Hypertension is the most important modifiable risk factor for stroke. The degree of elevation of blood pressure is tightly correlated with the risk of stroke. The risk curve is a continuum without any clear point separating the stroke-prone from the non-stroke-prone subjects (13). Hypertension plays a key role in the pathogenesis of large artery atherosclerosis, which in turn causes ischemic stroke due to thrombotic arterial occlusion, artery-to-artery embolism, or a combination of these factors. The association between hypertension and lacunar infarct is well established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kannel WB, Wolf PA, Verter J, McNamara PM. Epidemiologic assessment of the role of blood pressure in stroke. The Framingham study. JAMA. 1970;214:301–10.

    Article  Google Scholar 

  2. Whisnant JP. Epidemiology of stroke: emphasis on transient cerebral ischemia attacks and hypertension. Stroke. 1974;5:68–70.

    CAS  PubMed  Google Scholar 

  3. Ohkubo T, Asayama K, Kikuya M, et al. Prediction of ischaemic and haemorrhagic stroke by self-measured blood pressure at home: the Ohasama study. Blood Press Monit. 2004;9:315–20.

    Article  Google Scholar 

  4. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–26.

    Google Scholar 

  5. Landmesser U, Drexler H. Endothelial function and hypertension. Curr Opin Cardiol. 2007;22:316–20.

    Article  Google Scholar 

  6. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111:1201–9.

    Google Scholar 

  7. Landmesser U, Harrison DG. Oxidative stress and vascular damage in hypertension. Coron Artery Dis. 2001;12:455–61.

    Article  Google Scholar 

  8. Perticone F, Ceravolo R, Pujia A, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001;104:191–6.

    Google Scholar 

  9. Fisher M, Paganini-Hill A, Martin A, et al. Carotid plaque pathology: thrombosis, ulceration, and stroke pathogenesis. Stroke. 2005;36:253–7.

    Article  Google Scholar 

  10. Bornstein NM, Krajewski A, Lewis AJ, Norris JW. Clinical significance of carotid plaque hemorrhage. Arch Neurol. 1990;47:958–9.

    Google Scholar 

  11. Bornstein NM, Norris JW. The unstable carotid plaque. Stroke. 1989;20:1104–6.

    Google Scholar 

  12. Chen XY, Wong KS, Lam WW, Zhao HL, Ng HK. Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with Infarct in a postmortem study. Cerebrovasc Dis. 2007;25:74–80.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenblum WI. Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal. Acta Neuropathol. 2008;116:361–9.

    Article  Google Scholar 

  14. Amano S. Vascular changes in the brain of spontaneously hypertensive rats: hyaline and fibrinoid degeneration. J Pathol. 1977;121:119–28.

    Article  Google Scholar 

  15. Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30:536–50.

    Article  Google Scholar 

  16. Fisher CM. Lacunar strokes and infarcts: a review. Neurology. 1982;32:871–6.

    Google Scholar 

  17. Martí-Vilalta JL, Arboix A, and Mohr JP. Lacunes. In: Mohr JP, Choi SW, Grotta JC, Weir B, Wolf PA, editors. Stroke: pathophysiology, diagnosis, and management. 4th ed. Philadelphia, PA: Churchill Livingstone; 2004. pp. 275–99.

    Google Scholar 

  18. Shapiro HM, Stromberg DD, Lee DR, Wiederhielm CA. Dynamic pressures in the pial arterial microcirculation. Am J Physiol. 1971;221:279–83.

    Google Scholar 

  19. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation. 1976;53:720–7.

    Google Scholar 

  20. Graham DI. Ischaemic brain damage of cerebral perfusion failure type after treatment of severe hypertension. Br Med J. 1975;4:739.

    Article  Google Scholar 

  21. Ledingham JG, Rajagopalan B. Cerebral complications in the treatment of accelerated hypertension. Q J Med. 1979;48:25–41.

    CAS  PubMed  Google Scholar 

  22. Chrissobolis S, Sobey CG. Recent evidence for an involvement of rho-kinase in cerebral vascular disease. Stroke. 2006;37:2174–80.

    Article  Google Scholar 

  23. Barry DI. Cerebral blood flow in hypertension. J Cardiovasc Pharmacol. 1985;7 Suppl 2:S94–8.

    Google Scholar 

  24. Harper SL, Bohlen HG. Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension. 1984;6:408–9.

    Google Scholar 

  25. Baumbach GL, Dobrin PB, Hart MN, Heistad DD. Mechanics of cerebral arterioles in hypertensive rats. Circ Res. 1988;62:56–4.

    Google Scholar 

  26. Chillon JM, Baumbach GL. Autoregulation: arterial and intracranial pressure. In: Edvinsson L, Krause DN, editors. Cerebral blood flow and metabolism. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2002. pp. 395–412.

    Google Scholar 

  27. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35.

    Article  Google Scholar 

  28. D’Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci. 2003;4:863–72.

    Google Scholar 

  29. Kazama K, Wang G, Frys K, Anrather J, Iadecola C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2003;285:H1890–9.

    Google Scholar 

  30. Jennings JR, Muldoon MF, Ryan C, et al. Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology. 2005;64:1358–65.

    Google Scholar 

  31. Caplan LR. Basic pathology, anatomy, and pathophysiology of stroke. In: Caplan LR, editor. Caplan’s stroke: a clincial approach. 3rd ed. Woburn, MA: Butterworth–Heinemann; 2000. pp. 17–50.

    Google Scholar 

  32. Wong LKS. Global burden of intracranial atherosclerosis. Int J Stroke. 2006;1:158–9.

    Article  Google Scholar 

  33. Bang OY, Kim JW, Lee JH, et al. Association of the metabolic syndrome with intracranial atherosclerotic stroke. Neurology. 2005;65:296–8.

    Article  Google Scholar 

  34. Nam HS, Han SW, Lee JY, et al. Association of aortic plaque with intracranial atherosclerosis in patients with stroke. Neurology. 2006;67:1184–8.

    Article  Google Scholar 

  35. Suh DC, Lee SH, Kim KR, et al. Pattern of atherosclerotic carotid stenosis in Korean patients with stroke: different involvement of intracranial versus extracranial vessels. AJNR Am J Neuroradiol. 2003;24:239–44.

    Google Scholar 

  36. Nishimaru K, McHenry LC Jr, Toole JF. Cerebral angiographic and clinical differences in carotid system transient ischemic attacks between American Caucasian and Japanese patients. Stroke. 1984;15:56–9.

    Google Scholar 

  37. Norris JW, Zhu CZ, Bornstein NM, Chambers BR. Vascular risks of asymptomatic carotid stenosis. Stroke. 1991;22:1485–90.

    Google Scholar 

  38. Streifler JY, Eliasziw M, Benavente OR, et al. The risk of stroke in patients with first-ever retinal vs hemispheric transient ischemic attacks and high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial. Arch Neurol. 1995;52:246–9.

    Google Scholar 

  39. Kasner SE, Chimowitz MI, Lynn MJ, et al. Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis. Circulation. 2006;113:555–63.

    Article  Google Scholar 

  40. Wong KS, Li H, Lam WW, Chan YL, Kay R. Progression of middle cerebral artery occlusive disease and its relationship with further vascular events after stroke. Stroke. 2002;33:532–6.

    Google Scholar 

  41. Fisher CM. Observations of the fundus oculi in transient monocular blindness. Neurology. 1959;9:333–47.

    Google Scholar 

  42. Wong KS, Gao S, Chan YL, et al. Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis: a diffusion-weighted imaging and microemboli monitoring study. Ann Neurol. 2002;52:74–81.

    Article  PubMed  Google Scholar 

  43. Lhermitte F, Gautier JC, Derouesne C. Nature of occlusions of the middle cerebral artery. Neurology. 1970;20:82–8.

    Google Scholar 

  44. Caplan LR. Intracranial branch atheromatous disease: a neglected, understudied, and underused concept. Neurology. 1989;39:1246–50.

    Google Scholar 

  45. Kang SY, Kim JS. Anterior cerebral artery infarction: stroke mechanism and clinical-imaging study in 100 patients. Neurology. 2008;70:2386–93.

    Article  Google Scholar 

  46. Vemmos KN, Spengos K, Tsivgoulis G, Manios E, Zis V, Vassilopoulos D. Aetiopathogenesis and long-term outcome of isolated pontine infarcts. J Neurol. 2005;252:212–17.

    Article  Google Scholar 

  47. Lee DK, Kim JS, Kwon SU, Yoo SH, Kang DW. Lesion patterns and stroke mechanism in atherosclerotic middle cerebral artery disease: early diffusion-weighted imaging study. Stroke. 2005;36:2583–8.

    Google Scholar 

  48. Bang OY, Heo JH, Kim JY, Park JH, Huh K. Middle cerebral artery stenosis is a major clinical determinant in striatocapsular small, deep infarction. Arch Neurol. 2002;59:259–63.

    Article  Google Scholar 

  49. Okin PM, Wachtell K, Devereux RB, et al. Regression of electrocardiographic left ventricular hypertrophy and decreased incidence of new-onset atrial fibrillation in patients with hypertension. JAMA. 2006;296:1242–8.

    Article  Google Scholar 

  50. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581–7.

    Google Scholar 

  51. Ingelsson E, Bjorklund-Bodegard K, Lind L, Arnlov J, Sundstrom J. Diurnal blood pressure pattern and risk of congestive heart failure. JAMA. 2006;295:2859–66.

    Google Scholar 

  52. Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol Physiol. 1999;26:563–5.

    Article  Google Scholar 

  53. Wong KS, Caplan LR, Kim JS. Stroke mechanisms. In: Kim JS, Caplan LR, Wong KS, editors. Intracranial atherosclerosis. West Sussex: Wiley-Blackwell; 2008. pp. 57–68.

    Google Scholar 

  54. Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55:1475–82.

    Google Scholar 

  55. Caplan LR, Wong KS, Gao S, Hennerici MG. Is hypoperfusion an important cause of strokes? If so, how? Cerebrovasc Dis. 2006;21:145–3.

    Google Scholar 

  56. Ariesen MJ, Claus SP, Rinkel GJ, Algra A. Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke. 2003;34:2060–5.

    Article  Google Scholar 

  57. Broderick J, Brott T, Tomsick T, Leach A. Lobar hemorrhage in the elderly. The undiminishing importance of hypertention. Stroke. 1993;24:49–51.

    CAS  PubMed  Google Scholar 

  58. Challa VR, Moody DM, Bell MA. The Charcot-Bouchard aneurysm controversy: impact of a new histologic technique. J Neuropathol Exp Neurol. 1992;51:264–71.

    Article  Google Scholar 

  59. Takebayashi S, Kaneko M. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke. 1983;14:28–36.

    CAS  PubMed  Google Scholar 

  60. Bahemuka M. Primary intracerebral hemorrhage and heart weight: a clinicopathologic case-control review of 218 patients. Stroke. 1987;18:531–6.

    Google Scholar 

  61. Brott T, Thalinger K, Hertzberg V. Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke. 1986;17:1078–83.

    Google Scholar 

  62. Caplan L. Intracerebral hemorrhage revisited. Neurology. 1988;38:624–7.

    Google Scholar 

  63. Ogasawara K, Sakai N, Kuroiwa T, et al. Intracranial hemorrhage associated with cerebral hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: retrospective review of 4494 patients. J Neurosurg. 2007;107:1130–6.

    Google Scholar 

  64. Abou-Chebl A, Reginelli J, Bajzer CT, Yadav JS. Intensive treatment of hypertension decreases the risk of hyperperfusion and intracerebral hemorrhage following carotid artery stenting. Catheter Cardiovasc Interv. 2007;69:690–6.

    Article  Google Scholar 

  65. Nolte KB, Brass LM, Fletterick CF. Intracranial hemorrhage associated with cocaine abuse: a prospective autopsy study. Neurology. 1996;46:1291–6.

    Google Scholar 

  66. McEvoy AW, Kitchen ND, Thomas DG. Intracerebral haemorrhage and drug abuse in young adults. Br J Neurosurg. 2000;14:449–54.

    Article  Google Scholar 

  67. Sekhar LN, Heros RC. Origin, growth, and rupture of saccular aneurysms: a review. Neurosurgery. 1981;8:248–60.

    Article  Google Scholar 

  68. de Paepe A, van Landegem W, de Keyser F, de Reuck J. Association of multiple intracranial aneurysms and collagen type III deficiency. Clin Neurol Neurosurg. 1988;90:53–6.

    Google Scholar 

  69. van Gijn J, Rinkel GJ. Subarachnoid haemorrhage: diagnosis, causes and management. Brain. 2001;124:249–78.

    Google Scholar 

  70. Chyatte D, Reilly J, Tilson MD. Morphometric analysis of reticular and elastin fibers in the cerebral arteries of patients with intracranial aneurysms. Neurosurgery. 1990;26:939–43.

    Google Scholar 

  71. International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms–risk of rupture and risks of surgical intervention. N Engl J Med. 1998;339:1725–33.

    Article  Google Scholar 

  72. Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke. 2003;34:1126–9.

    Google Scholar 

  73. de Leeuw FE, de Groot JC, Oudkerk M, et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125:765–72.

    Google Scholar 

  74. Fu JH, Lu CZ, Hong Z, Dong Q, Luo Y, Wong KS. Extent of white matter lesions is related to acute subcortical infarcts and predicts further stroke risk in patients with first ever ischaemic stroke. J Neurol Neurosurg Psychiatry. 2005;76:793–6.

    Article  Google Scholar 

  75. Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683–9.

    Google Scholar 

  76. van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, Wokke JH, van Gijn J. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain. 1991;114 (Pt 2):761–74.

    Google Scholar 

  77. Vermeer SE, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MM. Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke. 2002;33:21–5.

    Article  Google Scholar 

  78. Yamauchi H, Fukuda H, Oyanagi C. Significance of white matter high intensity lesions as a predictor of stroke from arteriolosclerosis. J Neurol Neurosurg Psychiatry. 2002;72:576–82.

    Article  Google Scholar 

  79. Fan YH, Mok VC, Lam WW, Hui AC, Wong KS. Cerebral microbleeds and white matter changes in patients hospitalized with lacunar infarcts. J Neurol. 2004;251:537–41.

    Article  Google Scholar 

  80. Wong KS, Chan YL, Liu JY, Gao S, Lam WW. Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology. 2003;60:511–13.

    Google Scholar 

  81. Greenberg SM, Eng JA, Ning M, Smith EE, Rosand J. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke. 2004;35:1415–20.

    Google Scholar 

  82. Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke. 2002;33:95–8.

    Google Scholar 

  83. Kakuda W, Thijs VN, Lansberg MG, et al. Clinical importance of microbleeds in patients receiving IV thrombolysis. Neurology. 2005;65:1175–8.

    Article  Google Scholar 

  84. Roob G, Lechner A, Schmidt R, Flooh E, Hartung HP, Fazekas F. Frequency and location of microbleeds in patients with primary intracerebral hemorrhage. Stroke. 2000;31:2665–9.

    Google Scholar 

  85. Kinoshita T, Okudera T, Tamura H, Ogawa T, Hatazawa J. Assessment of lacunar hemorrhage associated with hypertensive stroke by echo-planar gradient-echo T2*-weighted MRI. Stroke. 2000;31:1646–50.

    Google Scholar 

  86. Lammie G A. Pathology of small vessel stroke. Br Med Bull. 2000, 56:296–306.

    Article  CAS  PubMed  Google Scholar 

  87. Ladecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metabolism. 2008;7:476–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhao Han MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Han, J., Bae, HJ., Wong, L.K. (2011). Pathophysiology and Mechanisms Whereby Hypertension May Cause Stroke. In: Aiyagari, V., Gorelick, P. (eds) Hypertension and Stroke. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1007/978-1-60761-010-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-010-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-009-0

  • Online ISBN: 978-1-60761-010-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics