Skip to main content

Abstract

Since the early days of cardiovascular biology, it has been believed that mammalian adult cardiomyocytes exit from the cell cycle soon after birth, with the total number of cardiomyocytes being pre-determined. Recently, the identification of resident cardiac stem/progenitor cells by several independent laboratories has challenged this long-held paradigm and has provoked an exponential increase in the number of investigations. As a consequence, emerging evidence now supports a new theory in which the mammalian heart represents an organ at a dynamic cellular steady rate, with a constant, albeit low, rate of cellular turnover and the intrinsic ability to regenerate lost cells. If this is indeed the case, not only does it re-define myocardial biology, but it also suggests the potential to regenerate lost or diseased myocardium. To date, there is general agreement that adult hearts contain a population(s) of primitive cells that are capable of differentiating into functional myocytes, smooth muscle cells, and endothelial cells; however, what remains to be determined is the number, distribution, and origin of these cells. What also needs to be addressed is the relationship and/or overlap among cardiac stem/progenitor cell populations published thus far. Hopefully, a consensus in these regards will be reached with continued investigation. Note that this is an emerging field of investigation that is evolving at a rapid pace. Herein, we discuss the current views and up-to-date literature describing cardiac stem/progenitor cells with the understanding that this knowledge base will continue to advance and be refined in the days to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257(11):491–496

    Article  PubMed  CAS  Google Scholar 

  2. Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757

    Article  PubMed  CAS  Google Scholar 

  3. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 95(15):8801–8805

    Article  PubMed  CAS  Google Scholar 

  4. Kuhn B, del Monte F, Hajjar RJ et al (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13(8):962–969

    Article  PubMed  CAS  Google Scholar 

  5. Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530(1–3):239–243

    Article  PubMed  CAS  Google Scholar 

  6. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    Article  PubMed  CAS  Google Scholar 

  7. Asakura A, Rudnicki MA (2002) Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 30(11):1339–1345

    Article  PubMed  Google Scholar 

  8. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159(1):123–134

    Article  PubMed  CAS  Google Scholar 

  9. Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107(11):1395–1402

    Article  PubMed  CAS  Google Scholar 

  10. Martin CM, Meeson AP, Robertson SM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275

    Article  PubMed  CAS  Google Scholar 

  11. Pfister O, Mouquet F, Jain M et al (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61

    Article  PubMed  CAS  Google Scholar 

  12. Summer R, Kotton DN, Sun X, Ma B, Fitzsimmons K, Fine A (2003) Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol 285(1):L97–104

    PubMed  CAS  Google Scholar 

  13. Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401(6751):390–394

    PubMed  CAS  Google Scholar 

  14. Torrente Y, Tremblay JP, Pisati F et al (2001) Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 152(2):335–348

    Article  PubMed  CAS  Google Scholar 

  15. Sampaolesi M, Torrente Y, Innocenzi A et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492

    Article  PubMed  CAS  Google Scholar 

  16. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  PubMed  CAS  Google Scholar 

  17. Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436

    Article  PubMed  CAS  Google Scholar 

  18. Kolodziejczyk SM, Wang L, Balazsi K, DeRepentigny Y, Kothary R, Megeney LA (1999) MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr Biol 9(20):1203–1206

    Article  PubMed  CAS  Google Scholar 

  19. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  PubMed  CAS  Google Scholar 

  20. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318

    Article  PubMed  CAS  Google Scholar 

  21. Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034

    Article  PubMed  CAS  Google Scholar 

  22. Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20(1):11–20

    Article  PubMed  CAS  Google Scholar 

  23. Pfister O, Oikonomopoulos A, Sereti KI, et al. (2008) Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res. 103(8):825–835

    Google Scholar 

  24. Maliepaard M, Scheffer GL, Faneyte IF et al (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61(8):3458–3464

    PubMed  CAS  Google Scholar 

  25. Aronica E, Gorter JA, Redeker S et al (2005) Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia 46(6):849–857

    Article  PubMed  CAS  Google Scholar 

  26. Asashima T, Hori S, Ohtsuki S et al (2006) ATP-binding cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal capillary endothelial cells. Pharm Res 23(6):1235–1242

    Article  PubMed  CAS  Google Scholar 

  27. Sisodiya SM, Martinian L, Scheffer GL et al (2006) Vascular colocalization of P-glycoprotein, multidrug-resistance associated protein 1, breast cancer resistance protein and major vault protein in human epileptogenic pathologies. Neuropathol Appl Neurobiol 32(1):51–63

    Article  PubMed  CAS  Google Scholar 

  28. Zhang W, Mojsilovic-Petrovic J, Andrade MF, Zhang H, Ball M, Stanimirovic DB (2003) The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. Faseb J 17(14):2085–2087

    PubMed  Google Scholar 

  29. Meissner K, Heydrich B, Jedlitschky G et al (2006) The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem 54(2):215–221

    Article  PubMed  CAS  Google Scholar 

  30. Wada H, Matsuura K, Oyama T, Iwanaga K, Takahashi T, Goto T, Nagai T, Komuro I (2005) Homing and differentiation of intravenously transplanted cardiac side population cells in injured myocardium. Circulation 111:801

    Google Scholar 

  31. Oyama T, Nagai T, Wada H et al (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176(3):329–341

    Article  PubMed  CAS  Google Scholar 

  32. Mouquet F, Pfister O, Jain M et al (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97(11):1090–1092

    Article  PubMed  CAS  Google Scholar 

  33. Torella D, Ellison GM, Mendez-Ferrer S, Ibanez B, Nadal-Ginard B (2006) Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 3 Suppl 1:S8–13

    Article  PubMed  CAS  Google Scholar 

  34. Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073

    Article  PubMed  CAS  Google Scholar 

  35. Chen X, Wilson RM, Kubo H et al (2007) Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 100(4):536–544

    Article  PubMed  CAS  Google Scholar 

  36. Rota M, Hosoda T, De Angelis A et al (2007) The young mouse heart is composed of myocytes heterogeneous in age and function. Circ Res 101(4):387–399

    Article  PubMed  CAS  Google Scholar 

  37. Tateishi K, Ashihara E, Takehara N et al (2007) Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci 120(Pt 10):1791–1800

    Article  PubMed  CAS  Google Scholar 

  38. Zhang XB, Schwartz JL, Humphries RK, Kiem HP (2007) Effects of HOXB4 overexpression on ex vivo expansion and immortalization of hematopoietic cells from different species. Stem Cells 25(8):2074–2081

    Article  PubMed  CAS  Google Scholar 

  39. Cai CL, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889

    Article  PubMed  CAS  Google Scholar 

  40. Sun Y, Liang X, Najafi N et al (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304(1):286–296

    Article  PubMed  CAS  Google Scholar 

  41. Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653

    Article  PubMed  CAS  Google Scholar 

  42. Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic Isl1(+) progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6):1151–1165

    Google Scholar 

  43. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  PubMed  CAS  Google Scholar 

  44. Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921

    Article  PubMed  CAS  Google Scholar 

  45. Tomita Y, Matsumura K, Wakamatsu Y et al (2005) Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 170(7):1135–1146

    Article  PubMed  CAS  Google Scholar 

  46. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908

    Article  PubMed  CAS  Google Scholar 

  47. Theise ND, d’Inverno M (2004) Understanding cell lineages as complex adaptive systems. Blood Cells Mol Dis 32(1):17–20

    Article  PubMed  Google Scholar 

  48. Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22(4):487–500

    Article  PubMed  Google Scholar 

  49. Lakshmipathy U, Verfaillie C (2005) Stem cell plasticity. Blood Rev 19(1):29–38

    Article  PubMed  Google Scholar 

  50. Quesenberry PJ, Abedi M, Aliotta J et al (2004) Stem cell plasticity: an overview. Blood Cells Mol Dis 32(1):1–4

    Article  PubMed  CAS  Google Scholar 

  51. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297(5590):2256–2259

    Article  PubMed  CAS  Google Scholar 

  52. Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  PubMed  CAS  Google Scholar 

  53. Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116(5):639–648

    Article  PubMed  CAS  Google Scholar 

  54. Eberhard D, Jockusch H (2005) Patterns of myocardial histogenesis as revealed by mouse chimeras. Dev Biol 278(2):336–346

    Article  PubMed  CAS  Google Scholar 

  55. Fazel S, Cimini M, Chen L et al (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116(7):1865–1877

    Article  PubMed  CAS  Google Scholar 

  56. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Article  PubMed  CAS  Google Scholar 

  57. Urbanek K, Cesselli D, Rota M et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A 103(24):9226–9231

    Article  PubMed  CAS  Google Scholar 

  58. Priestley GV, Scott LM, Ulyanova T, Papayannopoulou T (2006) Lack of alpha4 integrin expression in stem cells restricts competitive function and self-renewal activity. Blood 107(7):2959–2967

    Article  PubMed  CAS  Google Scholar 

  59. Shinoda G, Umeda K, Heike T et al (2007) alpha4-Integrin(+) endothelium derived from primate embryonic stem cells generates primitive and definitive hematopoietic cells. Blood 109(6):2406–2415

    Article  PubMed  CAS  Google Scholar 

  60. Rhyu MS, Jan LY, Jan YN (1994) Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76(3):477–491

    Article  PubMed  CAS  Google Scholar 

  61. Jan YN, Jan LY (1998) Asymmetric cell division. Nature 392(6678):775–778

    Article  PubMed  CAS  Google Scholar 

  62. Berdnik D, Torok T, Gonzalez-Gaitan M, Knoblich JA (2002) The endocytic protein alpha-adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 3(2):221–231

    Article  PubMed  CAS  Google Scholar 

  63. Santolini E, Puri C, Salcini AE et al (2000) Numb is an endocytic protein. J Cell Biol 151(6):1345–1352

    Article  PubMed  CAS  Google Scholar 

  64. Hsieh PC, Segers VF, Davis ME et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974

    Article  PubMed  CAS  Google Scholar 

  65. Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294 (Pt 1):271–278

    PubMed  CAS  Google Scholar 

  66. Litvin J, Zhu S, Norris R, Markwald R (2005) Periostin family of proteins: therapeutic targets for heart disease. Anat Rec A Discov Mol Cell Evol Biol 287(2):1205–1212

    PubMed  Google Scholar 

  67. Butcher JT, Norris RA, Hoffman S, Mjaatvedt CH, Markwald RR (2007) Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Dev Biol 302(1):256–266

    Article  PubMed  CAS  Google Scholar 

  68. Wang D, Oparil S, Feng JA et al (2003) Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42(1):88–95

    Article  PubMed  CAS  Google Scholar 

  69. Lindner V, Wang Q, Conley BA, Friesel RE, Vary CP (2005) Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol 25(1):77–83

    PubMed  CAS  Google Scholar 

  70. Stanton LW, Garrard LJ, Damm D et al (2000) Altered patterns of gene expression in response to myocardial infarction. Circ Res 86(9):939–945

    Article  PubMed  CAS  Google Scholar 

  71. Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14(3):261–271

    PubMed  CAS  Google Scholar 

  72. Nakazawa T, Nakajima A, Seki N et al (2004) Gene expression of periostin in the early stage of fracture healing detected by cDNA microarray analysis. J Orthop Res 22(3):520–525

    Article  PubMed  CAS  Google Scholar 

  73. Engel FB, Schebesta M, Duong MT et al (2005) p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19(10):1175–1187

    Article  PubMed  CAS  Google Scholar 

  74. Norris RA, Damon B, Mironov V et al (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101(3):695–711

    Article  PubMed  CAS  Google Scholar 

  75. Oka T, Xu J, Kaiser RA et al (2007) Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101(3):313–321

    Article  PubMed  CAS  Google Scholar 

  76. Litvin J, Blagg A, Mu A et al (2006) Periostin and periostin-like factor in the human heart: possible therapeutic targets. Cardiovasc Pathol 15(1):24–32

    Article  PubMed  CAS  Google Scholar 

  77. Katsuragi N, Morishita R, Nakamura N et al (2004) Periostin as a novel factor responsible for ventricular dilation. Circulation 110(13):1806–1813

    Article  PubMed  CAS  Google Scholar 

  78. Anversa P, Rota M, Urbanek K et al (2005) Myocardial aging--a stem cell problem. Basic Res Cardiol 100(6):482–493

    Article  PubMed  CAS  Google Scholar 

  79. Olivetti G, Cigola E, Maestri R et al (1996) Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28(7):1463–1477

    Article  PubMed  CAS  Google Scholar 

  80. Olivetti G, Giordano G, Corradi D et al (1995) Gender differences and aging: effects on the human heart. J Am Coll Cardiol 26(4):1068–1079

    Article  PubMed  CAS  Google Scholar 

  81. Olivetti G, Melissari M, Capasso JM, Anversa P (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68(6):1560–1568

    Article  PubMed  CAS  Google Scholar 

  82. Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141

    Article  PubMed  CAS  Google Scholar 

  83. Guerra S, Leri A, Wang X et al (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85(9):856–866

    Article  PubMed  CAS  Google Scholar 

  84. Blasco MA, Hahn WC (2003) Evolving views of telomerase and cancer. Trends Cell Biol 13(6):289–294

    Article  PubMed  CAS  Google Scholar 

  85. Leri A, Malhotra A, Liew CC, Kajstura J, Anversa P (2000) Telomerase activity in rat cardiac myocytes is age and gender dependent. J Mol Cell Cardiol 32(3):385–390

    Article  PubMed  CAS  Google Scholar 

  86. Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302(5650):1575–1577

    Article  PubMed  CAS  Google Scholar 

  87. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764

    Article  PubMed  CAS  Google Scholar 

  88. Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810

    Article  PubMed  CAS  Google Scholar 

  89. Menasche P, Hagege AA, Scorsin M et al (2001) Myoblast transplantation for heart failure. Lancet 357(9252):279–280

    Article  PubMed  CAS  Google Scholar 

  90. Assmus B, Honold J, Schachinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355(12):1222–1232

    Article  PubMed  CAS  Google Scholar 

  91. Assmus B, Schachinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24):3009–3017

    Article  PubMed  Google Scholar 

  92. Chen SL, Fang WW, Qian J et al (2004) Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl) 117(10):1443–1448

    Google Scholar 

  93. Fuchs S, Baffour R, Zhou YF et al (2001) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37(6):1726–1732

    Article  PubMed  CAS  Google Scholar 

  94. Janssens S, Dubois C, Bogaert J et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121

    Article  PubMed  Google Scholar 

  95. Lunde K, Solheim S, Aakhus S et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355(12):1199–1209

    Article  PubMed  CAS  Google Scholar 

  96. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Forfang K (2005) Autologous stem cell transplantation in acute myocardial infarction: The ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J 39(3):150–158

    Article  PubMed  CAS  Google Scholar 

  97. Meyer GP, Wollert KC, Lotz J et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10):1287–1294

    Article  PubMed  Google Scholar 

  98. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Holschermann H, Yu J, Corti R, Mathey D, Susellbeck T, Assmus B,Tonn T, Dimmeler S, Zeiher AM (2006) Intracoronary infusion of bone-marrow-derived progenitor cells is associated with improved clinical outcome in patients with acute myocardial infarction: 12 months follow up of the REPAR-AMI trial. Circulation 114:II-787

    Google Scholar 

  99. Schachinger V, Assmus B, Britten MB et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44(8):1690–1699

    Article  PubMed  Google Scholar 

  100. Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221

    Article  PubMed  CAS  Google Scholar 

  101. Schachinger V, Tonn T, Dimmeler S, Zeiher AM (2006) Bone-marrow-derived progenitor cell therapy in need of proof of concept: design of the REPAIR-AMI trial. Nat Clin Pract Cardiovasc Med 3 Suppl 1:S23–28

    Article  PubMed  Google Scholar 

  102. Stamm C, Kleine HD, Westphal B et al (2004) CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg 52(3):152–158

    Article  PubMed  CAS  Google Scholar 

  103. Stamm C, Westphal B, Kleine HD et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351):45–46

    Article  PubMed  Google Scholar 

  104. Strauer BE, Brehm M, Zeus T et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  PubMed  Google Scholar 

  105. Jolicoeur EM, Granger CB, Fakunding JL et al (2007) Bringing cardiovascular cell-based therapy to clinical application: perspectives based on a National Heart, Lung, and Blood Institute Cell Therapy Working Group meeting. Am Heart J 153(5):732–742

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants funding from the National Institutes of Health (RL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronglih Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liao, R., Sohn, R.L. (2010). Cardiac Stem and Progenitor Cells. In: Giordano, A., Galderisi, U. (eds) Cell Cycle Regulation and Differentiation in Cardiovascular and Neural Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-153-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-153-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-152-3

  • Online ISBN: 978-1-60327-153-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics