Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Bridgewater G, Springer CJ, Knox R, Minton N, Michael P, Collins M. Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer 1995;31A:2362–2370.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Marais R, Spooner RA, Light Y, Martin J, Springer CJ. Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res. 1996;56:4735–4742.

    PubMed  CAS  Google Scholar 

  3. 3. Eaton JL, Perry MJA, Todryk SM, et al. Genetic prodrug activation therapy (GPAT) in two rat prostate models generates an immune bystander effect and can be monitored by magnetic resonance techniques. Gene Therap. 2001;8:557–567.

    Article  CAS  Google Scholar 

  4. 4. Huber BE, Richards CA, Austin EA. VDEPT; An enzyme/prodrug gene therapy approach for the treatment of metastatic colorectal cancer. Adv Drug Delivery Rev. 1995;17:279–292.

    Article  CAS  Google Scholar 

  5. 5. Hermiston T. Gene-delivery from replication-selective viruses: Arming guided missiles in the war against cancer. J Clin Invest. 2000;105:1169–1172.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Green NK, Seymour LW. Adenoviral vectors: Systemic delivery and tumor targeting. Cancer Gene Therap. 2002;9:1036–1042.

    Article  CAS  Google Scholar 

  7. 7. Ponnazhagan S, Curiel DT, Shaw DR., Alvarez RD, Siegal GP. Adeno-associated virus for cancer gene therapy. Cancer Res. 2001;61:6313–6321.

    PubMed  CAS  Google Scholar 

  8. 8. Glorioso JC, De Luca NA, Fink DJ. Development and application of herpes simplex virus vector for gene therapy. Annu Rev Microbiol. 1995;49:675–710.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Su H, Lu R, Ding R, Kan YW. Adeno-associated viral-mediated gene transfer to hepatoma: Thymidine kinase/interleukin 2 is more effective in tumor killing in non-ganciclovir (GCV)-treated animals. Mol Ther. 2000;1:509–515.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Gerolami R, Uch R, Faivre J, et al. Herpes simplex virus thymidine kinase-mediated suicide gene therapy for hepatocellular carcinoma using HIV-1-derived lentiviral vectors. J Hepatol. 2004;40:291–297.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Schoensiegel F, Paschen A, Sieger S, et al. MIA (melanoma inhibitory activity) promoter-mediated tissue-specific suicide gene therapy of malignant melanoma. Cancer Gene Ther. 2004;11:408–418.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Shen Y, Nemunaitis J. Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther. 2006;11:975–992

    Article  CAS  Google Scholar 

  13. 13. Klatzmann D, Valery CA, Bensimon G, et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther. 1998;9:2595–2604.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Solly SK, Trajcevski S, Frisen C, et al. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther. 2003:10:30–39.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Braybrooke JP, Slade A, Deplanque G, et al. Phase I study of MetXia-P450 gene therapy and oral cyclophosphamide for patients with advanced breast cancer or melanoma. Clin Cancer Res. 2005;11:1512–1520.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Fernandez M, Porosnicu M, Markovic D, Barber GN. Genetically engineered vesicular stomatitis virus in gene therapy: Application for treatment of malignant disease. J Virol. 2002;76:895–904.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Tseng JC, Zanzonico PB, Levin B, et al. Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a sindbis viral vector as a basis for prodrug ganciclovir activation and PET. J Nucl Med. 2006;47:1136–1143.

    PubMed  CAS  Google Scholar 

  18. 18. Gnant MF, Puhlmann M, Alexander HR, Bartlett DL. Systematic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res. 1999;59:3396–3403.

    PubMed  CAS  Google Scholar 

  19. 19. Puhlmann M, Gnant M, Brown CK, Alexander HR, Bartlett DL. Thymidine kinase-deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy. Hum Gene Ther. 1999;10:649–657.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Spooner RA, Deonarain MP, Epenetos AA. DNA vaccination for cancer treatment. Gene Ther. 1995;2:173–180.

    PubMed  CAS  Google Scholar 

  21. 21. Soghomonyan SA, Doubrovin M, Pike J, et al. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 2005;12:101–108.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Miller AD. Cationic liposomes for gene therapy. Angewandte Chem Internatl Ed. 1998;37:1768–1785.

    Article  Google Scholar 

  23. 23. Schatzlein AG. Non-viral vectors in cancer gene therapy: Principles and progress. Anti-Cancer Drug Design. 2001;12:275–304.

    Article  CAS  Google Scholar 

  24. 24. Ilies MA, Seitz MA, Balaban AT. Cationic lipids in gene delivery: Principles, vector design and therapeutical application. Curr Pharmaceut Design. 2002;8:2441–2474.

    Article  CAS  Google Scholar 

  25. 25. Sterman DH, Recio A, Vachani A, et al. Long-term follow-up of patients with malignant pleural mesothelioma receiving high-dose adenovirus herpes simplex thymidine kinase/ganciclovir suicide gene therapy. Clin Cancer Res. 2005;11:7444–7453.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Immonen A, Vapalahti M, Tyynela K, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: A randomized, controlled study. Mol Ther. 2004;10:967–972.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Chevez-Barrios P, Chintagumpala M, Mieler W, et al. Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. J Clin Oncol. 2005;23:7927–7935.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Morris JC, Ramsey WJ, Wildner O, et al. A phase I study of intralesional administration of an adenovirus vector expressing the HSV-1 thymidine kinase gene (Adv.RSV-TK) in combination with escalating doses of ganciclovir in patients with cutaneous metastatic malignant melanoma. Hum Gene Ther. 2000;11:487–503.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Crystal RG, Hirschowitz E, Lieberman M, et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther. 1997;8:985–1001.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Sung MW, Yeh HC, Thung SN, et al. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: Results of a phase I clinical trial. Mol Ther. 2001;4:182–191.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Hasenburg A, Tong XW, Fischer DC, et al. Adenovirus-mediated thymidine kinase gene therapy in combination with topotecan for patients with recurrent ovarian cancer: 2.5-year follow-up. Gynecol Oncol. 2001;83:549–554.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Kubo H, Gardner TA, Wada Y, et al. Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum Gene Ther. 2003;14:227–241.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Ezzeddine ZD, Martuza RL. Platika D, et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol. 1991;3:608–614.

    PubMed  CAS  Google Scholar 

  34. 34. Barba D, Hardin J, Ray J, Gage FH. Thymidine kinase-mediated killing of rat brain tumors. J Neurosurg. 1993;79:729–735.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Sandmair AM, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther. 2000;11:2197–2205.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Mavria G, Porter CD. Reduced growth in response to ganciclovir treatment of subcutaneous xenografts expressing HSV-tk in the vascular compartment. Gene Ther. 2001;8:913–920.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Barzon L, Bonaguro R, Castagliuolo I, et al. Transcriptionally targeted retroviral vector for combined suicide and immunomodulating gene therapy of thyroid cancer. J Clin Endocrinol Metab. 2002;87:5304–5311.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Kan O, Griffiths L, Baban D, et al. Direct retroviral delivery of human cytochrome P450 2B6 for gene-directed enzyme prodrug therapy of cancer. Cancer Gene Ther. 2001;8:473–482.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Humphreys MJ, Ghaneh P, Greenhalf W, et al. Hepatic intra-arterial delivery of a retroviral vector expressing the cytosine deaminase gene, controlled by the CEA promoter and intraperitoneal treatment with 5-fluorocytosine suppresses growth of colorectal liver metastases. Gene Ther. 2001;8:1241–1247.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Shand N, Weber F, Mariani L, et al. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. Hum Gene Ther. 1999;10:2325–2335.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Rados MD, McDermott M, Chang SM, et al. Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration: A phase I/II multi-institutional trial. J Neurooncol. 2003;65:269–278.

    Article  Google Scholar 

  42. 42. Rainov NG. A phase III clinical evaluation of herpes simplex virus type I thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11:2389–2401.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Miyatake S, Martuza RL, Rabkin SD. Defective herpes simplex virus vectors expressing thymidine kinase for the treatment of malignant glioma. Cancer Gene Ther. 1997;4:222–228.

    PubMed  CAS  Google Scholar 

  44. 44. Toda M, Martuza RL, Rabkin SD. Combination suicide/cytokine gene therapy gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Ther. 2001;8:332–339.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Moriuchi S, Wolfe D, Tamura M, et al, Double suicide gene therapy using a replication defective herpes simplex virus vector reveals reciprocal interference in a malignant glioma model. Gene Ther. 2002;9:584–591.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Moriuchi S, Glorioso JC, Maruno M, et al. Combination gene therapy for glioblastoma involving herpes simplex virus vector-mediated codelivery of mutant IkappaBalpha and HSV thymidine kinase. Cancer Gene Ther. 2005;12:487–496.

    PubMed  CAS  Google Scholar 

  47. 47. Martuza RL. Conditionally replicating herpes vector for gene therapy. J Clin Invest. 2000;105:841–846.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Curiel DT, Gerritsen WR, Krul MR. Progress in cancer gene therapy. Cancer Gene Therapy. 2000;7:197–1199.

    Article  CAS  Google Scholar 

  49. 49. Heise C, Kirn HD. Replication-selective adenoviruses as oncolytic agents. J Clin Investig. 2000;105:847–851.

    Article  PubMed  CAS  Google Scholar 

  50. 50. Hermiston TV, Kuhn I. Armed therapeutic viruses: Strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Therap. 2002;9:1022–1035.

    Article  CAS  Google Scholar 

  51. 51. Ichikawa T, Chiocca EA. Comparative analyses of transgene delivery and expression in tumors inoculated with a replication-conditional or –defective viral vector. Cancer Res. 2001;61:5336–5339.

    PubMed  CAS  Google Scholar 

  52. 52. Kirn D. Replication-selective oncolytic adenoviruses: Virotherapy aimed at genetic targets in cancer. Oncogene. 2000;19:6660–6669.

    Article  PubMed  CAS  Google Scholar 

  53. 53. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a generically engineered virus mutant. Sci. 1991;252:854–856.

    Article  CAS  Google Scholar 

  54. 54. Herminston T. Khun I. Armed therapeutic viruses: Strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Therap. 2002;9:1022–1035.

    Article  CAS  Google Scholar 

  55. 55. Kirn D, Martuza RL, Zwiebel J. Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med. 2001;7:781–787.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207, for the treatment of malignant glioma: Results of a phase I trial. Gene Ther. 2000;7:867–874.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Wildner O, Blaese RM, Morris JC. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res. 1999;59: 410–413.

    PubMed  CAS  Google Scholar 

  58. 58. Wildner O, Morris JC. The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: Assessment of antitumor efficacy and toxicity. Cancer Res. 2000;60:4167–4174.

    PubMed  CAS  Google Scholar 

  59. 59. Nanda D, Vogels R, Havenga M, Avezaat CJ, Bout A, Smitt PS. Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Caner Res. 2001;61:8743–8750.

    CAS  Google Scholar 

  60. 60. Morris JC, Wildner O. Therapy of head and neck squamous cell carcinoma with an oncolytic adenovirus expressing HSV-tK. Mol Ther. 2000;1:56–62.

    Article  PubMed  CAS  Google Scholar 

  61. 61. Wildner O, Morris JC. Therapy of peritoneal carcinomatosis from colon cancer with oncolytic adenoviruses. J Gene Med. 2000;2:353–360.

    Article  PubMed  CAS  Google Scholar 

  62. 62. Lambright ES, Amin K, Wiewrodt R, et al. Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumor efficacy. Gene Ther. 2001;8:946–953.

    Article  PubMed  CAS  Google Scholar 

  63. 63. Post DE, Fulci G, Chiocca EA, Van Meir EG. Replicative oncolytic herpes simplex viruses in combination cancer therapies. Curr Gene Ther. 2004;4:41–51.

    Article  PubMed  CAS  Google Scholar 

  64. 64. Zhan J, Gao Y, Wang W, et al. Tumor-specific intravenous gene delivery using oncolytic adenoviruses. Cancer Gene Ther. 2005;12:19–25.

    Article  PubMed  CAS  Google Scholar 

  65. 65. Liu Y, Deisseroth A. Oncolytic adenoviral vector carrying the cytosine deaminase gene for melanoma gene therapy. Cancer Gen Ther. 2006;13:845–855.

    Article  CAS  Google Scholar 

  66. 66. Chen MJ, Green NK, Reynolds GM, et al. Enhanced efficacy of Escherichia coli nitroreductase/CB1954 prodrug activation gene therapy using an E1B-55K-deleted oncolytic adenovirus vector. Gene Ther. 2004;11:1126–1136.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Lukashev AN, Fuerer C, Chen MJ, Searle P, Iggo R. Late expression of nitroreductase in an oncolytic adenovirus sensitizes colon cancer cells to the prodrug CB1954. Hum Gene Ther. 2005;16:1473–1483.

    Article  PubMed  CAS  Google Scholar 

  68. 68. Schepelmann S, Hallenbeck P, Ogilvie LM, et al. Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2. Cancer Res. 2005;65:5003–5008.

    Article  PubMed  CAS  Google Scholar 

  69. 69. Stubdal H, Perin N, Lemmon M, et al. A prodrug strategy using ONYX-0150-based replicating adenoviruses to deliver rabbit carboxylesterase to tumor cells for conversion of CPT-11 to SN-38. Cancer Res. 2003;63:6900–6908.

    PubMed  CAS  Google Scholar 

  70. 70. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH. A novel three-pronged approach to kill cancer cells selectively: Concomitant viral, double suicide gene, and radiotherapy. Human Gene Therap. 1998;9:1323–1333.

    Article  CAS  Google Scholar 

  71. 71. Freytag SO, Khil M, Stricker H, et al. Phase I study of replication-competent adenvovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 2002;62:4968–4976.

    PubMed  CAS  Google Scholar 

  72. 72. Rauen KA, Sudilovsky D, Le JL, et al. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: Potential relevance to gene therapy. Cancer Res. 2002;62:3812–3818.

    PubMed  CAS  Google Scholar 

  73. 73. Krasnykh V, Dmitriev I, Navarro J-G, et al. Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res. 2000;60:6784–6787.

    PubMed  CAS  Google Scholar 

  74. 74. Liu Y, Ye T, Maynard J, Akbulut H, Deisseroth A. Engineering conditionally replication-competent adenoviral vectors carrying the cytosine deaminase gene increase the infectivity and therapeutic effect for breast cancer gene therapy. Cancer Gene Ther. 2006;13:346–356.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Kitazono M, Goldsmith ME, Aikou T, Bates S, Fojo T. Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res. 2001;61:6328–6330.

    PubMed  CAS  Google Scholar 

  76. 76. Anders M, Christian C, McMahon M, McCormick F, Korn WM. Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res. 2003;63:2088–2095.

    PubMed  CAS  Google Scholar 

  77. 77. Boviatsis EJ, Park JS, Sena-Esteves M, et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res. 1994;54:5745–5751.

    PubMed  CAS  Google Scholar 

  78. 78. Nakamura H, Mullen JT, Chanrasekhar S, Pawlik TM, Yoon SS, Tanabe KK. Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that express yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine tom 5-fluorouracil. Cancer Res. 2001;61:5447–5452.

    PubMed  CAS  Google Scholar 

  79. 79. Pawlik TM, Nakamura H, Mullen JT, et al. Prodrug bioactivation and oncolysis of diffuse liver metastases by a herpes simplex virus I mutant that expresses the CYP2B1 transgene. Cancer. 2002;95:1171–1181.

    Article  PubMed  CAS  Google Scholar 

  80. 80. Aghi M, Chou TC, Suling K, Breakefield XO, Chiocca IA. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res. 1999;59:3861–3865.

    PubMed  CAS  Google Scholar 

  81. 81. Tyminski E, LeRoy S, Terada K, et al. (2005) Brain tumor oncolysis with replication-conditional herpes simplex virus type 1 expressing the prodrug-activating genes, CYP2B1 and secreted human intestinal carboxylesterase, in combination with cyclophosphamide and irinotecan. Cancer Res. 2005;65:6850–6857.

    Article  PubMed  CAS  Google Scholar 

  82. 82. Bernt KM, Steinwaerder DS, Ni S, Li ZY, Roffler SR, Lieber A. Enzyme-activated prodrug therapy enhances tumor-specific replication of adenovirus vectors. Cancer Res. 2002;62:6089–6098.

    PubMed  CAS  Google Scholar 

  83. 83. Porosnicu M, Mian A, Barber GN. The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphorbiosylltransferase suicide gene. Cancer Res. 2003;63:8366–8376.

    PubMed  CAS  Google Scholar 

  84. 84. Gnant MF, Berger AC, Huang J, et al. Sensitization of tumor necrosis factor alpha-resistant human melanoma by tumor-specific in vivo transfer of the gene encoding endothelial monocyte-activating polypeptide II using recombinant vaccinia virus. Cancer Res. 1999;59:4668–4674.

    PubMed  CAS  Google Scholar 

  85. 85. Kirn D. Replication-selective microbiological agents: Fighting cancer with targeted germ warfare. J Clin Invest. 2000;105:837–839.

    Article  PubMed  CAS  Google Scholar 

  86. 86. Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997;57:4537–4544.

    PubMed  CAS  Google Scholar 

  87. 87. Tjuvaev J, Blasberg R, Luo X, Zheng LM, King I, Bermudes D. Salmonella-based tumor-targeted cancer therapy: Tumor amplified protein expression therapy (TAPET) for diagnostic imaging. J Control Release. 2001;74:313–315.

    Article  Google Scholar 

  88. 88. Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S. Bifidobacterium longum as a delivery system for cancer gene therapy: Selective localization and growth in hypoxic tumors. Cancer Gene Ther. 2000;7:269–274

    Article  PubMed  CAS  Google Scholar 

  89. 89. Nuyts S, Theys J, Landuyt W, Van Mellaert L, Lambin P, Anne J. Increasing specificity of anti-tumour therapy: Cytotoxic proteins delivery by non-pathogenic Clostridia under regulation of radio-induced promoter. Anticancer Res. 2001;21:857–862.

    PubMed  CAS  Google Scholar 

  90. 90. Nuyts S, Van Mellaert L, Theys J, Landuyt W, Lambin P, Anne J. The use of radiation-induced bacterial promoters in anaerobic-conditions:A means to control gene expression in Clostridium-mediated gene therapy. Radiation Res. 2001;155:716–723.

    Article  PubMed  CAS  Google Scholar 

  91. 91. Liu S-C, Minton NP, Giaccia AJ, Brown JM. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Therap. 2002;9:291–296.

    Article  CAS  Google Scholar 

  92. 92. Luo D, Salzman WM. Synthetic DNA delivery systems. Nature Biotech. 2000;18:33–37.

    Article  CAS  Google Scholar 

  93. 93. Djeha AH, Hulme A, Dexter MT, et al. Expression of Escherichia coli B nitroreductase in established human tumor xenografts in mice results in potent antitumoral and bystander effects upon systemic administration of CB1954. Cancer Gene Ther. 2000;7:721–731.

    Article  PubMed  CAS  Google Scholar 

  94. 94. Lohr F, Lo DY, Zaharoff DA, et al. Effective tumor therapy with plasmid cytokines combined with in vivo electroporation. Cancer Res. 2001;61:3281–3284.

    PubMed  CAS  Google Scholar 

  95. 95. Bentires-Alj M, Helin A-C, Lechanteur C, et al. Cytosine deaminase suicide gene therapy for peritoneal carcinomatosis. Cancer Gene Ther. 2000;7:20–26.

    Article  PubMed  CAS  Google Scholar 

  96. 96. Harada Y, Iwai M, Tanaka S, et al. Highly efficient suicide gene expression in hepatocellular carcinoma cells by Epstein-Barr virus-based plasmid vectors combined with polyamidoamine dendrimer. Cancer Gene Ther. 2000;7:27–36.

    Article  PubMed  CAS  Google Scholar 

  97. 97. Kanyama H, Tomita N, Yamano T, et al. Usefulness of repeated intratumoral gene transfer using hemagglutinating virus of Japan-liposome method for cytosine deaminase suicide gene therapy. Cancer Res. 2001;61:14–18, 100.

    PubMed  CAS  Google Scholar 

  98. 98. Hagihara Y, Saitoh Y, Kaneda Y, Kohmura E, Yoshimine T. Widespread gene transfection into the central nervous system of primates. Gene Ther. 2000;7:759–763.

    Article  PubMed  CAS  Google Scholar 

  99. 99. Mc Kay TR, MacVinish LJ, Carpenter B, et al. Selective in vivo transfection of murine biliary epithelia using polycation-enhanced adenovirus. Gene Ther. 2000;7:644–652.

    Article  CAS  Google Scholar 

  100. 100. Xu L, Pirollo KF, Rait A, Murray AL, Chang EH. Systemic p53 gene therapy in combination with radiation results in human tumor regression. Tumor Targeting. 1999;4:92–104.

    CAS  Google Scholar 

  101. 101. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ. Targeting gene therapy for cancer. Oncol Res. 1997;9:313–325.

    PubMed  CAS  Google Scholar 

  102. 102. Hayes GM, Carpenito C, Davis PD, Dougherty ST, Dirks GF, Dougherty GH. Alternative splicing as a novel means of regulating the expression of therapeutic genes. Cancer Gene Ther. 2002;9:133–141.

    Article  PubMed  CAS  Google Scholar 

  103. 103. De Fatta RJ, Li Y, De Benedetti A. Selective killing of cancer cells based on translational control of suicide gene therapy. Cancer Gene Ther. 2002;9:573–578.

    Article  CAS  Google Scholar 

  104. 104. De Fatta RJ, Chervenack RP, De Benedetti A. A cancer gene therapy approach through translational control of a suicide gene. Cancer Gene Ther. 2002;9:502–505.

    Google Scholar 

  105. 105. Kirn D. Clinical research results with dI 1520 (ONYX-015), a replication selective adenovirus for the treatment of cancer: What have we learned? Gene Ther. 2001;8:89–98.

    Article  PubMed  CAS  Google Scholar 

  106. 106. Spear MA. Gene therapy of gliomas: Receptors and transcriptional targeting. Anticancer Research. 1998;18:3223–3232.

    PubMed  CAS  Google Scholar 

  107. 107. Gerolami R, Cardoso J, Lewin M, et al. Evaluation of HSV-tk gene therapy in rat model of chemically induced hepatocellular carcinoma by intratumoral and intrahepatic artery routes. Cancer Res. 2000;60:993–1001.

    PubMed  CAS  Google Scholar 

  108. 108. Kurihara T, Brough DE, Kovesti I, Kufe DW. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC-1 antigen. J Clin Invest. 2000;106:763–771.

    Article  PubMed  CAS  Google Scholar 

  109. 109. Siders WM, Halloran PJ,Fenton RG. Melanoma-specific cytotoxicity induced by a tyrosinase promoter-enhancer/herpes simplex virus thymidine kinase adenovirus. Cancer Gene Ther. 1998;5:281–291.

    PubMed  CAS  Google Scholar 

  110. 110. Koshikawa N, Takenaga K, Tagawa M, Sakiyama S. Therapeutic efficacy of the suicide gene driven the promoter of vascular endothelial growth factor gene against hypoxic tumor cells. Cancer Res. 2000;60:2936–2941.

    PubMed  CAS  Google Scholar 

  111. 111. Latham JPF, Searle PF, Mautner V, James ND. Prostate-specific antigen promoter/enhancer driven gene therapy for prostate cancer: Construction and testing of a tissue specific adenovirus vector. Cancer Res. 2000;60:334–341.

    PubMed  CAS  Google Scholar 

  112. 112. Ido A, Uto H, Moriuchi A, et al. Gene therapy targeting for hepatocellular carcinoma: Selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human a-fetoprotein promoter. Cancer Res. 2001;61:3016–3021.

    PubMed  CAS  Google Scholar 

  113. 113. Peng XY, Won JH, Rutherford T, et al. The use of L-plastin promoter for adenoviral-mediated , tumor-specific gene-expression in ovarian and bladder cancer cell lines. Cancer Res. 2001;61:4405–4413.

    PubMed  CAS  Google Scholar 

  114. 114. Scarpini CG, May J, Lachman RH, et al. Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Ther. 2001;8:1057–1071.

    Article  PubMed  CAS  Google Scholar 

  115. 115. Nishino K, Osaki T, Kumagai T, et al. Adenovirus-mediated gene therapy specific for small cell lung cancer cells using a myc-max binding motif. Internatl J Cancer. 2001;91:851–856.

    Article  CAS  Google Scholar 

  116. 116. Ueda K, Iwahashi M, Nakamori M, et al. Carcinoembryonic antigen-specific suicide gene therapy of cytosine deaminase/5-fluoro-cytosine enhanced by the Cre/loxP system in the orthotopic gastric carcinoma model. Cancer Res. 2001;61:6158–6162.

    PubMed  CAS  Google Scholar 

  117. 117. Matsubara S, Wada Y, Gardner TA, et al. A conditional replication-competent vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res. 2001;61:6012–6019.

    PubMed  CAS  Google Scholar 

  118. 118. Springer CJ, Niculescu-Duvaz I. Gene-directed enzyme prodrug therapy. IN: Anticancer Drug Development (ed. B Baguley), 2001; pp 137–135. Academic Press., San-Diego.

    Google Scholar 

  119. 119. Yoon KJ, Qi J, Remack JS, et al. Development of an etoposide prodrug for dual prodrug-enzyme antitumor therapy. Mol Cancer Ther. 2006;5:1577–1584.

    Article  PubMed  CAS  Google Scholar 

  120. 120. Trudeau C, Yuan S, Galipeau J, Benlimame N, Alaoui-Jamali MA, Batist G. A novel parasite-derived suicide gene for cancer gene therapy with specificity for lung cancer cells. Human Gene Ther. 2001;12:1673–1680.

    Article  CAS  Google Scholar 

  121. 121. Greco O, Folkes LK, Wardman P, Tozer GM, Dachs GU. Development of a novel enzyme/prodrug combination for gene therapy of cancer: Horseradish peroxidase/indole-3-acetic acid. Cancer Gene Ther. 2000;7:1414–1420.

    Article  PubMed  CAS  Google Scholar 

  122. 122. Tupper J, Greco O, Tozer GM, Dachs GU. Analysis of the horseradish peroxidase/indole-3-acetic acid combination in a three-dimensional tumor model. Cancer Gene Ther. 2004;11:508–513.

    Article  PubMed  CAS  Google Scholar 

  123. 123. Simonova M, Wall A, Weissleder R, Bogdanov A. Tyrosinase mutants are capable of prodrug activation in transfected non-melanotic cells. Cancer Res. 2000;60:6656–6662.

    PubMed  CAS  Google Scholar 

  124. 124. Cortes ML, de Felipe P, Martin V, Hughes MA, Izquierdo M. Successful use of a plant gene in the treatment of cancer in vivo. Gene Ther. 1998;5:1499–1507..

    Article  PubMed  CAS  Google Scholar 

  125. 125. Aghi M, Hochberg F, Breakfield XO. Prodrug activation enzymes in cancer gene therapy. J Gene Med. 2000;2:148–164.

    Article  PubMed  CAS  Google Scholar 

  126. 126. Yakkundi A, McErlane V, Murray M, et al. Tumor-selective drug activation: A GDEPT approach utilizing cytochromeP450 1A1 and AQ4N. Cancer Gene Ther. 2006;13:598–605.

    Article  PubMed  CAS  Google Scholar 

  127. 127. Potter GA, Patterson LH, Wanogho E. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by cytochrome P450 enzyme 1B1. Br J Cancer. 2002;86:774–778.

    Article  PubMed  CAS  Google Scholar 

  128. 128. McFadyen MCE, Melvin WT, Murray GI. Cytochrome P450 enzymes: Novel options for cancer therapeutics. Mol Cancer Ther. 2004;3:363–371.

    PubMed  CAS  Google Scholar 

  129. 129. Savage P, Cowburn P, Clemen D, et al. Suicide gene therapy: Conversion of ethanol to acetaldehyde mediated by human beta 2 alcohol dehydrogenase. Cancer Gene Ther. 2004;11:774–781.

    Article  PubMed  CAS  Google Scholar 

  130. 130. Spooner RA, Maycroft KA, Paterson H, Friedlos F, Springer CJ, Marais R. Appropriate subcellular location of prodrug-activating enzymes has important consequences for suicide gene therapy. Internatl J Cancer. 2001;93:123–130.

    Article  CAS  Google Scholar 

  131. 131. Hamstra DA, Page M, Maybaum J, Rehemtulla A. Expression of endogenously activated secreted or cell surface carboxypeptidase A sensitizes tumor cells to methotrexate-a-peptide prodrugs. Cancer Res. 2000;60:657–665.

    PubMed  CAS  Google Scholar 

  132. 132. Heine D, Muller R, Brusselbach S. Cell surface display of a lysosomal enzyme for extra-cellular gene-directed enzyme prodrug therapy. Gene Ther. 2001;8:1005–1010.

    Article  PubMed  CAS  Google Scholar 

  133. 133. Marais R, Spooner RA, Stribbling SM, Light Y, Martin J, Springer CJ. A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy. Nature Biotech. 1997;15:1373–1377.

    Article  CAS  Google Scholar 

  134. 134. Weyel D, Sedlacek HH, Muller R, Brusselbach S. Secreted human β-glucuronidase: A novel tool for gene-directed enzyme prodrug therapy. Gene Ther. 2000;7:224–231.

    Article  PubMed  CAS  Google Scholar 

  135. 135. Potter PM, Pawlick CA, Morton CL, Naeve CV, Danks MK. Isolation and partial characterization of a cDNA encoding rabbit liver carboxyl esterase that activates the prodrug irinotecan (CPT-11). Cancer Res. 1998;58:2646–2651.

    PubMed  CAS  Google Scholar 

  136. 136. Wierdl M, Morton CL, Weeks JK, Danks MK, Harris LC, Potter PM. Sensitization of human tumor cells to CPT-11 via adenoviral-mediated delivery of a rabbit liver carboxylesterase. Cancer Res. 2001;61:5078–5082.

    PubMed  CAS  Google Scholar 

  137. 137. Jounaidi Y, Chen C-S, Veal GJ, Waxman DJ. Enhanced antitumor activity of P450 prodrug-based gene therapy using the low Km cyclophosphamide 4-hydrxylase P450 2B11. Mol Cancer Ther. 2006;5:541–555.

    Article  PubMed  CAS  Google Scholar 

  138. 138. Kokoris MS, Black ME. Characterization of herpes simplex virus type 1 kinase mutants engineered for improved ganciclovir and acyclovir activity. Protein Sci. 2002;11:2267–2272.

    Article  PubMed  CAS  Google Scholar 

  139. 139. Connors TA. The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther. 1995;2:702–709.

    PubMed  CAS  Google Scholar 

  140. 140. Greco O, Dachs GU. Gene directed enzyme/prodrug therapy of cancer: Historical appraisal and future prospectives. J Cellular Physiol. 2001;187:22–36.

    Article  CAS  Google Scholar 

  141. 141. Niculescu-Duvaz I, Spooner R, Marais R, Springer CJ. Gene-directed enzyme prodrug therapy. Bioconjug Chem. 1998;9:4–22.

    Article  PubMed  CAS  Google Scholar 

  142. 142. Denny WA. Prodrugs for gene-directed enzyme prodrug therapy (GDEPT). Biomed Biotechnol. 2003;1:48–70.

    Article  Google Scholar 

  143. 143. Tercel M, Denny WA, Wilson WR. A novel nitro-substituted seco-Cl: Application as a reductively activated ADEPT prodrug. Bioorg Med Chem Let. 1996;6:2741–2744.

    Article  CAS  Google Scholar 

  144. 144. Chen L, Waxman DJ, Chen D, Kufe DC. Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P-450 gene. Cancer Res. 1996;56:1331–1340.

    PubMed  CAS  Google Scholar 

  145. 145. Kojima A, Hackett NR, Ohwada A, Crystal RG. In vivo human carboxylesterase cDNA gene transfer to activate the prodrug CPT-11 for local treatment of solid tumors. J Clin Invest. 1998;101:1789–1796.

    Article  PubMed  CAS  Google Scholar 

  146. 146. Springer CJ, Niculescu-Duvaz I. Prodrug-activating systems in suicide gene therapy. J Clin Invest. 2000;105:1161–1167.

    Article  PubMed  CAS  Google Scholar 

  147. 147. Degreve B. De Clerq E, Balzarini J. Bystander effect of purine nucleoside analogues in HSV-tk suicide gene therapy is superior to that of pyrimidine nucleoside analogues. Gene Ther. 1999;6:162–170.

    Article  PubMed  CAS  Google Scholar 

  148. 148. Farquhar D, Cherif A, Bakina E, Nelson GA. Intensely potent doxorubicin analgoues: Structure-activity relationships. J Med Chem. 1998;41:965–972.

    Article  PubMed  CAS  Google Scholar 

  149. 149. Griffiths L, Binley K, Iqball S, et al. The macrophage - a novel system to deliver gene therapy to pathological hypoxia. Gene Ther. 2000;7:255–262.

    Article  PubMed  CAS  Google Scholar 

  150. 150. McCart JA, Puhlmann M, Lee J, et al. Complex interaction between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther. 2000;7:1217–1223.

    Article  PubMed  CAS  Google Scholar 

  151. 151. Denny WA, Wilson WR. The design of selectively-activated anti-cancer prodrugs for use in antibody-directed and gene-directed enzyme prodrugs therapies. J Pharmaceut Pharmacol. 1998;50:387–394.

    CAS  Google Scholar 

  152. 152. Niculescu-Duvaz I, Baracu I, Balaban AT. (1990). Alkylating agents. In Chemistry of Antitumour Agents (ed. DEV Wilman), pp. 63–131. Blackie, London.

    Google Scholar 

  153. 153. Secrist JA, Parker WB, Allan PW, et al. Gene therapy of cancer: Activation of nucleoside prodrugs with E. coli purine nucleoside phosphorylase. Nucleosides Nucleotides. 1999;18:745–757.

    Article  PubMed  CAS  Google Scholar 

  154. 154. Denny WA. The design of selectively-activated prodrugs for cancer chemotherapy. Curr Pharma Design. 1996;2:281–294.

    CAS  Google Scholar 

  155. 155. Tietze L, Hanemann R, Buhr W, Logers M, Menningem P. Prodrugs of the cytostatic CC-1065 that can be activated in a tumor selective manner. Angewante Chemie International Edition. 1996;35:2674–2677.

    Article  CAS  Google Scholar 

  156. 156. Tietze LF, Feuerstein T, Feher A, Haunbert F, Pranknin O. Proof of principle in the selective treatment of cancer by antibody-directed enzyme prodrug therapy: The development of highly potent prodrugs. Angewante Chemie International Edition. 2003;41:759–761.

    Article  Google Scholar 

  157. 157. Springer CJ, Niculescu-Duvaz I, Mauger AB, et al. The design of prodrugs for antibody directed enzyme prodrug therapy. IN: R Begent and A Hamlin, editors; New Antibody Technology and Emergence of Useful Cancer Therapy. 1995; London, The Royal Society of Medicine Press; 75–79.

    Google Scholar 

  158. 158. Nakamuro K, Okuno T, Hasegawa T. Metabolism of selenoamino acids and contribution of selenium methylation to their toxicity. J Health Sci. 2000;46:418–421.

    CAS  Google Scholar 

  159. 159. Wolf CR, Statham CN, McMenamin MG, Bend JR, Boyd MR, Philpot RM. The relationship between the catalytic activities of rabbit pulmonary cytochrome P-450 isozymes and the lung-specific toxicity of the furan derivative, 4-ipomeanol. Molecular Pharmacol. 1982;22:738–744.

    CAS  Google Scholar 

  160. 160. Ellard S, Parry JM. A comparative study of the use of primary Chinese-hamster liver cultures and genetically-engineered immortal V79 Chinese-hamster cell-lines expressing rat liver CYP1A1, 1A2 and 2B1 cDNAs in micronucleus assays. Toxicol. 1993;82:131–149.

    Article  CAS  Google Scholar 

  161. 161. Friedlos F, Denny WA, Palmer BD, Springer CJ. Mustard prodrugs for activation by Escherichia coli nitroreductase in gene-directed enzyme prodrug therapy. J Med Chem. 1997;40:1270–1275.

    Article  PubMed  CAS  Google Scholar 

  162. Asche C, Dumy P, Carrez D, Croisy A, Demeunynk M. Nitrobenzylcarbamate prodrugs of cytotoxic acridines for potential use with nitroreductase gene-directed enzyme prodrug therapy. Bioorg Med Chem Lett. 2006;1990–1994.

    Google Scholar 

  163. 163. Jiang Y, Han J, Yu C, et al. Design, synthesis and biological evaluation of cyclic and acyclic nitrobenzylphophoramide mustards for E. coli nitroreductase activation. J Med Chem. 2006;49:4333–4343.

    Article  PubMed  CAS  Google Scholar 

  164. 164. Niculescu-Duvaz I, Niculescu-Duvaz D, Friedlos,F, et al. Self-immolative anthracycline prodrugs for suicide gene therapy. J Med Chem. 1999;42:2485–2489.

    Article  PubMed  CAS  Google Scholar 

  165. 165. Niculescu-Duvaz I, Niculescu-Duvaz D, Friedlos F. Niculescu-Duvaz I, Niculescu-Duvaz D, Friedlos,F, et al. Self-immolative anthracycline prodrugs for suicide gene therapy. J Med Chem. 1999;42:2485–2489.

    Article  PubMed  CAS  Google Scholar 

  166. 166. Niculescu-Duvaz D, Niculescu-Duvaz I, Friedlos F, et al. Self-immolative nitrogen mustards prodrugs cleavable by carboxypeptidase Ge (CPG2) showing large cytotoxicity differential in GDEPT. J Med Chem. 2003;46:1690–1705.

    Article  PubMed  CAS  Google Scholar 

  167. 167. Niculescu-Duvaz I, Scanlon I, Niculescu-Duvaz D, et al. Significant differences in biological parameters between prodrugs cleavable by carbozypeptidase G2 that generate 3,5-diflurophenol and aniline mustards in gene-directed enzyme prodrug therapy. J Med Chem. 2004:47–2651–2658.

    Google Scholar 

  168. 168. Davies LC, Friedlos F, Hedley D, et al. Novel fluorinated prodrugs for activation by carboxypeptidase G2 showing good in vivo antitumor activity in gene-directed enzyme prodrug therapy. J Med Chem. 2005;48:5321–5328.

    Article  PubMed  CAS  Google Scholar 

  169. 169. Ghosh AK, Khan S, Marini F, Nelson JA, Farquhar D. A daunorubicin b-galactoside prodrug for use in conjunction with gene-directed enzyme prodrug therapy. Tetrahedron Lett. 2000;41:4871–4874.

    Article  CAS  Google Scholar 

  170. 170. McMasters RA, Wilbert TN, Jones KE, et al. Two-drug combinations that increase apoptosis and modulate Bak and Bcl-Xl expression in human colon tumor cell lines transduced with herpes simplex virus thymidine kinase. Cancer Gene Ther. 2000;7:563–573.

    Article  PubMed  CAS  Google Scholar 

  171. 171. Boucher PD, Ostruszka LJ, Murphy PJM, Shewach DS. Hydroxyurea significantly enhances tumor growth delay in vivo with herpes simplex virus thymidine kinase/ganciclovir gene therapy. Gene Ther. 2002;9:1023–1030.

    Article  PubMed  CAS  Google Scholar 

  172. 172. Huang Z, Waxman DJ. Modulation of cyclophosphamide-based cytochrome p450 gene therapy using liver P450 inhibitors. Cancer Gene Ther. 2001;8:450–458.

    Article  PubMed  CAS  Google Scholar 

  173. 173. Jounaidi Y, Waxman DJ. Combination of the bioreductive drug tirapazamine with the chemotherapeutic prodrug cyclophosphamide for P450/P450-reductase-based cancer gene therapy. Cancer Res. 2000;60:3761–3769.

    PubMed  CAS  Google Scholar 

  174. 174. Wang D, Ruan H, Hu L, et al. Development of hypoxia-inducible cytosine deaminase expression vector for gene-directed prodrug cancer therapy. Cancer Gene Ther. 2005;12:276–283.

    Article  PubMed  CAS  Google Scholar 

  175. 175. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Human Gene Ther. 2000;11:67–76.

    Article  CAS  Google Scholar 

  176. 176. Erbs P, Regulier E, Kintz J, et al. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosporibosyltransgerase fusion gene. Cancer Res. 2000;60:3813–3822.

    PubMed  CAS  Google Scholar 

  177. 177. Shimizu T, Shimada H, Ochiai T, Hamada H. Enhanced growth suppression in esophageal carcinoma cells using adenovirus-mediated fusion gene transfer uracil phosphoryl transferase and herpes simplex virus thymidine kinase. Cancer Gene Ther. 2001;8:512–521.

    Article  PubMed  CAS  Google Scholar 

  178. 178. Chen SH, Kosai K, Xu B, et al. Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: Sustained antitumor immunity prolongs animal survival. Cancer Res. 1996;56:3758–3762.

    PubMed  CAS  Google Scholar 

  179. 179. Toda M, Martuza RL, Rabkin SD. Combination suicide/cytokine gene therapy gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Ther. 2001;8:332–339.

    Article  PubMed  CAS  Google Scholar 

  180. 180. Zhang J-H, Wan M-X, Pan B-R, Yu B. (2006) Cytotoxicity of HSVtk and hrTNF-a fusion genes with IRES in treatment of gastric cancer. Cancer Lett. 2006;235:191–201.

    Article  PubMed  CAS  Google Scholar 

  181. 181. Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5-fluorocytidine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: Significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proceed Natl Acad Sci USA. 1994;91:8302–8306.

    Article  CAS  Google Scholar 

  182. 182. Mesnil M, Yamasachi H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: Role of gap-junctional intercellular communications. Cancer Res. 2000;60:3989–3999.

    PubMed  CAS  Google Scholar 

  183. 183. Imaizumi K, Hasegawa Y, Kawabe T, et al. Bystander tumoricidal effect and gap junctional communication in lung cancer cells. Am J Respir Cell Mol Biol. 1998;18:205–212.

    PubMed  CAS  Google Scholar 

  184. 184. Andrade-Rosental AF, Rosental R, Hopperstad MD, et al. Gap junctions: The “kiss of death” and the “kiss of life”. Brain Res Rev. 2000;32:308–315.

    Article  Google Scholar 

  185. 185. Wygoda MR, Wilson MR, Davis MA, Trosko JE, Rehemtulla A, Lawrence TS. Protection of herpes simplex virus thymidine kinase-transduced cells from ganciclovir-mediated cytotoxicity by bystander cells: The Good Samaritan effect. Cancer Res. 1997;57:1699–1703.

    PubMed  CAS  Google Scholar 

  186. 186. Touraine RL, Ishii-Morita H, Ramsey WJ, Blaese RM. The bystander effect in the HSVtk/ganciclovir system and its relation to gap junctional communication. Gene Ther. 1998;5:1705–1711.

    Article  PubMed  CAS  Google Scholar 

  187. 187. Touraine RL, Vahanian N, Ramsey WJ, Blaese RM. Enhancement of the herpes simplex virus thymidine kinase/ganciclovir bystander effect and its antitumor efficacy in vivo by pharmacologic manipulation of gap junctions. Human Gene Ther. 1998;9:2385–2391.

    Article  CAS  Google Scholar 

  188. 188. Grignet-Debrus C, Cool V, Baudson N, Velu T, Calberg-Bacq C-M. The role of cellular- and prodrug-associated factors in the bystander effect induced by the Varicella zoster and Herpes simplex viral thymidine kinases in suicide gene therapy. Cancer Gene Ther. 2000:7:1456–1468.

    Article  PubMed  CAS  Google Scholar 

  189. 189. Grignet-Debrus C, Cool V, Baudson N, et al. Comparative in vitro and in vivo cytotoxic activity of BVaraU against tumor cells expressing either the Varicella zoster or the Herpes simplex virus thymidine kinase. Cancer Gene Ther. 2000;7:215–223.

    Article  PubMed  CAS  Google Scholar 

  190. 190. Ramesh R, Marrogi AJ, Munshi A, Abboud CN, Freeman SM. In vivo analysis of the “bystander effect”: A cytokine cascade. Exp Hematol. 1996;24:829–838.

    PubMed  CAS  Google Scholar 

  191. 191. Agard C, Ligeza C, Dupas B, et al. Immune-dependent distant bystander effect after adenovirus-mediated suicide gene transfer in a rat model of liver colorectal metastasis. Cancer Gene Ther. 2001;8:128–136.

    Article  PubMed  CAS  Google Scholar 

  192. 192. Jones RK, Pope IM, Kinsella AR, Watson AJM, Christmas SE. Combined suicide and granulocyte-macrophage colony-stimulating factor gene therapy induces complete tumor regression and generates antitumor immunity. Cancer Gene Ther. 2000;7:1519–1528.

    Article  PubMed  CAS  Google Scholar 

  193. 193. Majumdar A, Zolotorev A, Samuel S, et al. Efficacy of herpes simplex virus thymidine kinase in combination with cytokine gene therapy in an experimental metastatic breast cancer model. Cancer Gene Ther. 2000;7:1086–1099.

    Article  PubMed  CAS  Google Scholar 

  194. 194. Cao X, Huang X, Ju DW, Zhang WP, Hamada H, Wang J. Enhanced antitumoral effect of adenovirus-mediated cytosine deaminase gene therapy by induction of antigen-presenting cells through stem cell factor/granulocyte macrophage colony-stimulating factor gene transfer. Cancer Gene Ther. 2000;7:177–186.

    Article  PubMed  CAS  Google Scholar 

  195. 195. Rivas C, Chandler P, Melo JV, Simpson E, Apperley JF. Absence of in vitro or in vivo bystander effects in a thymidine kinase-transduced murine T-lymphoma. Cancer Gene Ther. 2000;7:954–962.

    Article  PubMed  CAS  Google Scholar 

  196. 196. Karle P, Renner M, Salmons B, Gunzburg WH. Necrotic, rather than apoptotic death caused by cytochrome P450-activated ifosfamide. Cancer Gene Ther. 2001;8:220–230.

    Article  PubMed  CAS  Google Scholar 

  197. 197. Stoff-Khalili MA, Dall P, Curiel DT. Gene therapy for the carcinoma of the breast. Cancer Gene Ther. 2006;13: 633–647.

    Article  PubMed  CAS  Google Scholar 

  198. 198. Cutter JL, Kurozumi K, Chiocca EA, Kaur B. Gene therapeutics: The future of brain tumor therapy? Expert Rev Anticancer Ther. 2006;6:1053–1064.

    Article  PubMed  CAS  Google Scholar 

  199. 199. Brooks RA, Mutch D. Gene therapy in gynecological cancer. Expert Rev Anticancer Ther. 2006;6:1013–1032.

    Article  PubMed  CAS  Google Scholar 

  200. 200. Lohr M. Gene therapy for gastrointestinal tumors. Zeitschrift Gastro. 2006;44:333–340.

    Article  CAS  Google Scholar 

  201. 201. Barzon L, Zanusso M, Columbo F, Palu G. (2006) Clinical trials of gene therapy, virotherapy, and immunotherapy for malignant tumors. Cancer Gene Ther. 2006;13: 539–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Schepelmann, S., Niculescu-Duvaz, I., Springer, C.J. (2008). Suicide Gene Therapy. In: Bronchud, M.H., Foote, M.A., Giaccone, G., Olopade, O., Workman, P. (eds) Principles of Molecular Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-470-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-470-4_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-25-1

  • Online ISBN: 978-1-59745-470-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics