Skip to main content

Cancer Stem Cells: Hepatocellular Carcinoma

  • Chapter
  • First Online:
Stem Cells and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 940 Accesses

Abstract

It has been hypothesized that cancer stem cells result from the initiation of normal tissue stem cells by mutagens. These cells give rise to a population of growth and differentiation dysregulated transient amplifying cells that represent the bulk of the tumor. Fifty years of research has provided a relatively large knowledge base on adult liver stem cells termed “oval cells” in rodents and hepatic progenitor cells in humans. Despite this fact, information regarding liver cancer stem cells remains scarce. Abundant circumstantial evidence suggests that bipotential liver progenitor cells may act as targets for carcinogens, giving rise to liver cancer. Evidence is also beginning to indicate that these mutated progenitor cells, or their derivatives, may act as cancer stem cells. These cells maintain themselves through self-renewal and give rise to the transient amplifying cells that comprise a majority of the liver tumor volume. Putative liver cancer stem cells likely escape chemotherapeutic treatment, both by limiting time in the cell cycle, and by up-regulating membrane transporters. It is also likely that the ability to establish metastasis is limited to the liver cancer stem cell population. Because regrowth of tumors following unsuccessful cytoreductive therapy is mediated by tumor stem cells, careful consideration must be paid to this cell population when developing future liver cancer therapies. Several potential markers for the identification of liver cancer stem cells are currently under investigation. CD133 and CD90 show particular promise as discriminators of human liver cancer stem cells. These markers are being used to help unravel the mystery of tumor reoccurrence following treatment of the original tumor by surgery and cytoreductive drug/radio therapy, and may someday lead to a true cure for this ominous form of cancer. The following chapter presents evidence for both the stem cell origin of liver tumors, and the presence of altered stem cells within the tumors themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Hewitt HB. (1952) Transplantation of mouse sarcomas with small numbers of single cells. Nature; 170:622–623.

    Article  PubMed  Google Scholar 

  2. Reinhard MC, Goltz HL, Warner SG, Mirand EC. (1952) Growth rate and percentage takes following inoculation of known numbers of viable mouse tumor cells. Exp Med Surg; 10:254.

    PubMed  CAS  Google Scholar 

  3. Sell S. (2009) In: Rajasekhar VK and Vemuri M (eds.) History of cancer stem cells. Regulatory networks in stem cells, Humana Press, Totowa NJ.

    Google Scholar 

  4. Salmon S. (1952) In vitro effects of drugs on human tumor stem cell assays, in Cloning of Human Tumor Stem Cells. S. Salmon, Ed. AR Liss, New York; 197–312.

    Google Scholar 

  5. Bonnet D, Dick JE. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med; 3:730–737.

    Article  PubMed  CAS  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA; 100:3983–3988.

    Article  PubMed  CAS  Google Scholar 

  7. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. (2004) Identification of human brain tumour initiating cells. Nature; 432:396–401.

    Article  PubMed  CAS  Google Scholar 

  8. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature; 445:111–115.

    Article  PubMed  CAS  Google Scholar 

  9. O’Brien CA, Pollett A, Gallinger S, Dick JE. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature; 445:106–110.

    Article  PubMed  Google Scholar 

  10. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA; 104:973–978.

    Article  PubMed  CAS  Google Scholar 

  11. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. (2007) Identification of pancreatic cancer stem cells. Cancer Res; 67:1030–1037.

    Article  PubMed  CAS  Google Scholar 

  12. Conheim J. (1875) Congenitales, quergestreiftes Muskelsarkon der Nireren. Virchows Arch 65:64.

    Article  Google Scholar 

  13. Lagasse, E, Connors, H, Al-Dhalimy, M. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med; 6:1229–1234.

    Article  PubMed  CAS  Google Scholar 

  14. Alison, MR, Poulsom, R, Jeffery, R. (2000) Hepatocytes from non-hepatic adult stem cells. Nature (London); 406:257.

    Article  CAS  Google Scholar 

  15. Theise, N, Nimmakalayu, M, Gardner, R. (2000) Liver from bone marrow in humans. Hepatology; 32:11–16.

    Article  PubMed  CAS  Google Scholar 

  16. Lagaaij, E, Cramer-Knijnenburg, G, van Kemenade, F, van Es, L, Bruijn, J, van Krieken, J. (2001) Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet; 357:33–37.

    Article  PubMed  CAS  Google Scholar 

  17. Poulsom, R, Forbes, SJ, Hodivala-Dilke, K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA. (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol; 195:229–235.

    Article  PubMed  CAS  Google Scholar 

  18. Orlic, D, Kajstura, J, Chimenti, S (2001) Bone marrow cells regenerate infarcted myocardium. Nature (London); 410:701–704.

    Article  CAS  Google Scholar 

  19. Woodbury, D, Schwartz, E, Prockop, D and Black, I. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res; 61:364–370.

    Article  PubMed  CAS  Google Scholar 

  20. Krause, D. Theise, N. Collector, M. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell; 105:369–377.

    Article  PubMed  CAS  Google Scholar 

  21. Mezey, E, Chandross, K, Harta, G, Maki, R, McKercher, S. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science; 290:1779–1782.

    Article  PubMed  CAS  Google Scholar 

  22. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP. (1999) Bone marrow as a potential source of hepatic oval cells. Science; 284:1168–1170.

    Article  PubMed  CAS  Google Scholar 

  23. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, Krause DS. (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology; 31:235–240.

    Article  PubMed  CAS  Google Scholar 

  24. Duncan SA. (2003) Mechanisms controlling early development of the liver. Mech Dev; 120:19–33.

    Article  PubMed  CAS  Google Scholar 

  25. Shiojiri N, Lemire JM, Fausto N. (1991) Cell lineages and oval cell progenitors in rat liver development. Cancer Res; 51:2611–2620.

    PubMed  CAS  Google Scholar 

  26. Shiojiri N. (1984) The origin of intrahepatic bile duct cells in the mouse. J Embryol Exp Morphol; 79:25–39.

    PubMed  CAS  Google Scholar 

  27. Germain L, Blouin MJ, Marceau N. (1988) Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Res; 48:4909–4918.

    PubMed  CAS  Google Scholar 

  28. Rogler LE. (1997) Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. Am J Pathol; 150:591–602.

    PubMed  CAS  Google Scholar 

  29. Shiojiri N, Lemire JM, Fausto N. (1991) Cell lineages and oval cell progenitors in rat liver development. Cancer Res; 51:2611–220.

    PubMed  CAS  Google Scholar 

  30. Evarts RP, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson SS. (1989) In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res; 49:1541–1547.

    PubMed  CAS  Google Scholar 

  31. Sell S, Leffert HL. (1982) An evaluation of cellular lineages in the pathogenesis of experimental hepatocellular carcinoma. Hepatology; 2:77–86.

    Article  PubMed  CAS  Google Scholar 

  32. Sell S, Osborn K, Leffert HL. (1981) Autoradiography of “oval cells” appearing rapidly in the livers of rats fed N-2-fluorenylacetamide in a choline devoid diet. Carcinogenesis; 2:7–14.

    Article  PubMed  CAS  Google Scholar 

  33. Higgins GM, Andersen RM. (1931) Experimental pathology of the liver, restoration of the liver of the white rat following partial surgical removal. AMA Arch Pathol; 12:186–202.

    Google Scholar 

  34. Grisham JW. (1962) A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res; 22:842–849.

    PubMed  CAS  Google Scholar 

  35. Overturf K, al-Dhalimy M, Ou CN, Finegold M, Grompe M. (1997) Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol; 151:1273–1280.

    PubMed  CAS  Google Scholar 

  36. Solt DB, Medline A, Farber E. (1977) Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. Am J Pathol; 88:595–618.

    PubMed  CAS  Google Scholar 

  37. Novikoff PM, Yam A, Oikawa I. (1996) Blast-like cell compartment in carcinogen-induced proliferating bile ductules. Am J Pathol; 148:1473–1492.

    PubMed  CAS  Google Scholar 

  38. Bisgaard HC, Nagy P, Santoni-Rugiu E, Thorgeirsson SS. (1996) Proliferation, apoptosis, and induction of hepatic transcription factors are characteristics of the early response of biliary epithelial (oval) cells to chemical carcinogens. Hepatology; 23:62–70.

    Article  PubMed  CAS  Google Scholar 

  39. Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK. (1998) Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology; 27:433–45.

    Article  PubMed  CAS  Google Scholar 

  40. Sell S, Salman J. (1984) Light- and electron-microscopic autoradiographic analysis of proliferating cells during the early stages of chemical hepatocarcinogenesis in the rat induced by feeding N-2-fluorenylacetamide in a choline-deficient diet. Am J Pathol; 114:287–300.

    PubMed  CAS  Google Scholar 

  41. Onoe T, Dempo K, Kaneko A, Watabe H. (1973) Significance of Alpha-fetoprotein appearance in the early stage of azo-dye carcinogenesis. Gann; 14:233–243.

    Google Scholar 

  42. Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND. (2008) The hepatic stem cell niche: Identification by label-retaining cell assay. Hepatology; 47:1994–2002.

    Article  PubMed  Google Scholar 

  43. Oh SH, Witek RP, Bae SH, Zheng D, Jung Y, Piscaglia AC, Petersen BE. (2007) Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2 acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology; 132:1077–1087.

    Article  PubMed  CAS  Google Scholar 

  44. Kaplanski C, Pauley CJ, Griffiths TG, Kawabata TT, Ledwith BJ. (2000) Differentiation of rat oval cells after activation of peroxisome proliferator-activated receptor alpha43. Cancer Res; 60:580–587.

    PubMed  CAS  Google Scholar 

  45. Teebor GW, Becker FF. (1971) Regression and persistence of hyperplastic hepatic nodules induced by N-2-fluoreny-lacetamide and their relationship to hepatocarcinogenesis; 31:1–3.

    CAS  Google Scholar 

  46. Solt D, Farber E. (1977) Persistence of carcinogen-induced initiated hepatocytes in liver carcinogenesis. Proc Am Assoc Cancer Res; 18:52.

    Google Scholar 

  47. Solt DB, Medline A, Farber E. (1977) Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. Am J Pathol; 88:595–609.

    PubMed  CAS  Google Scholar 

  48. Sell S. (2002) Cellular origin of hepatocellular carcinomas. Semin Cell Dev Biol; 13:419–424.

    Article  PubMed  Google Scholar 

  49. Coleman WB, Wennerberg AE, Smith GJ, Grisham JW. (1993) Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am J Pathol; 142:1373–1382.

    PubMed  CAS  Google Scholar 

  50. Tsao MS, Grisham JW, Nelson KG, Smith JD. (1985) Phenotypic and karyotypic changes induced in cultured rat hepatic epithelial cells that express the “oval” cell phenotype by exposure to N-methyl-N'-nitro-N-nitrosoguanidine. Am J Pathol; 118:306–315.

    PubMed  CAS  Google Scholar 

  51. Dumble ML, Croager EJ, Yeoh GC, Quail EA. (2002) Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis; 23:435–445.

    Article  PubMed  CAS  Google Scholar 

  52. Su Q, Zerban H, Otto G, Bannasch P. (1998) Cytokeratin expression is reduced in glycogenotic clear hepatocytes but increased in ground-glass cells in chronic human and woodchuck hepadnaviral infection. Hepatology; 28:347–359.

    Article  PubMed  CAS  Google Scholar 

  53. Fotiadu A, Tzioufa V, Vrettou E, Koufogiannis D, Papadimitriou CS, Hytiroglou P. (2004) Progenitor cell activation in chronic viralhepatitis. Liver Int; 24:268–274.

    Article  PubMed  Google Scholar 

  54. Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. (1999) Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol; 54:537–541.

    Article  Google Scholar 

  55. Roskams TA, Libbrecht L, Desmet VJ. (2003) Progenitor cells in diseased human liver. Semin Liver Dis; 23:385–396.

    Article  PubMed  CAS  Google Scholar 

  56. Thorgeirsson SS. (1995) Target cell populations in virus-associated hepatocarcinogenesis. Princess Takamatsu Symp; 25:163–170.

    PubMed  CAS  Google Scholar 

  57. Omata M, Yoshida H. (2004) Prevention and treatment of hepatocellular carcinoma. Liver Transpl 10(S2):S111–S114.

    Article  PubMed  Google Scholar 

  58. Kim H, Park C, Han KH, Choi J, Kim YB, Kim JK, Park YN. (2004) Primary liver carcinoma of intermediate (hepatocyte-cholangiocyte) phenotype. J Hepatol; 40:298–304.

    Article  PubMed  CAS  Google Scholar 

  59. Theise ND, Yao JL, Harada K, Hytiroglou P, Portmann B, Thung SN, Tsui W, Ohta H, Nakanuma Y. (2003) Hepatic ‘stem cell’ malignancies in adults: four cases. Histopathology; 43:263–271.

    Article  PubMed  CAS  Google Scholar 

  60. Caussinus E, Hirth F. (2007) Asymmetric stem cell division in development and cancer. Prog Mol Subcell Biol; 45:205–225.

    Article  PubMed  CAS  Google Scholar 

  61. Wicha MS. (2008) Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res; 10:105.

    Article  PubMed  Google Scholar 

  62. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW. (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature; 431:1112–1117.

    Article  PubMed  CAS  Google Scholar 

  63. Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H. (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology; 44:240–251.

    Article  PubMed  CAS  Google Scholar 

  64. Zhu H, Dong H, Eksioglu E, Hemming A, Cao M, Crawford JM, Nelson DR, Liu C. (2007) Hepatitis C virus triggers apoptosis of a newly developed hepatoma cell line through antiviral defense system. Gastroenterology; 133:1649–1659.

    Article  PubMed  CAS  Google Scholar 

  65. Erba E, Ubezio P, Broggini M, Ponti M, D’Incalci M. (1988) DNA damage, cytotoxic effect and cell-cycle perturbation of Hoechst 33342 on L1210 cells in vitro. Cytometry; 9:1–6.

    Article  PubMed  CAS  Google Scholar 

  66. Tong QS, Zheng LD, Tang ST, Ruan QL, Liu Y, Li SW, Jiang GS, Cai JB. (2008) Expression and clinical significance of stem cell marker CD133 in human neuroblastoma. World J Pediatr; 4:58–62.

    Article  PubMed  Google Scholar 

  67. Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, Sesterhenn IA, McLeod DG, Srivastava S, Rhim JS. (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res; 67:3153–3161.

    Article  PubMed  CAS  Google Scholar 

  68. Yamada Y, Yokoyama S, Wang XD, Fukuda N, Takakura N. (2007) Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow nonhematopoietic cells to differentiate into cardiomyocytes. Stem Cells; 25:1326–1333.

    Article  PubMed  CAS  Google Scholar 

  69. Mizrak D, Brittan M, Alison MR. (2008) CD133: molecule of the moment. J Pathol; 214:3–9.

    Article  PubMed  CAS  Google Scholar 

  70. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun; 351:820–824.

    Article  PubMed  CAS  Google Scholar 

  71. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J. (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer; 120:1444–1450.

    Article  PubMed  CAS  Google Scholar 

  72. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology; 132:2542–2556.

    Article  PubMed  CAS  Google Scholar 

  73. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, Li ML, Tam KH, Lam CT, Poon RT, Fan ST. (2008) Identification of local and circulating cancer stem cells in human liver cancer. Hepatology; 47:919–928.

    Article  PubMed  CAS  Google Scholar 

  74. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST. (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell; 13:153–166.

    Article  PubMed  CAS  Google Scholar 

  75. Mishra L, Derynck R, Mishra B. (2005) Transforming growth factor-beta signaling in stem cells and cancer. Science; 310:68–71.

    Article  PubMed  CAS  Google Scholar 

  76. Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, Ressom HW, Rashid A, He AR, Mendelson JS, Jessup JM, Shetty K, Zasloff M, Mishra B, Reddy EP, Johnson L, Mishra L. (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci USA; 105:2445–2450.

    Article  PubMed  CAS  Google Scholar 

  77. Marrero JA. (2005) Hepatocellular carcinoma. Curr Opin Gastroenterol; 21:308–312.

    Article  PubMed  Google Scholar 

  78. Yovchev MI, Grozdanov PN, Joseph B, Gupta S, Dabeva MD. (2007) Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology; 245:139–149.

    Article  Google Scholar 

  79. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ. (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia; 20:857–869.

    Article  PubMed  CAS  Google Scholar 

  80. Okumoto K, Saito T, Hattori E, Ito JI, Adachi T, Takeda T, Sugahara K, Watanabe H, Saito K, Togashi H, Kawata S. (2003) Differentiation of bone marrow cells into cells that express liver-specific genes in vitro: implication of the Notch signals in differentiation. Biochem Biophys Res Commun; 304:691–695.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryon E. Petersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shupe, T., Petersen, B.E. (2009). Cancer Stem Cells: Hepatocellular Carcinoma. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_13

Download citation

Publish with us

Policies and ethics