Skip to main content

Apoptosis Pathways and New Anticancer Agents

  • Chapter
Principles of Molecular Oncology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    PubMed  CAS  Google Scholar 

  2. 2. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770–776.

    PubMed  CAS  Google Scholar 

  3. 3. Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004;116:205–219.

    PubMed  CAS  Google Scholar 

  4. 4. Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005;4:139–163.

    PubMed  CAS  Google Scholar 

  5. 5. Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev 1999;13:239–252.

    PubMed  CAS  Google Scholar 

  6. 6. Salvesen GS, Duckett CS. IAP proteins: Blocking the road to death's door. Nat Rev Mol Cell Biol 2002;3:401–410.

    PubMed  CAS  Google Scholar 

  7. 7. Adams JM, Cory S. Life or death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001;26:61–66.

    PubMed  CAS  Google Scholar 

  8. 8. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899–1911.

    PubMed  CAS  Google Scholar 

  9. 9. Reed JC. Proapoptotic multidomain Bcl-2/Bax-family proteins: Mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 2006;13:1378–1386.

    PubMed  CAS  Google Scholar 

  10. 10. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002;2:183–192.

    PubMed  CAS  Google Scholar 

  11. 11. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005;17:525–535.

    PubMed  CAS  Google Scholar 

  12. 12. Chen L, Willis S, Wei A, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005;17:393–403.

    PubMed  CAS  Google Scholar 

  13. 13. Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest 2005;115:2648–2655.

    PubMed  CAS  Google Scholar 

  14. 14. Certo M, Del Gaizo Moore V, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006;9:351–365.

    PubMed  CAS  Google Scholar 

  15. 15. Fisher DE. Apoptosis in cancer therapy: Crossing the threshold. Cell 1994;78:539–542.

    PubMed  CAS  Google Scholar 

  16. 16. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006;25:4798–4811.

    PubMed  CAS  Google Scholar 

  17. 17. Hakem R, Hakem A, Duncan G, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998;94:339–352.

    PubMed  CAS  Google Scholar 

  18. 18. Yoshida H, Kong Y, Yoshida R, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 1998;94:739–750.

    PubMed  CAS  Google Scholar 

  19. 19. Reed JC. Bcl-2 family proteins: Regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 1997;34(Suppl 5):9–19.

    PubMed  CAS  Google Scholar 

  20. 20. Kaufmann SH, Vaux DL. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene 2003;22:7414–7430.

    PubMed  CAS  Google Scholar 

  21. 21. Kusenda J. Bcl-2 family proteins and leukemia. Minireview. Neoplasma 1998;45:117–122.

    PubMed  CAS  Google Scholar 

  22. 22. Mackey JJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N. Bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 1998;52:1085–1090.

    PubMed  CAS  Google Scholar 

  23. 23. McDonald FE, Ironside JW, Gregor A, et al. The prognostic influence of bcl-2 in malignant glioma. Br J Cancer 2002;86:1899–1904.

    PubMed  CAS  Google Scholar 

  24. 24. Reed JC. Apoptosis-based therapies. Nat Rev Drug Discov 2002;1:111–121.

    PubMed  CAS  Google Scholar 

  25. 25. Fesik FW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005;5:876–885.

    PubMed  CAS  Google Scholar 

  26. 26. LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003;10:66–75.

    PubMed  CAS  Google Scholar 

  27. 27. Kimberley FC, Screaton GR. Following a TRAIL: Update on a ligand and its five receptors. Cell Res 2004;14:359–372.

    PubMed  CAS  Google Scholar 

  28. 28. Wajant H, Pfizenmaier K, Scheurich P. TNF-related apoptosis inducing ligand (TRAIL) and its receptors in tumor surveillance and cancer therapy. Apoptosis 2002;7:449–459.

    PubMed  CAS  Google Scholar 

  29. 29. Gura T. How TRAIL kills cancer cells, but not normal cells. Science 1997;277:768.

    PubMed  CAS  Google Scholar 

  30. 30. Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y. Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: The trail to non-toxic cancer therapeutics. Int J Oncol 1999;15:793–802.

    PubMed  CAS  Google Scholar 

  31. 31. Zhang L, Fang B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 2005;12:228–237.

    PubMed  CAS  Google Scholar 

  32. 32. Ozoren N, El-Deiry WS. Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia 2002;4:551–557.

    PubMed  Google Scholar 

  33. 33. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999;5:157–163.

    PubMed  CAS  Google Scholar 

  34. 34. Tamada K, Chen L. Renewed interest in cancer immunotherapy with the tumor necrosis factor superfamily molecules. Cancer Immunol Immunother 2005;55:355–362.

    PubMed  Google Scholar 

  35. 35. Horssen van R, Hagen ten TLM, Eggermont AMM. TNF in cancer treatment: Molecular insights, antitumor effects, and clinical utility. The oncologist 2006;11:397–408.

    Google Scholar 

  36. 36. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999;104:155–162.

    PubMed  CAS  Google Scholar 

  37. 37. Jin H, Yang R, Fong S, et al. Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Cancer Res 2004;64:4900–4905.

    PubMed  CAS  Google Scholar 

  38. 38. Chinnaiyan AM, Prasad U, Shankar S, et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000;97:1754–1759.

    PubMed  CAS  Google Scholar 

  39. 39. Petak I, Houghton JA. Shared pathways: Death receptors and cytotoxic drugs in cancer therapy. Pathol Oncol Res 2001;7: 95–106.

    PubMed  CAS  Google Scholar 

  40. 40. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998;161:2833–2840.

    PubMed  CAS  Google Scholar 

  41. 41. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P. Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 1999;59:2747–2753.

    PubMed  CAS  Google Scholar 

  42. 42. Rowinsky EK. Targeted induction of apoptosis in cancer management: The emerging role of tumor necrosis factor-related apoptosis inducing ligand receptor activating agents. J Clin Oncol 2006;23:9394–9407.

    Google Scholar 

  43. 43. Hymowitz SG, O'Connell MP, Ultsch M, et al. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 2000;39:633–640.

    PubMed  CAS  Google Scholar 

  44. 44. Herbst RS, Mendelson DS, Ebbinghaus S, et al. A phase I safety and pharmacokinetic (PK) study of recombinant Apo2L/TRAIL, an apoptosis-inducing protein in patients with advanced cancer. Proc Am Soc Clin Oncol. 2006;24:124S (abstract 3013).

    Google Scholar 

  45. 45. Ling J, Herbst RS, Mendelson DS, et al. Apo2L/TRAIL pharmacokinetics in a phase 1a trial in advanced cancer and lymphoma. Proc Am Soc Clin Ocol. 2006;24:132S (abstract 3047).

    Google Scholar 

  46. 46. Pukac L, Kanakaraj P, Humphreys R, et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 2005;92:1430–1441.

    PubMed  CAS  Google Scholar 

  47. 47. Zeng Y, Wu XX, Fiscella M, et al. Monoclonal antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) induces apoptosis in primary renal cell carcinoma cells in vitro and inhibits tumor growth in vivo. Int J Oncol 2006; 28:421–430.

    PubMed  CAS  Google Scholar 

  48. 48. Georgakis GV, Li Y, Humphreys R, et al. Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: Induction of apoptosis and enhancement of doxorubicin- and bortezomib-induced cell death. Br J Haematol 2005;130:501–510.

    PubMed  CAS  Google Scholar 

  49. 49. Marini P, Denzinger S, Schiller D, et al. Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: Enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene 2006;25:5145–5154.

    PubMed  CAS  Google Scholar 

  50. 50. Tolcher AW, Mita M, Patnaik A, et al. A phase I, and pharmacokinetic study of HGS-ETR1(TRM1), a human monoclonal agonist-antibody to TRAIL R1, in patients with advanced solid tumors. Proc Am Soc Clin Oncol. 2004;22:210 (abstract 3060).

    Google Scholar 

  51. Mita M, Tolcher AW, Patnaik A, et al. A phase I pharmacokinetic (PK) study of HGS-ETR1, an agonist monoclonal antibody to TRAIL-R1, in patients with advanced solid tumors. Proc Am Assoc Cancer Res. 2005;46: (abstract 544).

    Google Scholar 

  52. Hotte SJ, Hirte HW, Chen EX, Le LH, Corey A, Maclean M, lacobucci A, Fox NL, Oza AM. HGS-ETR1, a fully human monoclonal antibody to the tumor necrosis factor-related apoptosis-inducing ligand death receptor 1 (TRAIL-R1) in patients with advanced solid cancer: results of a phase I trial. Proc Am Soc Clin Ocol. 2005;106 (abstract 3052).

    Google Scholar 

  53. Younes A, Vose J, Zelenetz AD, et al. Results of a phase-2 trial of HGS-ETR 1 (Agonistic Human Monoclonal Antibody to TRAIL Receptor 1) in subjects with relapsed/refractory non-Hodgkin's Lymphoma (NHL). Proc Am Soc Hematol. 2005;106 (abstract 489).

    Google Scholar 

  54. 54. Bonomi P, Greco F, Crawford J, et al. Results of a phase II trial of HGS-ETR1 (agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed/recurrent non-small cell lung cancer. Lung Cancer 2005;49(suppl 2):S273 (abstract 460).

    Google Scholar 

  55. 55. Kanzler S, Trarbach T, Heinemann V, et al. Results of a phase II study of HGS-ETR1, a fully human agonistic monoclonal antibody to TRAIL receptor 1, in subjects with relapsed or refractory colorectal cancer. Eur J Cancer 2005;3:178 (abstract 630).

    Google Scholar 

  56. 56. Chow LQ, Eckhardt SG, Gustafson DL, et al. HGS-ETR1, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: Results of a phase I and PK study. Proc Am Soc Clin Oncol. 2006;24:103S (abstract 2515).

    Google Scholar 

  57. 57. Patnaik A, Wakelee H, Mita M, et al. HGS-ETR2 – a fully human monoclonal antibody to TRAIL-R2: Results of a phase I trial in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2006;24:123S (abstract 3012).

    Google Scholar 

  58. 58. Pacey S, Plummer RE, Attard G, et al. Phase I pharmacokinetic study of HGS-ETR2, a human antibody to TRAIL R2, in patients with advanced solid malignancies. Proc Am Soc Clin Oncol. 2005;23:205S (abstract 3055).

    Google Scholar 

  59. 59. Abou El, Hassan MA, Mastenbroek DC, Gerritsen WR, Giaccone G, Kruyt FA. Overexpression of Bcl2 abrogates chemo- and radiotherapy-induced sensitisation of NCI-H460 non-small-cell lung cancer cells to adenovirus-mediated expression of full-length TRAIL. Br J Cancer 2004;91:171–177.

    Google Scholar 

  60. 60. Zhang X, Cheung RM, Komaki R, Fang B, Chang JY. Radiotherapy sensitization by tumor-specific TRAIL gene targeting improves survival of mice bearing human non-small cell lung cancer. Clin Cancer Res 2005;11:6657–6668.

    PubMed  CAS  Google Scholar 

  61. 61. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985;228:1440–1443.

    PubMed  CAS  Google Scholar 

  62. 62. Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: Regulators of cell death. Blood 1992;80:879–886.

    PubMed  CAS  Google Scholar 

  63. 63. Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 2004;1644:229–249.

    PubMed  CAS  Google Scholar 

  64. 64. Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer 2002;2:647–656.

    PubMed  CAS  Google Scholar 

  65. 65. Jansen B, Schlagbauer-Wadl H, Brown BD, et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 1998;4:232–234.

    PubMed  CAS  Google Scholar 

  66. 66. Cotter FE, Johnson P, Hall P, et al. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 1994;9:3049–3055.

    PubMed  CAS  Google Scholar 

  67. 67. Gleave ME, Miavake H, Goldie J, Nelson C, Tolcher A. Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Urology 1999;54(6A Suppl):36–46.

    PubMed  CAS  Google Scholar 

  68. 68. Klasa RJ, Bally MB, Ng R, Goldie JH, Gascoyne RD, Wong FM. Eradication of human non-Hodgkin's lymphoma in SCID mice by BCL-2 antisense oligonucleotides combined with low-dose cyclophosphamide. Clin Cancer Res 2000;6:2492–2500.

    PubMed  CAS  Google Scholar 

  69. 69. Miayake H, Tolcher A, Gleave ME. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J Natl Cancer Inst 2000;92:34–41.

    PubMed  CAS  Google Scholar 

  70. 70. Hu Y, Bebb G, Tan S, et al. Antitumor efficacy of oblimersen Bcl-2 antisense oligonucleotide alone and in combination with vinorelbine in xenograft models of human non-small cell lung cancer. Clin Cancer Res 2004;10:7662–7670.

    PubMed  CAS  Google Scholar 

  71. 71. Loomis R, Carbone R, Reiss M, Lacy J. Bcl-2 antisense (G3139, Genasense) enhances the in vitro and in vivo response of Epstein-Barr virus-associated lymphoproliferative disease to rituximab. Clin Cancer Res 2003;9:1931–1939.

    PubMed  CAS  Google Scholar 

  72. 72. Ramanarayanan J, Hernandez-Ilizaliturri FJ, Chanan-Khan A, Czuczman MS. Pro-apoptotic therapy with the oligonucleotide Genasense (oblimersen sodium) targeting Bcl-2 protein expression enhances the biological anti-tumour activity of rituximab. Br J Haematol 2004;127:519–530.

    PubMed  CAS  Google Scholar 

  73. 73. Waters JS, Webb A, Cunningham D, et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J Clin Oncol 2000;18:1812–1823.

    PubMed  CAS  Google Scholar 

  74. 74. Morris MJ, Tong WP, Cordon-Cardo C, et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res. 2002;8:679–683.

    PubMed  CAS  Google Scholar 

  75. 75. O'Brien SM, Cunningham CC, Golenkov AK, et al. Phase I to II multicenter study of Oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 2005;23:7697–7702.

    PubMed  Google Scholar 

  76. 76. Marcucci G, Stock W, Dai G, et al. Phase I study of Oblimersen sodium, an antisense oligonucleotide to Bcl-2, in untreated older patients with acute myeloid leukemia: Pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 2005;23:3404–3411.

    PubMed  CAS  Google Scholar 

  77. 77. Marcucci G, Byrd JC, Dai G, et al. Phase I and pharmacokinetic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 2003;101:425–432.

    PubMed  CAS  Google Scholar 

  78. 78. Moore J, Seiter K, Kolitz J, et al. A phase II of Bcl-2 antisense (oblimersen sodium) also combined with gentuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leukemia Res 2006;30:777–783.

    CAS  Google Scholar 

  79. 79. Badros AZ, Goloubeva O, Rapoport AP, et al. Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J Clin Oncol 2005;23:4089–4099.

    PubMed  CAS  Google Scholar 

  80. 80. Rudin CM, Otterson GA, Mauer AM, et al. A pilot trial of G3139, a Bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small cell lung cancer. Ann Oncol 2002;13:539–545.

    PubMed  CAS  Google Scholar 

  81. 81. Rudin CM, Kozloff M, Hoffman PC, et al. Phase I study of G3139, a Bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 2004;22:1110–1117.

    PubMed  CAS  Google Scholar 

  82. 82. Marshall J, Chen H, Yang D, et al. A phase I trial of Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol 2004;15:1274–1283.

    PubMed  CAS  Google Scholar 

  83. 83. Morris MJ, Cordon-Cardo C, Kelly WK, et al. Safety and biologic activity of intravenous Bcl-2 antisense oligonucleotide (G3139) and taxane chemotherapy in patients with advanced cancer. Appl Immunohistochem Mol Morphol 2005;13:6–13.

    PubMed  CAS  Google Scholar 

  84. 84. Lalich M, Wilding G, Kolesar J, et al. A phase I study of antisense Bcl-2 oligonucelotide (G3139) in combination with carboplatin and paclitaxel in patients with advanced solid tumors. Proc Am Soc Clin Oncol. 2006;24:602S (abstract 13006).

    Google Scholar 

  85. 85. Mita MM, Ochoa L, Rowinsky EK, et al. A phase I, pharmacokinetic and biologic correlative study of oblimersen sodium (Genasense, G3139) and irinotecan in patients with metastatic colorectal cancer. Ann Oncol 2006;17:313–321.

    PubMed  CAS  Google Scholar 

  86. 86. Tolcher AW, Kuhn J, Schwartz G, et al. A phase I pharmacokinetic and biological correlative study of Oblimersen sodium (Genasense, G3139), an antisense oligonucleotide to the Bcl-2 mRNA, and of docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 2004;10:5048–5057.

    PubMed  CAS  Google Scholar 

  87. 87. Tolcher AW, Chi K, Kuhn J, et al. A phase II, pharmacokinetic and biological correlative study of Oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 2005;11:3854–3861.

    PubMed  CAS  Google Scholar 

  88. 88. Chi KN, Gleave ME, Klasa R, et al. A phase I dose finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 2001;7:3920–3927.

    PubMed  CAS  Google Scholar 

  89. 89. Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: The Oblimersen Melanoma Study Group. J Clin Oncol 2006;24,4738–4745.

    PubMed  CAS  Google Scholar 

  90. 90. Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest 2005;115:2648–2655.

    PubMed  CAS  Google Scholar 

  91. 91. Dai G, Chan KK, Liu S, et al. Cellular uptake and intracellular levels of the Bcl-2 antisense G3139 in cultured cells and treated patients with acute myeloid leumemia. Clic Cancer Res 2005;11:2998–3008.

    CAS  Google Scholar 

  92. 92. Lai JC, Benimetskaya L, Khvorova A, Wu S, Hua E, Miller P, Stein CA. Phosphorothioate oligodeoxynucleotides and G3139 induce apoptosis in 518A2 melanoma cells. Mol Cancer Ther 2005;4:305–315. Erratum in: Mol Cancer Ther 2005;4:864.

    PubMed  CAS  Google Scholar 

  93. 93. Lai JC, Tan W, Benimetskaya L, Miller P, Colombini M, Stein CA. A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC. Proc Natl Acad Sci USA 2006;103:7494–7499.

    PubMed  CAS  Google Scholar 

  94. 94. Frieden M, Orum H. The application of locked nucleic acids in the treatment of cancer. Drugs 2006;9:706–711.

    CAS  Google Scholar 

  95. 95. Walensky LD, Kung AL, Escher I, et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004;305:1466–1470.

    PubMed  CAS  Google Scholar 

  96. 96. Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 2004;1644:83–94.

    PubMed  CAS  Google Scholar 

  97. 97. Coutinho EM. Gossypol: A contraceptive for men. Contraception 2002;65:259–263.

    PubMed  CAS  Google Scholar 

  98. 98. Stein RC, Joseph AE, Matlin SA, Cunningham DC, Ford HT, Coombes RC. A preliminary clinical study of gossypol in advanced human cancer. Cancer Chemother Pharmacol 1992;30:480–482.

    PubMed  CAS  Google Scholar 

  99. 99. Kitada S, Leone M, Sareth S, Zhai D, Reed JC, Pellecchia M. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem 2003;46:4259–4264.

    PubMed  CAS  Google Scholar 

  100. 100. James DF, Castro JE, Loria O, Prada CE, Aguillon RA, Kipps TJ. AT-101, a small molecule Bcl-2 antagonist, in treatment naive CLL patients(pts) with high risk features; Preliminary results from an ongoing phase I trial. Proc Am Soc Clin Oncol 2006;24:362S (abstract 6605).

    Google Scholar 

  101. 101. Becattini B, Kitada S, Leone M, et al. Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-X(L). Chem Biol 2004;11:389–395.

    PubMed  CAS  Google Scholar 

  102. 102. Wang JL, Liu D, Zhang ZJ, et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 2000;97:7124–7129.

    PubMed  CAS  Google Scholar 

  103. 103. Enyedy IJ, Ling Y, Nacro K, et al. Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 2001;44:4313–4324.

    PubMed  CAS  Google Scholar 

  104. 104. Degterev A, Lugovskoy A, Cardone M, et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 2001;3:173–182.

    PubMed  CAS  Google Scholar 

  105. 105. Wang G, Nikolovska-Coleska Z, Yang CY, et al. Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. J Med Chem 2006;49:6139–6142.

    PubMed  CAS  Google Scholar 

  106. 106. Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005;435:677–681.

    PubMed  CAS  Google Scholar 

  107. Firozvi K, Hwang J, Hansen N, et al. A phase I study of the pan-Bcl2 family inhibitor GX15–070, administered as a 3-hour weekly infusion in patients with refractory solid tumors or lymphomas. Proc Am Soc Clin Oncol. 2006;24:141S (abstract 3081).

    Google Scholar 

  108. 108. Wang JL, Liu D, Zhang ZJ, et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 2000;97:7124–7129.

    PubMed  CAS  Google Scholar 

  109. 109. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003;3:46–54.

    PubMed  CAS  Google Scholar 

  110. 110. Wright CW, Duckett CS. Reawakening the cellular death program in neoplasia trough the therapeutic blockade of IAP function. J Clin Invest 2005;115:2673–2678.

    PubMed  CAS  Google Scholar 

  111. 111. Olie RA, Simões-Wüst AP, Baumann B, et al. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res 2000;60:2805–2809.

    PubMed  CAS  Google Scholar 

  112. 112. Mc Manus DC, Lefebvre CA, Cherton-Horvat G, et al. Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 2004;23:8105–8117.

    CAS  Google Scholar 

  113. 113. Altieri DC. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med. 2001;12:542–547.

    Google Scholar 

  114. 114. Schimmer AD, Dalili S, Batey RA, Riedl SJ. Targeting XIAP for he treatment of malignancy. Cell Death Diff. 2006;13:179–188.

    CAS  Google Scholar 

  115. 115. Fesik SW, Shi Y. Controlling the caspases. Science 2001; 294:1477–1478.

    PubMed  CAS  Google Scholar 

  116. 116. Eckelman BP, Salvesen DS, Scott FL. Human inhibitor of apoptosis proteins: Why XIAP is the black sheep of the family. EMBO Rep 2006;7:988–994.

    PubMed  CAS  Google Scholar 

  117. 117. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33–42.

    PubMed  CAS  Google Scholar 

  118. 118. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102:43–53.

    PubMed  CAS  Google Scholar 

  119. 119. Wu G, Chai J, Suber TL, Wu J-W, Du C, Wang X, Shi Y. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000;408:1008–1012.

    PubMed  CAS  Google Scholar 

  120. 120. Wu TY, Wagner KW, Bursulaya B, Schultz PG, Deveraux QL. Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol 2003;10:759–767.

    PubMed  CAS  Google Scholar 

  121. 121. Schimmer AD, Welsh K, Pinilla C, et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 2004;5:25–35.

    PubMed  CAS  Google Scholar 

  122. 122. Oost TK, Sun C, Armstrong RC, et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 2004;47:4417–4426.

    PubMed  CAS  Google Scholar 

  123. 123. Sun H, Nikolovska-Coleska Z, Yang CY, et al. Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. J Med Chem 2004;47:4147–4150.

    PubMed  CAS  Google Scholar 

  124. 124. Nikolovska-Coleska Z, Xu L, Hu Z, et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 2004;47:2430–2440.

    PubMed  CAS  Google Scholar 

  125. 125. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG. A small molecule Smac mimic potentiates TRAIL- and TNFα mediated cell death. Science 2004;305:1471–1474.

    PubMed  CAS  Google Scholar 

  126. 126. Bockbrader KM, Tan M, Sun Y. A small molecule Smac-mimic compound induce apoptosis and sensitizes TRAIL and etoposide-induced apoptosis in breast cancer cells. Oncogene 2005;24:7381–7388.

    PubMed  CAS  Google Scholar 

  127. 127. Hu YP, Cherton-Horvat G, Dragowska V, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res. 2003;9:2826–22836.

    PubMed  CAS  Google Scholar 

  128. 128. LaCasse EC, Cherton-Horvat GG, Hewitt KE, et al. Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 2006;12:5231–5241.

    PubMed  CAS  Google Scholar 

  129. 129. Ranson M, Dive C, Cummings J, et al. A phase I of AEG35156 (XIAP antisense) administered as a continuous infusion in patients with advanced tumors. Proc Am Soc Clin Oncol. 2006;24:135S (abstract 3059).

    Google Scholar 

  130. 130. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997;3:917–921.

    PubMed  CAS  Google Scholar 

  131. 131. Velculescu VE, Madden SL, Zhang L et al. Analysis of human transcriptomes. Nat Genet 1999;23:387–388.

    PubMed  CAS  Google Scholar 

  132. 132. Zangemeister-Wittke U, Simon H-U. An IAP in action. The multiple roles of Survivin in differentiation, immunity and malignancy. Cell Cycle 2004;3:1121–1123.

    PubMed  CAS  Google Scholar 

  133. 133. Zaffaroni N, Pennati M, Daidone MG. Survivin as a target for new anticancer interventions. J Cell Mol Med 2005;9:360–372.

    PubMed  CAS  Google Scholar 

  134. 134. Altieri DC. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr Op Cell Biol 2006;18:609–615.

    PubMed  CAS  Google Scholar 

  135. 135. Lens SMA, Vader G, Medema RH. The case for survivin as mitotic regulator. Curr Op Cell Biol. 2006;18:616–622.

    PubMed  CAS  Google Scholar 

  136. 136. Altieri DC. Targeted therapy by disabling crossroad signalling networks: The survivin paradigm. Mol Cancer Ther 2006;5:478–482.

    PubMed  CAS  Google Scholar 

  137. 137. Patel B. Antisense inhibition of survivin expression as a cancer therapeutic: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics 2003 Abstract 324.

    Google Scholar 

  138. 138. Frieden M, Orum H. The application of locked nucleic acids in the treatment of cancer. Drugs 2006;9:706–711.

    CAS  Google Scholar 

  139. Tolcher AW, Karavasilis V, Hudes G, Quinn D, Ferrari A, Kocak I, Mita A, Buell D, Keating A, Bartels P, Charleston D, YM155, a novel survivin suppressant, demonstrates activity in subjects with hormone refractory prostate cancer (HRPC) previously treated with taxane chemotheraphy. 5th International Symposium on Targeted anticancer therapies, Amsterdam, The Netherlands, 2007 abstract 404.

    Google Scholar 

  140. 140. Tolcher AW, Antonia S, Lewis LD. A phase I study of YM155, a novel survivin suppressant, administered by 168 hour infusion to patients with advanced solid tumors Proc Am Soc Clin Oncol 2006;24:1245 (abstract 3014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Kruyt, F.A., Rodriguez, J.A., Giaccone, G. (2008). Apoptosis Pathways and New Anticancer Agents. In: Bronchud, M.H., Foote, M.A., Giaccone, G., Olopade, O., Workman, P. (eds) Principles of Molecular Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-470-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-470-4_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-25-1

  • Online ISBN: 978-1-59745-470-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics