Skip to main content

Part of the book series: Current Clinical Practice ((CCP))

  • 3201 Accesses

Abstract

Both the Diabetes Control and Complication Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have shown the importance of tight glycemic control in preventing microvascular disease and that the benefits of treatment were not a threshold at 6.5%, but a continuum, where further reductions in A1C levels below 6.5 continue to demonstrate benefit [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;317:703–713.

    Article  Google Scholar 

  2. Davis MD, Blodi BA. Proliferative diabetic retinopathy. In: Ryan SJ, Schachat AP, eds. Retina. Vol 2, 4th ed. St. Louis: Mosby, 2006:1285–1322.

    Google Scholar 

  3. Geslain Biquez C, Vol S, Tichet J, Caradec A, D’Hour A, Balkou B. The metabolic syndrome in smokers (The DESIR study). Diabetes Metab 2003;29(3):226–234.

    Article  PubMed  CAS  Google Scholar 

  4. American Diabetes Association. Diabetic retinopathy. Diabetes Care 2002;26 (suppl 1):S99–S102.

    Google Scholar 

  5. Boulton AJ. Treatment of symptomatic diabetic retinopathy. Diabetes Metab Res Rev 2003;29 (suppl 1):S16–S21.

    Article  Google Scholar 

  6. Chaturvedi N, Porta M, Klein R, Orchard T, Fuller J, Parvin HH, Bilous R. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type-1 diabetes. Lancet 2008;372:1394–1402.

    Article  PubMed  CAS  Google Scholar 

  7. Chaturvedi N, Sjolie AK, Stephenson JM. Effect of lisinopril on progression of retinopathy in normotensive people with type-1 diabetes. The EUCLID Study group. EURODIAB controlled trial of lisinopril in insulin dependent diabetes mellitus. Lancet 1998;351:28–31.

    Article  PubMed  CAS  Google Scholar 

  8. Sjolie AK, Klein R, Porta M. Effect of candesartan on progression and regression of retinopathy in type-2 diabetes (DIRECT-Protect 2). Lancet 2008;372:1385–1392.

    Article  PubMed  Google Scholar 

  9. Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. Ophthalmology 1991;98:766–785.

    Google Scholar 

  10. Aiello LP, Gardner TW, King GL, et al. Diabetic retinopathy. Diabetes Care 1998;21:143–156.

    PubMed  CAS  Google Scholar 

  11. Klein BD, Moss SE, Klein R, Surawicz TS. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XIII. Ophthalmology 1991;98:1261–1265.

    PubMed  CAS  Google Scholar 

  12. The Diabetes Control and Complications Trial Research Group. Four risk factors for severe visual loss in diabetic retinopathy: the third report of the Diabetic Retinopathy Study. Arch Ophthalmol 1979;97:654–655.

    Article  Google Scholar 

  13. Wolfe GI, Baroh RJ, et al. Painful neuropathy. Curr Treat Options Neurol 2002;4:177–188.

    Article  PubMed  Google Scholar 

  14. Vinik A. Diagnosis and management of diabetic neuropathy. Clin Geriatr Med 1999;15:293–320.

    PubMed  CAS  Google Scholar 

  15. Costa LA, Canani LH, Lisboa HR, Tres GS, Gross JL. Aggregation of features of the metabolic syndrome is associated with increased prevalence of chronic complications in type-2 diabetes. Diabet Med 2004;21;252–255.

    Article  PubMed  CAS  Google Scholar 

  16. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003;60:108–111.

    Article  PubMed  CAS  Google Scholar 

  17. Vinik AI, Park TS, Stransberry KB, Pittenger GL. Diabetic neuropathies. Diabetologia 2000;43:957–973.

    Article  PubMed  CAS  Google Scholar 

  18. Spruce MC, Potter J, et al. The pathogenesis and management of painful diabetic neuropathy: a review. Diabet Med 2003;20:88–98.

    Article  PubMed  CAS  Google Scholar 

  19. American Diabetes Association American Academy of Neurology. Consensus statement: report and recommendations of the San Antonio conference on diabetic neuropathy. Diabetes Care 1988;11:592–597.

    Google Scholar 

  20. Ewing DJ, Campbell IW, et al. The natural history of diabetic autonomic neuropathy. Q J Med 1980;49:95–108.

    PubMed  CAS  Google Scholar 

  21. Verne GN, Snisky CA. Diabetes and the gastrointestinal tract. Gastroenterol Clin North Am 1998;27:861–874.

    Article  PubMed  CAS  Google Scholar 

  22. Maser RE, Pfeifer MA, Dorman JS, Kuller LH, Becker DJ, Orchard TJ. Diabetic autonomic neuropathy and cardiovascular risk. Pittsburgh epidemiology of diabetes complications study. Arch Intern Med 1990;150(6):1218–1222.

    Article  PubMed  CAS  Google Scholar 

  23. Locatelli F, Del Vecchio L. How long can dialysis be postponed by low protein diet and ACE inhibitors. Nephrol Dial Transplant 1999;14:1360–1364.

    Article  PubMed  CAS  Google Scholar 

  24. American Diabetes Association. Diabetic nephropathy. Diabetes Care 2003;26 (suppl 1):S94–S98.

    Google Scholar 

  25. Kidney Disease Outcome Quality Initiative. Clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2002;39 (suppl 2):S1–S246.

    Google Scholar 

  26. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type-2 diabetes. BMJ 2004;328:1105–1108.

    Article  Google Scholar 

  27. Mogensen CE, et al. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diabetes Care 1995;18:572.

    PubMed  CAS  Google Scholar 

  28. Nambi V, Hoogwerf B, Sprecher D. Clev Clin J Med. 2002;9(12):985–989.

    Google Scholar 

  29. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39 (suppl 1):S1–S266.

    Google Scholar 

  30. Mattock MB, Morrish NJ, et al. Prospective study of microalbuminuria as a predictor of mortality in NIDDM. Diabetes 1992;41:736–741.

    Article  PubMed  CAS  Google Scholar 

  31. Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease: the case for TGF-beta as a key mediator. Diabetes 1995;94:1139–1146.

    Article  Google Scholar 

  32. Bakris GL. Microalbuminuria: prognostic implications. Curr Opin Nephrol Hypertens 1996;5:219–223.

    Article  PubMed  CAS  Google Scholar 

  33. Keane WF, Lyle PA. Recent advances in the management of type 2 diabetes and nephropathy: lessons from the RENAAL study. Am J Kidney Dis 2003;41 (3 suppl 1)S22–S25.

    Article  PubMed  Google Scholar 

  34. Brenner BM, Cooper ME, de Zeeuw D. Effects of losartan on renal and cardiovascular outcomes in patients with type-2 diabetes and nephropathy. The RENAAL Trial. N Engl J Med 2001;345:861–869.

    Article  PubMed  CAS  Google Scholar 

  35. Coats AJ. Angiotensin receptor blockers – finally the evidence is coming in: IDNT and RENAAL. Int J Cardiol 2001;79:99–102.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis EJ, Hunsicker LG, Clarke WR. Renoprotective effect of the angiotensin receptor antagonist irbesartan in patients with nephropathy due to type-2 diabetes. N Engl J Med 2001;345:851–860.

    Article  PubMed  CAS  Google Scholar 

  37. Lewis EJ, Hunsicker LG, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:851–860.

    Article  PubMed  CAS  Google Scholar 

  38. Malacco E, Santonastaso M, Vari N, Gargiulo A, Spagnuolo V, Bertocci F, Palodini P. Comparison of valsartan with lisinopril for the treatment of hypertension: the PREVAIL study. Clin Ther 2004;26(6):855–865.

    Article  PubMed  CAS  Google Scholar 

  39. Brenner BM, Cooper ME, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861–869.

    Article  PubMed  CAS  Google Scholar 

  40. Pedrini MT, et al. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal disease: a meta-analysis. Ann Intern Med 1996:124:627–632.

    Article  PubMed  CAS  Google Scholar 

  41. Anavekar NS, McMurray JJ, Velasquez EJ. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 2004;351(13):1285–1295.

    Article  PubMed  CAS  Google Scholar 

  42. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care 2002;25 (suppl 1):S33–S49.

    Google Scholar 

Supplementary Readings

  • Benjamin L. Glucose, VEGF-A, and diabetic complications. Am J Pathol 2001;158:1181–1184.

    Article  PubMed  CAS  Google Scholar 

  • Eddy A. Interstitial nephritis induced by protein overload proteinuria. Am J Pathol 1989;135:719–733.

    PubMed  CAS  Google Scholar 

  • Kendall DM, Harmel AP. The metabolic syndrome, type 2 diabetes, and cardiovascular disease: understanding the role of insulin resistance. Am J Manag Care 2002;8 (20 suppl):S635–S653.

    PubMed  Google Scholar 

  • Lovestam-Adrian M, et al. Diabetic retinopathy, visual acuity, and medical risk indicators. J Diabetes Complications 2001;15:287–294.

    Article  PubMed  CAS  Google Scholar 

  • Morgensen CE. Natural history of cardiovascular and renal disease in patients with type 2 diabetes: Effect of therapeutic interventions and risk modifications. Am J Cardiol 1998;82:4R–8R.

    Article  Google Scholar 

  • Valmadred CT, et al. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria with older onset diabetes mellitus. Arch Intern Med 2000;160:1093–1099.

    Article  Google Scholar 

  • Ziegler D, et al. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. Diabetes Care 1997;20:369–373.

    Article  PubMed  CAS  Google Scholar 

  • Zucchelli P, Zuccala A, et al. Comparison of the effects of ACE inhibitors and calcium channel blockers on the progression of renal failure. Nephrol Dial Transplant 1995;10 (suppl 9):46–51.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Diplomate American Board of Internal Medicine

Diplomate American Board of Clinical Lipidology

Diplomate American Board of Vascular Medicine

Clinical Hypertension Specialist (American Society of Hypertension Certified)

Vascular Ultrasound (American Registry of Diagnostic Sonography Certified)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Codario, R.A. (2011). Microvascular Disease. In: Type 2 Diabetes, Pre-Diabetes, and the Metabolic Syndrome. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-441-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-441-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-440-1

  • Online ISBN: 978-1-60327-441-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics