Skip to main content

Selecting the Right Targets for Cancer Therapy

  • Chapter
Principles of Molecular Oncology
  • 1282 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Leblond C.P. Classification of cell populations on the basis of their proliferative behavior. Natn. Cancer Institute Monogr. 14, 1964: 119–150.

    CAS  Google Scholar 

  2. 2. Fialkow P.J. Clonal origin of human tumors. Biochim Biophys Acta 458, 1976: 283–321.

    PubMed  CAS  Google Scholar 

  3. 3. Cairns J. Cancer: Science and society. W.H. Freeman, San Francisco 1978; Chapter 4: 35–61.

    Google Scholar 

  4. 4. Collins R.D. Is clonality equivalent to malignancy: Specifically, is immunoglobulin gene rearrangement diagnostic of malignant lymphoma? Hum Pathol 28, 1997: 757–759.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Birindelli S, Aiello A., Lavarino C. et al. Genetic markers in sporadic tumors. In: Principles of molecular oncology, M.H. Bronchud et al. (eds), Humana Press N.J. 2000, 45–93.

    Chapter  Google Scholar 

  6. 6. Fisher J.C., Hollomon J.H. A hypothesis for the origin of cancer foci. Cancer 4, 1951: 916–918.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Nordling C.O. A new theory on the cancer-inducing mechanism. Brit J Cancer 7, 1953: 68–72.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Armitage P., Doll R. The age-distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8, 1954: 1–12.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Fearon E.R. and Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 61, 1990: 759–767

    Article  PubMed  CAS  Google Scholar 

  10. 10. Fisher J.C. Multiple-mutation theory of carcinogenesis. Nature 181, 1958: 651–652.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Armitage P., Doll R. A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Brit J Cancer 11, 1957: 161–169.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Friedewald W.F., Rous P. The initiating and promoting elements in tumor production. J Exp Med 80, 1944: 101–126.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Baltimore D. Viruses, polymerases and cancer. Science 192, 1976: 632–636.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Temin H.M. The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J Natn Cancer Inst 46, 1971: iii–viii.

    CAS  Google Scholar 

  15. 15. Knudson A.G. Mutation and human cancer. Adv Cancer Res 17, 1973: 317–352.

    Article  Google Scholar 

  16. 16. Doll R. Nature and nurture: Possibilities for cancer control. Carcinogenesis (Lond.) 17, 1996: 177–184.

    Article  CAS  Google Scholar 

  17. 17. Couch D.B. Carcinogenesis: Basic principles. Drug Chem. Toxicol. 19, 1996: 133–148.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Shields P.G. and Harris C.C. Molecular epidemiology and the genetics of environmental cancer. J. Am. Med. Assoc. 266, 1991: 681–687.

    Article  CAS  Google Scholar 

  19. 19. Harris C.C. The Walter Hubert Lecture. Molecular epidemiology of human cancer: Insights from the mutational analysis of the p53 tumor suppressor gene. Br J Cancer 73, 1996: 261–269.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Perera F.P. Molecular epidemiology: Insights into cancer susceptibility, risk assessment, and prevention. J. Natl.Cancer Inst. 88, 1996: 496–509.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Kinzler K.W., Vogelstein B. Gatekeepers and caretakers. Nature (Lond.) 386, 1997: 761–763.

    Article  CAS  Google Scholar 

  22. 22. Loeb L.A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51, 1991: 3075–3080.

    PubMed  CAS  Google Scholar 

  23. 23. Loeb L.A. Cancer cells exhibit a mutator phenotype. Adv Cancer Res 72, 1998: 25–56.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Ponder B. Genetic testing for cancer risk. Science (Washington DC) 278, 1997: 1050–1054.

    Article  CAS  Google Scholar 

  25. 25. Kinzler K.W., Vogelstein B. Lessons from hereditary colorectal cancer. Cell 87, 1996: 159–170.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Bronchud M.H., Peters W.P. Selecting the right targets for cancer therapy. In: Principles of molecular oncology, M.H. Bronchud et al. (eds), Humana Press N.J. 2000: 3–27.

    Chapter  Google Scholar 

  27. 27. Banks R.E., Dunn M.J., Hochstrasser D.F., et al. Proteomics: New perspectives, new biomedical opportunities. The Lancet 356, 2000: 1749–1756.

    Article  CAS  Google Scholar 

  28. 28. Frykberg E.R., Bland K.I. “In situ” breast carcinoma. Adv Surg 26, 1993: 29–72.

    PubMed  CAS  Google Scholar 

  29. 29. Page D.L., Dupont W.D., Rogers L.W., Rados M.S. Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer (Phla.) 55, 1985: 2698–2708.

    Article  CAS  Google Scholar 

  30. 30. Day D.W., Morson B.C. The adenoma-carcinoma sequence. In: The pathogenesis of colorectal cancer, 1978, Bennington J.L. (ed.) vol 10, Chapter 6: 58–71; Saunders, Philadelphia.

    Google Scholar 

  31. 31. Bostwick D.G. Prostatic intraepithelial neoplasia (PIN): Current concepts. J Cell Biochem 16H, 1992: 10–19.

    Article  CAS  Google Scholar 

  32. 32. Califano J., van der Riet P. Westra W. et al. Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res 56, 1996: 2488–2492.

    PubMed  CAS  Google Scholar 

  33. 33. Sidransky D, Mikkelsen T, Schwechheimer T et al. Clonal expansion of p53 mutant cells is associated with brain tumor progression. Nature (London) 355, 1992: 846–847.

    Article  CAS  Google Scholar 

  34. 34. Sidransky D., Messing E. Molecular genetics and biochemical mechanisms in bladder cancer. Oncogenes, tumor suppressor genes and growth factors. Urol Clin North Amer 19, 1992: 629–639.

    CAS  Google Scholar 

  35. 35. Slaughter D.P., Southwick H.W., Smejkal W. “Field cancerization” in oral stratified squamous epithelium. Cancer (Phila.) 6, 1953: 963–968.

    Article  CAS  Google Scholar 

  36. 36. Knowles M.A. The genetics of transitional cell carcinoma: progress and potential clinical applications. Br J Urol International 84, 1999: 412–427.

    CAS  Google Scholar 

  37. 37. Ahrendt S.A., Chow J.T., Xu L.H. et al. Molecular detection of tumor cells in bronchioalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 91, 1999: 332–339.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Bedi G.C., Westra W.H., Gabrielson E. et al. Multiple head and neck tumors: Evidence for a common clonal origin. Cancer Res 56, 1996: 2484–2487.

    PubMed  CAS  Google Scholar 

  39. 39. Partridge M., Emilion G., Pateromichelakis S. et al. Field cancerisation of the oral cavity: Comparison of the spectrum of molecular alterations in cases presenting with both dysplastic and malignant lesions. Oral Oncol 33, 1997: 332–337.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Lagios M.D., Westdahl P.R., Rose M.R. The concept and implications of multicentricity in breast carcinoma. Pathol Annu 1981; 16: 83–102.

    PubMed  CAS  Google Scholar 

  41. 41. Lagios M.D., Richards V.E., Rose M.R., Yee E. Segmental mastectomy without radiotherapy: Short term follow-up. Cancer 1983, 52: 2173–2179.

    Article  CAS  Google Scholar 

  42. 42. Holland R., Solke H.J.V., Mravunac M. Multifocality of Tis, T 1-2 breast carcinomas. Cancer 1985; 56: 979–990.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Van Oijen M.G.C., Slootweg P.J. Oral field cancerization: carcinogen-induced independent events or micrometastatic deposits? Cancer Epid Biomark and Prevent 9, 2000: 249–256.

    CAS  Google Scholar 

  44. 44. Bronchud M.H. Is cancer really a “local” cellular clonal disease? Medical Hypotheses 2002; 59: 560–565.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Kelloff G.J., Sigman C.C., Johnson K.M. et al. Perspectives on surrogate end points in the development of drugs that reduce the risk of cancer. Cancer Epid. Biomark. and Prevention 9, 2000: 127–137.

    CAS  Google Scholar 

  46. Miller A.B., Bartsch H., Boffetta P., Dragsted L., Vainio H. Biomarkers in cancer chemoprevention. IARC Scientific Publications 154, 2001.

    Google Scholar 

  47. Moolgavkar S., Krewski D., Zeise L., Cardis E., Moller H. Quantitative estimation and prediction of human cancer risks. IARC Scientific Publications 131, 1999.

    Google Scholar 

  48. 48. Kersting M., Friedl C., Kraus A. et al. Differential frequencies of p16 (INK4a) hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol 18, 2000: 3221–3229.

    PubMed  CAS  Google Scholar 

  49. 49. Man Y.G., Martinez A., Avis I.M. et al. Phenotypically different cells with heterogeneous nuclear ribonucleoprotein A2/B1 overexpression show similar genetic alterations. Am J Respir Cell Mol Biol 2000; 23: 636–645.

    PubMed  CAS  Google Scholar 

  50. 50. Issa J.P. The epigenetics of colorectal cancer. Ann N Y Acad Sci 2000; 910: 140–153.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Konrad M., Ge Y., Naber J. et al. Leukemic clones are frequently present in neonatal blood samples of children with acute lymphoblastic leukemia. Amer Assoc Canc Res 2001: a 2196: 408.

    Google Scholar 

  52. 52. Wen W.H., Bernstein L., Lescallett J. et al. Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis. Cancer Res 2000; 60: 2716–2722.

    PubMed  CAS  Google Scholar 

  53. 53. Mohr S., Leikauf G.D., Keith G., Rihn B.H. Microarrays as cancer keys: An array of possibilities. J Clin Oncol 2002; 20: 3165–3175.

    Article  PubMed  CAS  Google Scholar 

  54. 54. Pollack J.R., Perou C.M., Alizadeh A.A. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999; 23: 41–46.

    Article  PubMed  CAS  Google Scholar 

  55. 55. Bruder C.E., Hirvela C., Tapia-Paez I. et al. High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF”) patients using microarray-CGH. Hum Mol Genet 2001; 10: 271–282.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Forozan F., Mahlamaki E.H., Monni O. et al. Comparative genomic hybridization analysis of 38 breast cancer cell lines: A basis for interpreting complementary DNA microarray data. Cancer Res 2000; 60: 4519–4525.

    PubMed  CAS  Google Scholar 

  57. 57. Daigo Y., Chin S.F., Gorringe K.L. et al. Degenerate oligonucleotide primed polymerase chain reaction-based array comparative genomic hybridization for extensive amplicon profiling of breast cancers: A new approach for the molecular analysis of paraffin-embedded cancer tissue. Am J Pathol 2001; 158: 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Sapolsky R.J., Hsie L., Berno A. et al. High-throughput polymorphism screening and genotyping with high-density oligonucleotide arrays. Genet Anal 1999; 14: 187–192.

    PubMed  CAS  Google Scholar 

  59. 59. Mei R., Galipeau P.C., Prass C. et al. Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res 2000; 10: 1126–1137.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Lindblad-Toh K., Tanenbaum D.M., Daly M.J. et al. Loss of heterozygosity analysis of small cell lung carcinomas using single nucleotide polymorphisms arrays. Nat Biotechnol 2000; 18: 1001–1005.

    Article  PubMed  CAS  Google Scholar 

  61. 61. Golub T.R., Slonim D.K., Tamayo P. et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  PubMed  CAS  Google Scholar 

  62. 62. Ross D.T., Scherf U., Eisen M.B. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000; 24: 227–235.

    Article  PubMed  CAS  Google Scholar 

  63. 63. Perou C.M., Sorlie T., Eisen M.B. et al. Molecular portraits of human breast tumors. Nature 2000; 406: 747–752.

    Article  PubMed  CAS  Google Scholar 

  64. 64. Hedenfalk I., Duggan D., Chen Y. et al. Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001; 344: 539–548.

    Article  PubMed  CAS  Google Scholar 

  65. 65. Ahr A., Holtrich U., Solbach C. et al. Molecular Classification of breast cancer patients by gene expression profiling. J Pathol 2001; 195: 312–320.

    Article  PubMed  CAS  Google Scholar 

  66. 66. Ono K., Tanaka T., Tsunoda T. et al. Identification by cDNA microarray of genes involved in ovarian carcinogenesis. Cancer Res 2000; 60: 5007–5011.

    PubMed  CAS  Google Scholar 

  67. 67. Bhattacharjee A., Richards W.G., Staunton J. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001; 98: 13790–13795.

    Article  PubMed  CAS  Google Scholar 

  68. 68. Dirix L.Y., van Oosterom A.T. Gene-expression profiling to classify soft-tissue sarcomas. Lancet 2002; 359: 1263–1264.

    Article  PubMed  Google Scholar 

  69. 69. Alizadeh A.A., Eisen M.B., Davis R.E. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  PubMed  CAS  Google Scholar 

  70. 70. Dhanasekaran S.M., Barrette T.R., Ghosh D. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412: 822–826.

    Article  PubMed  CAS  Google Scholar 

  71. 71. Spencer S.L., Gerety R.A., Pienta K.J., Forrest S. Modeling somatic evolution in tumorigenesis. PLoS Computational Biol 2006; 2(8): e108.

    Article  CAS  Google Scholar 

  72. 72. Hanahan D., Weinberg R. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  73. 73. Kodadek T. Protein microarrays: Prospects and problems. Chem Biol 2001; 8: 105–115.

    Article  PubMed  CAS  Google Scholar 

  74. 74. Senior K. Fingerprinting disease with protein chip arrays. Mol Med Today 1999; 5: 326–327.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Jain K.K. Applications of proteomics in oncology. Pharmacogenomics 2000; 1: 385–393.

    Article  PubMed  CAS  Google Scholar 

  76. 76. Zhu H., Snyder M. Protein arrays and microarrays. Curr Opin Chem Biol 2001; 5: 40–45.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Paweletz C.P., Charboneau L., Bischel V.E. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 2001; 20: 1981–1989.

    Article  PubMed  CAS  Google Scholar 

  78. 78. Von Eggeling F., Davies H., Lomas L. et al. Tissue-specific microdissection coupled with ProteinChip array technologies: Applications in cancer research. Biotechniques 2000; 29: 1066–1070.

    Google Scholar 

  79. 79. Kononen J., Bubendorf L., Kallioniemi A., et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998; 4: 844–847.

    Article  PubMed  CAS  Google Scholar 

  80. 80. Nocito A., Bubendorf L., Maria Tinner E., et al. Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 2001; 194: 349–357.

    Article  PubMed  CAS  Google Scholar 

  81. 81. Camp R.L., Charette L.A., Rimm D.L. Validation of tissue microarray technology in breast carcinoma. Lab Invest 2000; 80: 1943–1949.

    Article  PubMed  CAS  Google Scholar 

  82. Hobbs S.K., Homer R.J., Harsh G.R. et al. Image guided proteomics in human glioblastoma multiforme: New clinical technique for molecular target discovery. Proc Amer Assoc Cancer Res 2001; abstract 532.

    Google Scholar 

  83. 83. Lerut T. The surgeon as prognostic factor. Ann of Surg 2000; 232: 729–732.

    Article  CAS  Google Scholar 

  84. 84. Bishop J.L., Harland M., Bishop T. The genetics of melanoma. Brit J Hosp Medicine, 2006; 67 (6): 299–303.

    Google Scholar 

  85. 85. Bennett D.C. Human melanocyte senescence and melanoma susceptibility genes. Oncogene 2003; 22 (20): 3063–3069.

    Article  PubMed  CAS  Google Scholar 

  86. 86. Chin L., Pomerantz J., DePinho R.A. The INK4a/ARF tumor suppressor: One gene-two products-two pathways. Trends Biochem SCI 1998; 23 (8): 291–296.

    Article  PubMed  CAS  Google Scholar 

  87. 87. Sherr C.J. Cancer cell cycles revisited. Cancer Res 2000; 60: 3689–3695.

    PubMed  CAS  Google Scholar 

  88. 88. Ortega S., Malumbres M., Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002; 1602: 73–87.

    PubMed  CAS  Google Scholar 

  89. 89. Classon M., Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2002; 2: 910–917.

    Article  PubMed  CAS  Google Scholar 

  90. 90. Foster S.A., Demers G.W., Etscheid B.G. et al. The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J Virol 1994; 68: 5698–5705.

    PubMed  CAS  Google Scholar 

  91. 91. Beer-Romero P., Glass S., Rolfe M. Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 1997; 14: 595–602.

    Article  PubMed  CAS  Google Scholar 

  92. 92. Butz K., Denk C., Ullmann A. et al. Induction of apoptosis in human papillomavirus-positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 2000; 97: 6693–6697.

    Article  PubMed  CAS  Google Scholar 

  93. 93. Liaw K.L., Hildesheim A., Burk R.D. et al. Prospective study of human papillomavirus (HPV) type 16 DNA detection by polymerase chain reaction and its association with acquisition and persistence of other HPV types. J Infect Dis 2001; 183: 8–15.

    Article  PubMed  CAS  Google Scholar 

  94. 94. Koutsky L.A., Ault K.A., Wheeler C.M. et al. A controlled trial of a human papilloma virus type 16 vaccine. New Engl J Med 2002; 347: 1645–1651.

    Article  PubMed  CAS  Google Scholar 

  95. HPV vaccine: GARDASIL, proprietary information and news releases from www.merck.com

    Google Scholar 

  96. Up-dates on Celecoxib Trial to Prevent Colonic Adenomas: http://www.cancer.gov/newscenter/pressreleases/APCtrialCOX2QandA.

  97. 97. Bronchud M.H. The yin and yang of cancer therapeutics. Current Opinion in Drug Discovery & Development, 2005; 8 (2): 184–198.

    CAS  Google Scholar 

  98. 98. Paul M.K., Mukhopadhyay A.K. Tyrosine kinase- role and significance in cancer. Intern. J of Med Sci 2004; 1(2): 101–115.

    CAS  Google Scholar 

  99. 99. Hahn W.C., Weinberg R.A. Rules for making human tumor cells. New Engl J Med 2002; 347: 1593–1603.

    Article  PubMed  CAS  Google Scholar 

  100. 100. Hupp T.R., Lane DP. Allosteric activation of latent p53 tetramers. Curr Biol 1994; 4: 865–875.

    Article  PubMed  CAS  Google Scholar 

  101. 101. Hupp T.R., Sparks A., Lane D.P. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 1995; 83: 237–245.

    Article  PubMed  CAS  Google Scholar 

  102. 102. Castillo L., Etienne-Grimaldi M.C., Fischel J.L. et al. Pharmacological background of EGFR targeting. Ann of Oncol 2004; 15: 1007–1012.

    Article  CAS  Google Scholar 

  103. 103. Baird R., Workman P. Emerging molecular therapies: drugs interfering with signal transduction pathways. In: Principles of molecular oncology (2nd Ed), Bronchud M.H., Foote M.A., Giaccone G., Olopade O., Workman P. (eds); Humana Press NJ, 2004: 569–606.

    Google Scholar 

  104. 104. Arnold D., Peinert S., Voigt W., Schmoll H.J. Epidermal growth factor receptor tyrosine kinase inhibitors: Present and future role in gastrointestinal cancer treatment: A review. The Oncologist 2006; 11: 602–611.

    Article  PubMed  CAS  Google Scholar 

  105. 105. Paez J.G, Janne PA, Lee JC et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  106. 106. Shepherd F.A., Rodrigues Pereira J., Ciuleanu T. et al. National Cancer Institute of Canada Clinical Trials Group. Erlotinib in previously treated non-small cell lung cancer. N Engl J Med 2005; 353 (2): 123–132.

    Article  PubMed  CAS  Google Scholar 

  107. 107. Herbst R.S. Erlotinib. Clin Adv Hematol Oncol 2005 ; 3 (2): 125–141.

    PubMed  Google Scholar 

  108. 108. Oved S., Yarden Y.. Signal transduction: molecular ticket to enter cells. Nature 2002; 416: 133–136.

    Article  PubMed  CAS  Google Scholar 

  109. 109. Rao S., Watkins D., Cunningham D. et al. Phase II study of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C alpha, in patients with previously treated low-grade non-Hodgkin's lymphoma. Ann of Oncol 2004; 15: 1413–1418.

    Article  CAS  Google Scholar 

  110. 110. Lane D. The promise of molecular oncology. Lancet 1998; 351 (suppl II): SII 17-SII 20.

    Google Scholar 

  111. 111. Bykov V.J.N., Issaeva N., Shilov A. et al. Restoration of tumor suppressor function to mutant p53 by a low molecular weight compound. Nature Med 2002; 8: 282–288.

    Article  PubMed  CAS  Google Scholar 

  112. Snyder E.L., Meade B.R., Saenz C.C., Dowdy S.F. Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PloS Biology 2004 (2): 186–193.

    Google Scholar 

  113. 113. Lane D. Curing cancer with p53. N Engl J Med 2004; 350: 2711–2712.

    Article  PubMed  CAS  Google Scholar 

  114. 114. Boiko A.D., Porteous S., Razorenova O.V et al. A systematic search for downstream mediators of tumor suppressor function of p53 reveal a major role for BTG2. Genes & Development 2006; 20: 236–252.

    Article  CAS  Google Scholar 

  115. 115. Dai M.-S., Shi D., Jin Y., Sun X.-X., Zhang Y., Grossman S.R., Lu H. Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 2006; 281: 24304–24313.

    Article  PubMed  CAS  Google Scholar 

  116. 116. Kojima K., Konopleva M., McQueen T., O'Brien S., Plunkett W., Andreeff M. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 2006; 108: 993–1000.

    Article  PubMed  CAS  Google Scholar 

  117. 117. Dubbink H.J., Hersmus R., Pike A.C.W., Molier M., Brinkmann A.O., Jenster G., Trapman J. Androgen receptor ligand-binding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping. Mol Endocrinol 2006; 20: 1742–1755.

    Article  PubMed  CAS  Google Scholar 

  118. 118. Wang W., Kim S.-H., El-Deiry W.S. Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts. PNAS 2006; 103: 11003–11008.

    Article  PubMed  CAS  Google Scholar 

  119. 119. Vassilev L.T., Tovar C., Chen S., Knezevic D., Zhao X., Sun H., Heimbrook D.C., Chen L. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. PNAS 2006; 103: 10660–10665.

    Article  PubMed  CAS  Google Scholar 

  120. 120. Scoumanne A., Chen X. The epithelial cell transforming sequence 2, a guanine nucleotide exchange factor for Rho GTPases, is repressed by p53 via protein methyltransferases and is required for G1-S transition. Cancer Res 2006; 66: 6271–6279.

    Article  PubMed  CAS  Google Scholar 

  121. 121. Cheung H.H., LaCasse E.C., and Korneluk R.G.. X-Linked inhibitor of apoptosis antagonism: Strategies in cancer treatment. Clin Cancer Res 2006; 12: 3238–3242.

    Article  PubMed  CAS  Google Scholar 

  122. 122. Cruz C.D., Palosaari H., Parisien J.-P., Devaux P., Cattaneo R., Ouchi T., Horvath C.M.. Measles virus V protein inhibits p53 family member p73. J Virol 2006; 80: 5644–5650.

    Article  PubMed  CAS  Google Scholar 

  123. 123. Secchiero P., Barbarotto E., Tiribelli M., Zerbinati C., di Iasio M.G., Gonelli A., Cavazzini F., Campioni D., Fanin R., Cuneo A., Zauli G. Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood 2006; 107: 4122–4129.

    Article  PubMed  CAS  Google Scholar 

  124. 124. Coll-Mulet L., Iglesias-Serret D., Santidrian A.F., Cosialls A.M., de Frias M., Castano E., Campas C., Barragan M., de Sevilla A.F., Domingo A., Vassilev L.T., Pons G., Gil J. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 2006; 107: 4109–4114.

    Article  PubMed  CAS  Google Scholar 

  125. 125. Ricci M.S., Zong W.-X. Chemotherapeutic approaches for targeting cell death pathways. Oncologist 2006; 11: 342–357.

    Article  PubMed  CAS  Google Scholar 

  126. 126. White D.E., Talbott K.E., Arva N.C., Bargonetti J. Mouse double minute 2 associates with chromatin in the presence of p53 and is released to facilitate activation of transcription. Cancer Res 2006; 66: 3463–3470.

    Article  PubMed  CAS  Google Scholar 

  127. 127. Tabakin-Fix Y., Azran I., Schavinky-Khrapunsky Y., Levy O., Aboud M. Functional inactivation of p53 by human T-cell leukemia virus type 1 Tax protein: Mechanisms and clinical implications. Carcinogenesis 2006; 27: 673–681.

    Article  PubMed  CAS  Google Scholar 

  128. 128. Patton J.T., Mayo L.D., Singhi A.D., Gudkov A.V., Stark G.R., Jackson M.W. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res 2006; 66: 3169–3176.

    Article  PubMed  CAS  Google Scholar 

  129. 129. Dudgeon C., Kek C., Demidov O.N., Saito S.-i., Fernandes K., Diot A., Bourdon J.-C., Lane D.P., Appella E., Fornace Jr A.J., Bulavin D.V. Tumor susceptibility and apoptosis defect in a mouse strain expressing a human p53 transgene. Cancer Res 2006; 66: 2928–2936.

    Article  PubMed  CAS  Google Scholar 

  130. 130. Tomko Jr R.J., Bansal P., Lazo J.S. Airing out an antioxidant role for the tumor suppressor p53. Mol Interv 2006; 6: 23–25.

    Article  PubMed  CAS  Google Scholar 

  131. 131. Jung E.J., Liu G., Zhou W., Chen X. Myosin VI Is a Mediator of the p53-Dependent Cell Survival Pathway. Mol Cell Biol 2006; 26: 2175–2186.

    Article  PubMed  CAS  Google Scholar 

  132. 132. Tovar C., Rosinski J., Filipovic Z., Higgins B., Kolinsky K., Hilton H., Zhao X., Vu B.T., Qing W., Packman K., Myklebost O., Heimbrook D.C., Vassilev L.T. From the Cover: Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy. PNAS 2006; 103: 1888–1893.

    Article  PubMed  CAS  Google Scholar 

  133. 133. Harris C.C. Protein-protein interactions for cancer therapy. PNAS 2006; 103: 1659–1660.

    Article  PubMed  CAS  Google Scholar 

  134. 134. Levine A.J., Feng Z., Mak T.W., You H., Jin S. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes & Dev 2006; 20: 267–275.

    Article  CAS  Google Scholar 

  135. 135. Yu G.W., Rudiger S., Veprintsev D., Freund S., Fernandez-Fernandez M.R., Fersht A.R. The central region of HDM2 provides a second binding site for p53. PNAS 2006; 103: 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  136. 136. Berkson R.G., Hollick J.J., Westwood N.J. et al. Pilot screening programme for small molecule activators of p53. Int J Cancer 2005; 115: 701–710.

    Article  PubMed  CAS  Google Scholar 

  137. 137. Sunder-Plassman N., Giannis A. Novel activators of the TUMOUR suppressor p53. ChemBioChem 2004; 5: 1635–1637.

    Article  CAS  Google Scholar 

  138. 138. Vassilev L.T., Vu B.T., Graves B. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  PubMed  CAS  Google Scholar 

  139. 139. Bronchud M.H., Brizuela L., Gyuris J., Mansuri M.M. Cyclin-dependent kinases and their regulators as potential targets for anticancer therapeutics. In: Principles of molecular oncology (2nd Ed), Bronchud M.H., Foote M.A., Giaccone G., Olopade O., Workman P. (eds); Humana Press NJ, 2004: 359–410.

    Google Scholar 

  140. 140. Yap D.B., Hsieh J.K., Chan F.S., Lu X. Mdm2: A bridge over the two tumour suppressors, p53 and Rb. Oncogene 1999; 18: 7681–7689.

    Article  PubMed  CAS  Google Scholar 

  141. 141. Barrie E., Eno-Amooquaye E., Hardcastle A. et al. High-throughput screening for the identification of small-molecule inhibitors of retinoblastoma protein phosphorylation in cells. Analytical Biochem 2003; 320: 66–74.

    Article  CAS  Google Scholar 

  142. 142. Harbour J., Dean D. The Rb/E2F pathway: Expanding roles and emerging paradigms. Genes Dev 2000; 14: 2393–2409.

    Article  PubMed  CAS  Google Scholar 

  143. Kaelin W.G.Jr. Cancer chemotherapy based on E2F and the retinoblastoma pathway. In: Targets for cancer chemotherapy: Transcription factors and other nuclear proteins. La Thangue N.B., Bandara L.R. (eds), Humana Press 2002: 1–13.

    Google Scholar 

  144. 144. Banerjee D., Bertino J.R. E2F and Cancer Chemotherapy. In: Targets for cancer chemotherapy: Transcription factors and other nuclear proteins. La Thangue N.B., Bandara L.R. (eds), Humana Press; Totowa, NJ, 2002: 289–298.

    Google Scholar 

  145. 145. Hillman B.J., M. Schnall, Sullivan D.C., Kressel H.Y. Applications of medical imaging to oncology. J Clin Oncol 2006; Special Issue Monograph on Medical imaging applied to Oncology, 24 (20): 3223–3314.

    Article  PubMed  Google Scholar 

  146. 146. Thrall J.H. ACR primer on molecular imaging. J Amer Coll Radiol 2004; 1:32.

    Google Scholar 

  147. 147. Schnall M., Rosen M. Primer on imaging technologies for cancer. J Clin Oncol 2006; 24 (20): 3225–3232.

    Article  PubMed  CAS  Google Scholar 

  148. 148. Barentsz J., Takahashi S., Oyen W. et al. Commonly used imaging techniques for diagnosis and staging. J Clin Oncol 2006; 24 (20): 3234–3244.

    Article  PubMed  CAS  Google Scholar 

  149. 149. Jaffe C.C. Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 2006; 24 (20): 3245–3251.

    Article  PubMed  Google Scholar 

  150. 150. Therasse P., Arbuck S.G., Eisenhauer E.A. et al. New guidelines to evaluate the response to treatment in solid tumors: European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92: 205–216.

    Article  PubMed  CAS  Google Scholar 

  151. 151. Black W.C. Randomized clinical trials for cancer screening: Rationale and design considerations for imaging tests. J Clin Oncol 2006; 24 (20): 3252–3260.

    Article  PubMed  Google Scholar 

  152. 152. Von Hoff D.D. There are no bad anticancer agents, only bad clinical trial designs. Twenty-first Richard and Hinda Rosenthal Foundation Award Lecture. Clin Cancer Res 1998; 4:1079–1086.

    Google Scholar 

  153. 153. Nadler E., Eckert B., Neumann P.J. Do oncologists believe new cancer drugs offer good value? The Oncologist (Commentary) 2006; 11: 90–95.

    Article  Google Scholar 

  154. Wagstaff A. Lost in translation. Cancer World (Jan-Feb) 2006: 12–17.

    Google Scholar 

  155. 155. Tischer E., Mitchell R., Hartman T. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991;226: 11947–11954.

    Google Scholar 

  156. 156. Wang H., Han H., Mousses S. et al. Targeting loss-of-function mutations in tumor-suppressor genes as a strategy for development of cancer therapeutic agents. Sem in Oncol (Elsevier) 2006; 4 (13): 513–520.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Bronchud, M.H. (2008). Selecting the Right Targets for Cancer Therapy. In: Bronchud, M.H., Foote, M.A., Giaccone, G., Olopade, O., Workman, P. (eds) Principles of Molecular Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-470-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-470-4_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-25-1

  • Online ISBN: 978-1-59745-470-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics