Skip to main content

Signaling Pathways in Cancer

  • Chapter
Principles of Molecular Oncology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Balazsi G, Oltvai ZN. Sensing your surroundings: How transcription-regulatory networks of the cell discern environmental signals. Sci STKE 2005;2005:pe20.

    Article  PubMed  Google Scholar 

  2. 2. Schneper L, Duvel K, Broach JR. Sense and sensibility: Nutritional response and signal integration in yeast. Curr Opin Microbiol 2004;7:624–630.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Schwartz MA, Madhani HD. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 2004;38:725–748.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Field GD, Sampath AP, Rieke F. Retinal processing near absolute threshold: From behavior to mechanism. Annu Rev Physiol 2005;67:491–514.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Komiyama T, Luo L. Development of wiring specificity in the olfactory system. Curr Opin Neurobiol 2006;16:67–73.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Miesenbock G, Kevrekidis IG. Optical imaging and control of genetically designated neurons in functioning circuits. Annu Rev Neurosci 2005;28:533–563.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Ronnett GV, Moon C. G proteins and olfactory signal transduction. Annu Rev Physiol 2002;64:189–222.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Crozatier M, Glise B, Vincent A. Connecting Hh, Dpp and EGF signalling in patterning of the Drosophila wing; the pivotal role of collier/knot in the AP organiser. Development 2002;129:4261–4269.

    PubMed  CAS  Google Scholar 

  9. 9. Grammont M, Irvine KD. Organizer activity of the polar cells during Drosophila oogenesis. Development 2002;129:5131–5140.

    PubMed  CAS  Google Scholar 

  10. 10. Irvine KD, Rauskolb C. Boundaries in development: Formation and function. Annu Rev Cell Dev Biol 2001;17:189–214.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Nagaraj R, Banerjee U. The little R cell that could. Int J Dev Biol 2004;48:755–760.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Shilo BZ. Regulating the dynamics of EGF receptor signaling in space and time. Development 2005;132:4017–4027.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Skeath JB, Thor S. Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 2003;13:8–15.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Bray SJ. Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol 2006;7:678–689.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Freeman M. Feedback control of intercellular signalling in development. Nature 2000;408:313–319.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 2002;7(12):1191–204.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127:469–480.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003;5:367–377.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Wang HY, Malbon CC. Wnt signaling, Ca2+, and cyclic GMP: Visualizing Frizzled functions. Science 2003;300:1529–1530.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Dominguez M, Casares F. Organ specification-growth control connection: New in-sights from the Drosophila eye-antennal disc. Dev Dyn 2005;232:673–684.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Mahadeo DC, Parent CA. Signal relay during the life cycle of Dictyostelium. Curr Top Dev Biol 2006;73:115–140.

    Article  PubMed  CAS  Google Scholar 

  22. 22. McGlinn E, Tabin CJ. Mechanistic insight into how Shh patterns the vertebrate limb. Curr Opin Genet Dev 2006;16:426-432.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Silver SJ, Rebay I. Signaling circuitries in development: Insights from the retinal determination gene network. Development 2005;132:3–13.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Tabata T, Takei Y. Morphogens, their identification and regulation. Development 2004;131:703–712.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Eldar A, Shilo BZ, Barkai N. Elucidating mechanisms underlying robustness of morphogen gradients. Curr Opin Genet Dev 2004;14:435–439.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Baylies MK, Michelson AM. Invertebrate myogenesis: Looking back to the future of muscle development. Curr Opin Genet Dev 2001;11:431–439.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Glise B, Jones DL, Ingham PW. Notch and Wingless modulate the response of cells to Hedgehog signalling in the Drosophila wing. Dev Biol 2002;248:93–106.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Nishita M, Hashimoto MK, Ogata S, et al. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann's organizer. Nature 2000;403:781–785.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Chen CK. The vertebrate phototransduction cascade: Amplification and termination mechanisms. Rev Physiol Biochem Pharmacol 2005;154:101–121.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 2002;115:455–465.

    PubMed  CAS  Google Scholar 

  31. 31. Li Y, Baker NE. The roles of cis-inactivation by Notch ligands and of neuralized during eye and bristle patterning in Drosophila. BMC Dev Biol 2004;4:5.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Freeman M. Eye development: Stable cell fate decisions in insect colour vision. Curr Biol 2005;15:R924–926.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Hornstein E, Shomron N. Canalization of development by microRNAs. Nat Genet 2006;38 Suppl:S20–S24.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006;20:1123–1136.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 2006;38:896–903.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: A coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 2006;20:1405–1428.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Arvanitis C, Felsher DW. Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin Cancer Biol 2006;16:313–317.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 2006;443:214–217.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Mao J, Ligon KL, Rakhlin EY, et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 2006;66:10171–10178.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Marusyk A, Degregori J. Building a better model of cancer. Cell Div 2006;1:24.

    Article  PubMed  Google Scholar 

  41. 41. Dalerba P, Cho RW, Clarke MF. Cancer Stem Cells: Models and Concepts. Annu Rev Med 2007;58:267–284.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–111.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983–3988.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Jordan CT. Searching for leukemia stem cells–not yet the end of the road? Cancer Cell 2006;10:253–254.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Brawley C, Matunis E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 2004;304:1331–1334.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Kai T, Spradling A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 2004;428:564–569.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006;442:818–822.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci USA 2003;100:776–781.

    Article  PubMed  CAS  Google Scholar 

  50. 50. Nowell PC. Tumor progression: A brief historical perspective. Semin Cancer Biol 2002;12:261–266.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004;10:789–799.

    Article  PubMed  CAS  Google Scholar 

  52. 52. Rangarajan A, Weinberg RA. Opinion: Comparative biology of mouse versus human cells: Modelling human cancer in mice. Nat Rev Cancer 2003;3:952–959.

    Article  PubMed  CAS  Google Scholar 

  53. 53. Wang TL, Rago C, Silliman N, et al. Prevalence of somatic alterations in the colorectal cancer cell genome. Proc Natl Acad Sci U S A 2002;99:3076–3080.

    Article  PubMed  CAS  Google Scholar 

  54. 54. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998;396:643–649.

    Article  PubMed  CAS  Google Scholar 

  55. 55. Bodmer WF. Cancer genetics: Colorectal cancer as a model. J Hum Genet 2006;51:391-396.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Donahue SL, Lin Q, Cao S, Ruley HE. Carcinogens induce genome-wide loss of heterozygosity in normal stem cells without persistent chromosomal instability. Proc Natl Acad Sci USA 2006;103:11642–11646.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Duesberg P, Li R, Fabarius A, Hehlmann R. The chromosomal basis of cancer. Cell Oncol 2005;27:293–318.

    PubMed  CAS  Google Scholar 

  58. 58. Marx J. Debate surges over the origins of genomic defects in cancer. Science 2002;297:544–546.

    Article  PubMed  CAS  Google Scholar 

  59. 59. Maser RS, DePinho RA. Connecting chromosomes, crisis, and cancer. Science 2002;297:565–569.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Pihan G, Doxsey SJ. Mutations and aneuploidy: Co-conspirators in cancer? Cancer Cell 2003;4:89–94.

    Article  PubMed  CAS  Google Scholar 

  61. 61. Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2002;2:910–917.

    Article  PubMed  CAS  Google Scholar 

  62. 62. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002;1602:73–87.

    PubMed  CAS  Google Scholar 

  63. 63. Sherr CJ. The Pezcoller lecture: Cancer cell cycles revisited. Cancer Res 2000;60:3689–3695.

    PubMed  CAS  Google Scholar 

  64. 64. Weissman I. Stem cell research: paths to cancer therapies and regenerative medicine. Jama 2005;294:1359–1366.

    Article  PubMed  CAS  Google Scholar 

  65. 65. Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 2006;124:1241–1253.

    Article  PubMed  CAS  Google Scholar 

  66. 66. Caussinus E, Gonzalez C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 2005;37:1125–1129.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Lee CY, Robinson KJ, Doe CQ. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 2006;439:594–598.

    Article  PubMed  CAS  Google Scholar 

  68. 68. Lee CY, Wilkinson BD, Siegrist SE, Wharton RP, Doe CQ. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell 2006;10:441–449.

    Article  PubMed  CAS  Google Scholar 

  69. 69. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006;441:1068–1074.

    Article  PubMed  CAS  Google Scholar 

  70. 70. Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 2005;437:894–897.

    Article  PubMed  CAS  Google Scholar 

  71. 71. Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: Stem cells, signals and combinatorial control. Nat Rev Genet 2006;7:349–359.

    Article  PubMed  CAS  Google Scholar 

  72. 72. Stecca B, Ruiz i Altaba A. Brain as a paradigm of organ growth: Hedgehog-Gli signaling in neural stem cells and brain tumors. J Neurobiol 2005;64:476–490.

    Article  PubMed  CAS  Google Scholar 

  73. 73. Zhang Y, Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 2001;410:599–604.

    Article  PubMed  CAS  Google Scholar 

  74. 74. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000;290:328–330.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Calabrese P, Tavare S, Shibata D. Pretumor progression: Clonal evolution of human stem cell populations. Am J Pathol 2004;164:1337–1346.

    Article  PubMed  Google Scholar 

  76. 76. Leedham SJ, Schier S, Thliveris AT, Halberg RB, Newton MA, Wright NA. From gene mutations to tumours–stem cells in gastrointestinal carcinogenesis. Cell Prolif 2005;38:387–405.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Thliveris AT, Halberg RB, Clipson L, et al. Polyclonality of familial murine adenomas: Analyses of mouse chimeras with low tumor multiplicity suggest short-range interactions. Proc Natl Acad Sci U S A 2005;102:6960–6965.

    Article  PubMed  CAS  Google Scholar 

  78. 78. Ting AH, McGarvey KM, Baylin SB. The cancer epigenome–components and functional correlates. Genes Dev 2006;20:3215–3231.

    Article  PubMed  CAS  Google Scholar 

  79. 79. Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM, 3rd, Jaenisch R. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 2005;8:275–285.

    Article  PubMed  CAS  Google Scholar 

  80. 80. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 2004;38:413–443.

    Article  PubMed  CAS  Google Scholar 

  81. 81. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006;6:107–116.

    Article  PubMed  CAS  Google Scholar 

  82. 82. Hwang HC, Clurman BE. Cyclin E in normal and neoplastic cell cycles. Oncogene 2005;24:2776–2786.

    Article  PubMed  CAS  Google Scholar 

  83. 83. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005;30:630–641.

    Article  PubMed  CAS  Google Scholar 

  84. 84. Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev 2004;18:2699–2711.

    Article  PubMed  CAS  Google Scholar 

  85. 85. Dimova DK, Dyson NJ. The E2F transcriptional network: Old acquaintances with new faces. Oncogene 2005;24:2810–2826.

    Article  PubMed  CAS  Google Scholar 

  86. 86. Knudsen ES, Knudsen KE. Retinoblastoma tumor suppressor: Where cancer meets the cell cycle. Exp Biol Med (Maywood) 2006;231:1271-1281.

    Google Scholar 

  87. 87. Hinds PW. A confederacy of kinases: Cdk2 and Cdk4 conspire to control embryonic cell proliferation. Mol Cell 2006;22:432–433.

    Article  PubMed  CAS  Google Scholar 

  88. 88. Murray AW. Recycling the cell cycle: Cyclins revisited. Cell 2004;116:221–234.

    Article  PubMed  CAS  Google Scholar 

  89. 89. Welcker M, Clurman B. Cell cycle: How cyclin E got its groove back. Curr Biol 2005;15:R810–812.

    Article  PubMed  CAS  Google Scholar 

  90. 90. DeGregori J, Johnson DG. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 2006;6:739–748.

    PubMed  CAS  Google Scholar 

  91. 91. Guardavaccaro D, Pagano M. Stabilizers and destabilizers controlling cell cycle oscillators. Mol Cell 2006;22:1–4.

    Article  PubMed  CAS  Google Scholar 

  92. 92. Johnson DG, Degregori J. Putting the oncogenic and tumor suppressive activities of E2F into context. Curr Mol Med 2006;6:731–738.

    PubMed  CAS  Google Scholar 

  93. 93. Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: All for one or one for all. Nat Rev Mol Cell Biol 2006;7:667–677.

    Article  PubMed  CAS  Google Scholar 

  94. 94. Sherr CJ. Divorcing ARF and p53: An unsettled case. Nat Rev Cancer 2006;6:663–673.

    Article  PubMed  CAS  Google Scholar 

  95. 95. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature 2004;432:307–315.

    Article  PubMed  CAS  Google Scholar 

  96. 96. Reis T, Edgar BA. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell 2004;117:253–264.

    Article  PubMed  CAS  Google Scholar 

  97. 97. Hariharan IK, Bilder D. Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. Annu Rev Genet 2006;40:335–361.

    Article  PubMed  CAS  Google Scholar 

  98. 98. Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006;126:955–968.

    Article  PubMed  CAS  Google Scholar 

  99. 99. Frei C, Edgar BA. Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth. Dev Cell 2004;6:241–251.

    Article  PubMed  CAS  Google Scholar 

  100. 100. de la Cova C, Johnston LA. Myc in model organisms: A view from the flyroom. Semin Cancer Biol 2006;16:303–312.

    Article  CAS  Google Scholar 

  101. 101. Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 2005;7:295–302.

    Article  PubMed  CAS  Google Scholar 

  102. 102. Edgar BA. From cell structure to transcription: Hippo forges a new path. Cell 2006;124:267–273.

    Article  PubMed  CAS  Google Scholar 

  103. 103. Hariharan IK. Growth regulation: A beginning for the hippo pathway. Curr Biol 2006;16:R1037–R1039.

    Article  PubMed  CAS  Google Scholar 

  104. 104. Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 2006;126:767–774.

    Article  PubMed  CAS  Google Scholar 

  105. 105. Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD. Delineation of a Fat tumor suppressor pathway. Nat Genet 2006;38:1142–1150.

    Article  PubMed  CAS  Google Scholar 

  106. 106. Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004;116:205–219.

    Article  PubMed  CAS  Google Scholar 

  107. 107. Narita M, Lowe SW. Senescence comes of age. Nat Med 2005;11:920–922.

    Article  PubMed  CAS  Google Scholar 

  108. 108. Narita M, Narita M, Krizhanovsky V, et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 2006;126:503–514.

    Article  PubMed  CAS  Google Scholar 

  109. 109. Harris SL, Levine AJ. The p53 pathway: Positive and negative feedback loops. Oncogene 2005;24:2899–2908.

    Article  PubMed  CAS  Google Scholar 

  110. 110. Johnston LA, Gallant P. Control of growth and organ size in Drosophila. Bioessays 2002;24:54–64.

    Article  PubMed  CAS  Google Scholar 

  111. 111. Vidal M, Cagan RL. Drosophila models for cancer research. Curr Opin Genet Dev 2006;16:10–16.

    Article  PubMed  CAS  Google Scholar 

  112. 112. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila myc regulates organ size by inducing cell competition. Cell 2004;117:107–116.

    Article  Google Scholar 

  113. 113. Moreno E, Basler K. dMyc transforms cells into super-competitors. Cell 2004;117:117–129.

    Article  PubMed  CAS  Google Scholar 

  114. 114. Rogulja D, Irvine KD. Regulation of cell proliferation by a morphogen gradient. Cell 2005;123:449–461.

    Article  PubMed  CAS  Google Scholar 

  115. 115. Perez-Garijo A, Martin FA, Struhl G, Morata G. Dpp signaling and the induction of neoplastic tumors by caspase-inhibited apoptotic cells in Drosophila. Proc Natl Acad Sci U S A 2005;102:17664–17669.

    Article  PubMed  CAS  Google Scholar 

  116. 116. Ryoo HD, Gorenc T, Steller H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 2004;7:491–501.

    Article  PubMed  CAS  Google Scholar 

  117. 117. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006;7:359–371.

    Article  PubMed  CAS  Google Scholar 

  118. 118. Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006;441:437–443.

    Article  PubMed  CAS  Google Scholar 

  119. 119. Christofori G. New signals from the invasive front. Nature 2006;441:444–450.

    Article  PubMed  CAS  Google Scholar 

  120. 120. Kang Y, Massague J. Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell 2004;118:277–279.

    Article  PubMed  CAS  Google Scholar 

  121. 121. Li X, Deng W, Nail CD, et al. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 2006;25:609–621.

    PubMed  CAS  Google Scholar 

  122. 122. Martin GS. Fly Src: The Yin and Yang of tumor invasion and tumor suppression. Cancer Cell 2006;9:4–6.

    Article  PubMed  CAS  Google Scholar 

  123. 123. Qin Y, Capaldo C, Gumbiner BM, Macara IG. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 2005;171:1061–1071.

    Article  PubMed  CAS  Google Scholar 

  124. 124. Mehlen P, Puisieux A. Metastasis: A question of life or death. Nat Rev Cancer 2006;6:449–458.

    Article  PubMed  CAS  Google Scholar 

  125. 125. Arbouzova NI, Zeidler MP. JAK/STAT signalling in Drosophila: Insights into conserved regulatory and cellular functions. Development 2006;133:2605–2616.

    Article  PubMed  CAS  Google Scholar 

  126. 126. Citri A, Yarden Y. EGF-ERBB signalling: Towards the systems level. Nat Rev Mol Cell Biol 2006;7:505–516.

    Article  PubMed  CAS  Google Scholar 

  127. 127. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: Mechanisms of activation and signalling. Exp Cell Res 2003;284:31–53.

    Article  PubMed  CAS  Google Scholar 

  128. 128. Schlessinger J. Signal transduction. Autoinhibition control. Science 2003;300:750–752.

    Article  PubMed  CAS  Google Scholar 

  129. 129. Schlessinger J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 2004;306:1506–1507.

    Article  PubMed  CAS  Google Scholar 

  130. 130. Oldham S, Hafen E. Insulin/IGF and target of rapamycin signaling: A TOR de force in growth control. Trends Cell Biol 2003;13:79–85.

    Article  PubMed  CAS  Google Scholar 

  131. 131. Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999;97:727–741.

    Article  PubMed  CAS  Google Scholar 

  132. 132. Hill CS, Treisman R. Growth factors and gene expression: Fresh insights from arrays. Sci STKE 1999;1999:PE1.

    Article  PubMed  CAS  Google Scholar 

  133. 133. Murphy LO, Blenis J. MAPK signal specificity: The right place at the right time. Trends Biochem Sci 2006;31:268–275.

    Article  PubMed  CAS  Google Scholar 

  134. 134. Rodriguez-Viciana P, Tetsu O, Oda K, Okada J, Rauen K, McCormick F. Cancer targets in the Ras pathway. Cold Spring Harb Symp Quant Biol 2005;70:461–467.

    Article  PubMed  CAS  Google Scholar 

  135. 135. Schreck R, Rapp UR. Raf kinases: Oncogenesis and drug discovery. Int J Cancer 2006;119:2261–2271.

    Article  PubMed  CAS  Google Scholar 

  136. 136. Weston CR, Lambright DG, Davis RJ. Signal transduction. MAP kinase signaling specificity. Science 2002;296:2345–2347.

    Article  PubMed  CAS  Google Scholar 

  137. 137. Tootle TL, Rebay I. Post-translational modifications influence transcription factor activity: A view from the ETS superfamily. Bioessays 2005;27:285–298.

    Article  PubMed  CAS  Google Scholar 

  138. 138. Roux PP, Richards SA, Blenis J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol 2003;23:4796–4804.

    Article  PubMed  CAS  Google Scholar 

  139. 139. Murphy LO, MacKeigan JP, Blenis J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 2004;24:144–153.

    Article  PubMed  CAS  Google Scholar 

  140. 140. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002;2:103–112.

    Article  PubMed  CAS  Google Scholar 

  141. 141. Massague J. G1 cell-cycle control and cancer. Nature 2004;432:298–306.

    Article  PubMed  CAS  Google Scholar 

  142. 142. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002;4:E131–E136.

    Article  PubMed  CAS  Google Scholar 

  143. 143. Anjum R, Roux PP, Ballif BA, Gygi SP, Blenis J. The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol 2005;15:1762–1767.

    Article  PubMed  CAS  Google Scholar 

  144. 144. Shahbazian D, Roux PP, Mieulet V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. Embo J 2006;25:2781–2791.

    Article  PubMed  CAS  Google Scholar 

  145. 145. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006;441:424–430.

    Article  PubMed  CAS  Google Scholar 

  146. 146. Ruggero D, Sonenberg N. The Akt of translational control. Oncogene 2005;24:7426–7434.

    Article  PubMed  CAS  Google Scholar 

  147. 147. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006;124:471–484.

    Article  PubMed  CAS  Google Scholar 

  148. 148. Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med 2005;11(8):353–361.

    Article  PubMed  CAS  Google Scholar 

  149. 149. Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 2005;280:32081–32089.

    Article  PubMed  CAS  Google Scholar 

  150. 150. Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell 2003;4:257–262.

    Article  PubMed  CAS  Google Scholar 

  151. 151. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 2006;314:467–471.

    Article  PubMed  CAS  Google Scholar 

  152. 152. Neufeld TP. Body building: Regulation of shape and size by PI3K/ TOR signaling during development. Mech Dev 2003;120:1283–1296.

    Article  PubMed  CAS  Google Scholar 

  153. 153. Hafen E, Stocker H. How are the sizes of cells, organs, and bodies controlled? PLoS Biol 2003;1:E86.

    Article  PubMed  Google Scholar 

  154. 154. Prober DA, Edgar BA. Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing. Genes Dev 2002;16:2286–2299.

    Article  PubMed  CAS  Google Scholar 

  155. 155. Rane SG, Reddy EP. JAKs, STATs and Src kinases in hematopoiesis. Oncogene 2002;21:3334–3358.

    Article  PubMed  CAS  Google Scholar 

  156. 156. Schulze-Luehrmann J, Ghosh S. Antigen-receptor signaling to nuclear factor kappa B. Immunity 2006;25:701–715.

    Article  PubMed  CAS  Google Scholar 

  157. 157. Turner SD, Alexander DR. Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells. Leukemia 2006;20:572–582.

    Article  PubMed  CAS  Google Scholar 

  158. 158. Weil R, Israel A. Deciphering the pathway from the TCR to NF-kappaB. Cell Death Differ 2006;13:826–833.

    Article  PubMed  CAS  Google Scholar 

  159. 159. Giannone G, Sheetz MP. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 2006;16:213–223.

    Article  PubMed  CAS  Google Scholar 

  160. 160. Gilcrease MZ. Integrin signaling in epithelial cells. Cancer Lett 2007;247:1–25.

    Article  PubMed  CAS  Google Scholar 

  161. 161. Gavi S, Shumay E, Wang HY, Malbon CC. G-protein-coupled receptors and tyrosine kinases: Crossroads in cell signaling and regulation. Trends Endocrinol Metab 2006;17:48–54.

    Article  PubMed  CAS  Google Scholar 

  162. 162. Hupfeld CJ, Olefsky JM. Regulation of receptor tyrosine kinase signaling by GRKs and beta-arrestins. Annu Rev Physiol 2007; 69:561–577.

    Article  PubMed  CAS  Google Scholar 

  163. 163. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005;121:179–193.

    Article  PubMed  CAS  Google Scholar 

  164. 164. Rodriguez-Viciana P, Sabatier C, McCormick F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol 2004;24:4943–4954.

    Article  PubMed  CAS  Google Scholar 

  165. 165. Todaro GJ. Autocrine secretion of peptide growth factors by tumor cells. Natl Cancer Inst Monogr 1982;60:139–147.

    PubMed  CAS  Google Scholar 

  166. 166. Schulze A, Nicke B, Warne PH, Tomlinson S, Downward J. The transcriptional response to Raf activation is almost completely dependent on mitogen-activated protein kinase activity and shows a major autocrine component. Mol Biol Cell 2004;15:3450–3463.

    Article  PubMed  CAS  Google Scholar 

  167. 167. Haber DA, Bell DW, Sordella R, et al. Molecular targeted therapy of lung cancer: EGFR mutations and response to EGFR inhibitors. Cold Spring Harb Symp Quant Biol 2005;70:419–426.

    Article  PubMed  CAS  Google Scholar 

  168. 168. Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 2006;20:1496–1510.

    Article  PubMed  CAS  Google Scholar 

  169. 169. Jabbour E, Cortes J, Kantarjian H. Novel tyrosine kinase inhibitors in chronic myelogenous leukemia. Curr Opin Oncol 2006;18:578–583.

    Article  PubMed  CAS  Google Scholar 

  170. 170. Ji H, Sharpless NE, Wong KK. EGFR targeted therapy: View from biological standpoint. Cell Cycle 2006;5:2072–2076.

    Article  PubMed  CAS  Google Scholar 

  171. 171. Samuels Y, Diaz LA, Jr., Schmidt-Kittler O, et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005;7:561–573.

    Article  PubMed  CAS  Google Scholar 

  172. 172. Bergmann A, Tugentman M, Shilo BZ, Steller H. Regulation of cell number by MAPK-dependent control of apoptosis: A mechanism for trophic survival signaling. Dev Cell 2002;2:159–170.

    Article  PubMed  CAS  Google Scholar 

  173. 173. Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature 2001;411:1017–1021.

    Article  PubMed  CAS  Google Scholar 

  174. 174. Meyer N, Kim SS, Penn LZ. The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol 2006;16:275–287.

    Article  PubMed  CAS  Google Scholar 

  175. 175. Pelengaris S, Khan M, Evan G. c-MYC: More than just a matter of life and death. Nat Rev Cancer 2002;2:764–776.

    Article  PubMed  CAS  Google Scholar 

  176. 176. Hemann MT, Bric A, Teruya-Feldstein J, et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 2005;436:807–811.

    Article  PubMed  CAS  Google Scholar 

  177. 177. He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development 2004;131:1663–1677.

    Article  PubMed  CAS  Google Scholar 

  178. 178. Kohn AD, Moon RT. Wnt and calcium signaling: Beta-catenin-independent pathways. Cell Calcium 2005;38:439–446.

    Article  PubMed  CAS  Google Scholar 

  179. 179. Ma L, Wang HY. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J Biol Chem 2006;281:30990–31001.

    Article  PubMed  CAS  Google Scholar 

  180. 180. Peifer M, McEwen DG. The ballet of morphogenesis: Unveiling the hidden choreographers. Cell 2002;109:271–274.

    Article  PubMed  CAS  Google Scholar 

  181. 181. Strutt D. Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 2003;130:4501–4513.

    Article  PubMed  CAS  Google Scholar 

  182. 182. Walston T, Tuskey C, Edgar L, et al. Multiple Wnt signaling pathways converge to orient the mitotic spindle in early C. elegans embryos. Dev Cell 2004;7:831–841.

    Article  PubMed  CAS  Google Scholar 

  183. 183. Ding Y, Dale T. Wnt signal transduction: Kinase cogs in a nano-machine? Trends Biochem Sci 2002;27:327–329.

    Article  PubMed  CAS  Google Scholar 

  184. 184. Cliffe A, Hamada F, Bienz M. A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol 2003;13:960–966.

    Article  PubMed  CAS  Google Scholar 

  185. 185. Dale T. Kinase cogs go forward and reverse in the Wnt signaling machine. Nat Struct Mol Biol 2006;13:9–11.

    Article  PubMed  CAS  Google Scholar 

  186. 186. Kalderon D. Similarities between the Hedgehog and Wnt signaling pathways. Trends Cell Biol 2002;12:523–531.

    Article  PubMed  CAS  Google Scholar 

  187. 187. Katanaev VL, Ponzielli R, Semeriva M, Tomlinson A. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 2005;120:111–122.

    Article  PubMed  CAS  Google Scholar 

  188. 188. Liu X, Rubin JS, Kimmel AR. Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins. Curr Biol 2005;15:1989–1997.

    Article  PubMed  CAS  Google Scholar 

  189. 189. Tolwinski NS, Wieschaus E. Rethinking WNT signaling. Trends Genet 2004;20:177–181.

    Article  PubMed  CAS  Google Scholar 

  190. 190. Stadeli R, Hoffmans R, Basler K. Transcription under the control of nuclear Arm/beta-catenin. Curr Biol 2006;16:R378–R385.

    Article  PubMed  CAS  Google Scholar 

  191. 191. Sierra J, Yoshida T, Joazeiro CA, Jones KA. The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 2006;20:586–600.

    Article  PubMed  CAS  Google Scholar 

  192. 192. Johnston LA, Sanders AL. Wingless promotes cell survival but constrains growth during Drosophila wing development. Nat Cell Biol 2003;5:827–833.

    Article  PubMed  CAS  Google Scholar 

  193. 193. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434:843–850.

    Article  PubMed  CAS  Google Scholar 

  194. 194. Nathke I. Cytoskeleton out of the cupboard: Colon cancer and cytoskeletal changes induced by loss of APC. Nat Rev Cancer 2006;6:967–974.

    Article  PubMed  CAS  Google Scholar 

  195. 195. Bjerknes M, Cheng H. Gastrointestinal stem cells. II. Intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 2005;289:G381–G387.

    Article  PubMed  CAS  Google Scholar 

  196. 196. Owens DM, Watt FM. Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 2003;3:444–451.

    Article  PubMed  CAS  Google Scholar 

  197. 197. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006;22:339–373.

    Article  PubMed  CAS  Google Scholar 

  198. 198. Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 2005;19:1596–1611.

    Article  PubMed  CAS  Google Scholar 

  199. 199. Takeda H, Lyle S, Lazar AJ, Zouboulis CC, Smyth I, Watt FM. Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med 2006;12:395–397.

    Article  PubMed  CAS  Google Scholar 

  200. 200. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003;423:409–414.

    Article  PubMed  CAS  Google Scholar 

  201. 201. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003;423:448–452.

    Article  PubMed  CAS  Google Scholar 

  202. 202. Trowbridge JJ, Moon RT, Bhatia M. Hematopoietic stem cell biology: Too much of a Wnt thing. Nat Immunol 2006;7:1021–1023.

    Article  PubMed  CAS  Google Scholar 

  203. 203. Fuccillo M, Rutlin M, Fishell G. Removal of Pax6 partially rescues the loss of ventral structures in Shh null mice. Cereb Cortex 2006;16:i96–i102.

    Article  PubMed  Google Scholar 

  204. 204. Hooper JE, Scott MP. Communicating with Hedgehogs. Nat Rev Mol Cell Biol 2005;6:306–317.

    Article  PubMed  CAS  Google Scholar 

  205. 205. Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev 2001; 15:3059–3087.

    Article  PubMed  CAS  Google Scholar 

  206. 206. Ingham PW, Placzek M. Orchestrating ontogenesis: Variations on a theme by sonic hedgehog. Nat Rev Genet 2006;7:841–850.

    Article  PubMed  CAS  Google Scholar 

  207. 207. Wilson CW, Chuang PT. New “hogs” in Hedgehog transport and signal reception. Cell 2006;125:435–438.

    Article  PubMed  CAS  Google Scholar 

  208. 208. Ruiz-Gomez A, Molnar C, Holguin H, Mayor F, Jr., de Celis JF. The cell biology of Smo signalling and its relationships with GPCRs. Biochim Biophys Acta 2006;1768:901–912.

    PubMed  Google Scholar 

  209. 209. Tian L, Holmgren RA, Matouschek A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kappaB. Nat Struct Mol Biol 2005;12:1045–1053.

    Article  PubMed  CAS  Google Scholar 

  210. 210. Huangfu D, Anderson KV. Signaling from Smo to Ci/Gli: Conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 2006;133:3–14.

    Article  PubMed  CAS  Google Scholar 

  211. 211. Duman-Scheel M, Weng L, Xin S, Du W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 2002;417:299–304.

    Article  PubMed  CAS  Google Scholar 

  212. 212. Hatton BA, Knoepfler PS, Kenney AM, et al. N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res 2006;66:8655–8661.

    Article  PubMed  CAS  Google Scholar 

  213. 213. Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003;3:903–911.

    Article  PubMed  Google Scholar 

  214. 214. Daya-Grosjean L, Couve-Privat S. Sonic hedgehog signaling in basal cell carcinomas. Cancer Lett 2005;225:181–192.

    Article  PubMed  CAS  Google Scholar 

  215. 215. Hutchin ME, Kariapper MS, Grachtchouk M, et al. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: Conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 2005;19:214–223.

    Article  PubMed  CAS  Google Scholar 

  216. 216. Oliver TG, Read TA, Kessler JD, et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 2005;132:2425–2439.

    Article  PubMed  CAS  Google Scholar 

  217. 217. Palma V, Lim DA, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 2005;132:335–344.

    Article  PubMed  CAS  Google Scholar 

  218. 218. Trowbridge JJ, Scott MP, Bhatia M. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci USA 2006;103:14134–14139.

    Article  PubMed  CAS  Google Scholar 

  219. 219. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004;432:324–331.

    Article  PubMed  CAS  Google Scholar 

  220. 220. Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 2006;5:1026–1033.

    Article  PubMed  CAS  Google Scholar 

  221. 221. Watt FM. Unexpected Hedgehog-Wnt interactions in epithelial differentiation. Trends Mol Med 2004;10:577–580.

    Article  PubMed  CAS  Google Scholar 

  222. 222. Lai EC. Notch signaling: Control of cell communication and cell fate. Development 2004;131:965–973.

    Article  PubMed  CAS  Google Scholar 

  223. 223. Schweisguth F. Notch signaling activity. Curr Biol 2004;14:R129–138.

    PubMed  CAS  Google Scholar 

  224. 224. Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004;16:509–520.

    Article  PubMed  CAS  Google Scholar 

  225. 225. Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. Curr Opin Genet Dev 2007;17:52–59.

    Article  PubMed  CAS  Google Scholar 

  226. 226. Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006;442:823–826.

    Article  PubMed  CAS  Google Scholar 

  227. 227. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science 2002;296:1646–1647.

    Article  PubMed  CAS  Google Scholar 

  228. 228. Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett 2006;580:2811–2820.

    Article  PubMed  CAS  Google Scholar 

  229. 229. Little SC, Mullins MC. Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res C Embryo Today 2006;78:224–242.

    Article  PubMed  CAS  Google Scholar 

  230. 230. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell 2006;125:929–941.

    Article  PubMed  CAS  Google Scholar 

  231. 231. Tam PP, Loebel DA, Tanaka SS. Building the mouse gastrula: Signals, asymmetry and lineages. Curr Opin Genet Dev 2006;16:419–425.

    Article  PubMed  CAS  Google Scholar 

  232. 232. Liu A, Niswander LA. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci 2005;6:945–954.

    Article  PubMed  CAS  Google Scholar 

  233. 233. Zuzarte-Luis V, Hurle JM. Programmed cell death in the embryonic vertebrate limb. Semin Cell Dev Biol 2005;16:261–269.

    Article  PubMed  CAS  Google Scholar 

  234. 234. Varga AC, Wrana JL. The disparate role of BMP in stem cell biology. Oncogene 2005;24:5713–5721.

    Article  PubMed  CAS  Google Scholar 

  235. 235. Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003;3:807–821.

    Article  PubMed  CAS  Google Scholar 

  236. 236. Wong MD, Jin Z, Xie T. Molecular mechanisms of germline stem cell regulation. Annu Rev Genet 2005;39:173–195.

    Article  PubMed  CAS  Google Scholar 

  237. 237. Zhang J, Li L. BMP signaling and stem cell regulation. Dev Biol 2005;284:1–11.

    Article  PubMed  CAS  Google Scholar 

  238. 238. Mitchell TJ, John S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology 2005;114:301–312.

    Article  PubMed  CAS  Google Scholar 

  239. 239. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004;117:1281–1283.

    Article  PubMed  CAS  Google Scholar 

  240. 240. Sampson M, Zhu QS, Corey SJ. Src kinases in G-CSF receptor signaling. Front Biosci 2007;12:1463–1474.

    Article  PubMed  CAS  Google Scholar 

  241. 241. Khwaja A. The role of Janus kinases in haemopoiesis and haematological malignancy. Br J Haematol 2006;134:366–384.

    Article  PubMed  CAS  Google Scholar 

  242. 242. Rizo A, Vellenga E, de Haan G, Schuringa JJ. Signaling pathways in self-renewing hematopoietic and leukemic stem cells: Do all stem cells need a niche? Hum Mol Genet 2006;15 Spec No 2:R210–219.

    Article  PubMed  CAS  Google Scholar 

  243. 243. Valentino L, Pierre J. JAK/STAT signal transduction: Regulators and implication in hematological malignancies. Biochem Pharmacol 2006;71:713–721.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research in Dr. Kalderon's laboratory is supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Kalderon, D. (2008). Signaling Pathways in Cancer. In: Bronchud, M.H., Foote, M.A., Giaccone, G., Olopade, O., Workman, P. (eds) Principles of Molecular Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-470-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-470-4_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-25-1

  • Online ISBN: 978-1-59745-470-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics