Skip to main content

How to Restore Reading With Visual Prostheses

  • Chapter
Visual Prosthesis and Ophthalmic Devices

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

In daily life sight is used for mainly two types of tasks. Those requiring the recognition of small forms or objects as it is specifically done in reading and those requiring spatial orientation and localization in three-dimensional environments, such as whole body mobility and visuo-motor coordination. For the former the central part of the visual field is mainly used, whereas the latter rely for an essential part on the peripheral visual field. Both have to be seriously considered when developing useful vision aids for low vision and/or blind patients. This chapter is dedicated to the particular question: What are minimum requirements for visual prostheses to restore useful reading abilities to blind patients?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pelli DG. The visual requirements of mobility. In: Woo GC, ed. Low vision: Principles and applications. Springer Verlag, New York, 1986;134–146.

    Google Scholar 

  2. Cornelissen FW, Van den Dobbelsteen JJ. Heading detection with simulated visual field defects. Vis Impairment Res 1999;1:71–84.

    Article  Google Scholar 

  3. Margalit E, Maia M, Weiland JD, et al. Retinal Prosthesis for the Blind. Survey Ophth 2002;47:335–356.

    Article  Google Scholar 

  4. Kiang NY, Eddington DK, Delgutte B. Fundamental considerations in designing auditory implants. Acta Otolaryngol 1979;87:204–218.

    PubMed  CAS  Google Scholar 

  5. Eddington DK, Dobelle WH, Brackmann DE, Mladejowsky MG, Parkin JL. Auditory prosthesis research with multiple channel intracochlear stimulation in man. Ann Otol Rhinol Laryngol 1978;87:1–39.

    PubMed  CAS  Google Scholar 

  6. Eddington DK. Speech discrimination in deaf subjects with cochlear implants. J Acoust Soc Am 1980;68:885–891.

    Article  PubMed  CAS  Google Scholar 

  7. Tong YC, Dowell RC, Blamey PJ, Clark GM. Two-component hearing sensations produced by two-electrode stimulation in the cochlea of a deaf patient. Science 1983;219:993–994.

    Article  PubMed  CAS  Google Scholar 

  8. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science 1995;270:303–304.

    Article  PubMed  CAS  Google Scholar 

  9. Dorman MF, Loizou PC. Speech intelligibility as a function of the number of channels of stimulation for normal-hearing listeners and patients with cochlear implants. Am J Otol 1997;18 suppl:113–114.

    Google Scholar 

  10. Hamzavi JS, Baumgartner WD, Adunka O, Franz P, Gstoettner W. Audiological performance with cochlear reimplantation from analogue single-channel implants to digital multichannel devices. Audiology 2000;39:305–310.

    PubMed  CAS  Google Scholar 

  11. Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond.) 1968;196:479–493.

    PubMed  CAS  Google Scholar 

  12. Dobelle WH, Mladejovsky MG, Girvin JP. Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 1974;183:440–444.

    Article  PubMed  CAS  Google Scholar 

  13. Normann RA, Maynard EM, Shane Guillory K, Warren DJ. Cortical implants for the blind. IEEE Spectrum 1996;33:54–59.

    Article  Google Scholar 

  14. Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vision Res 1999;39:2577–2587.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 1996;119:507–522.

    Article  PubMed  Google Scholar 

  16. Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAJO Journal 2000;46:3–9.

    Article  CAS  Google Scholar 

  17. Veraart C, Raftopoulos C, Mortimer JT, et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 1998;813:181–186.

    Article  PubMed  CAS  Google Scholar 

  18. Delbeke J, Wanet-Delfalque MC, Gérard B, Troosters M, Michaux G, Veraart C. The Microsystems Based Visual Prosthesis for Optic Nerve Stimulation. Artif Organs 2002;26:232–234.

    Article  PubMed  Google Scholar 

  19. Delbeke J, Oozeer M, Veraart C. Position, size and luminosity of phosophenes generated by direct optic nerve stimulation. Vision Res 2003;43:1091–1102.

    Article  PubMed  Google Scholar 

  20. Humayun MS, de Juan E Jr, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 1996;114:40–46.

    PubMed  CAS  Google Scholar 

  21. Humayun MS, de Juan E Jr, Weiland JD, et al. Pattern electrical stimulation of the human retina. Vision Res 1999;39:2569–2576.

    Article  PubMed  CAS  Google Scholar 

  22. Weiland JD, Humayun MS, Dagnelie G, de Juan E Jr, Greenberg RJ, Liff NT. Understanding the origin of visual percepts elicited by electrical stimulation of the human retina. Graefes Arch Clin Exp Ophthalmol 1999;237:1007–1013.

    Article  PubMed  CAS  Google Scholar 

  23. Humayun MS, Weiland JD, Fujii GY, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 2003;43:2573–2581.

    Article  PubMed  Google Scholar 

  24. Wyatt J, Rizzo J. Ocular implants for the blind. IEEE Spectrum 1996;33:47–53.

    Article  Google Scholar 

  25. Rizzo JF, Wyatt J. Prospects for visual protesis. The Neuroscientist 1997;3:251–262.

    Article  Google Scholar 

  26. Eckmiller R. Learning retina implants with epiretinal contacts. Ophthalmic Res 1997;29:281–289.

    PubMed  CAS  Google Scholar 

  27. Chow AY, Chow VY. Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 1997;225:13–16.

    Article  PubMed  CAS  Google Scholar 

  28. Peyman G, Chow AJ, Chanping L, Chow VY, Perlman JI, Peachey NS. Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 1998;29:234–241.

    PubMed  CAS  Google Scholar 

  29. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004;122:460–469.

    Article  PubMed  Google Scholar 

  30. Zrenner E, Miliczek KD, Gabel VP, et al. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 1997;29:269–280.

    Article  PubMed  CAS  Google Scholar 

  31. Zrenner E, Stett A, Weiss S, et al. Can subretinal microphotodiodes sucessfully replace degenerated photoreceptors? Vision Res 1999;39:2555–2567.

    Article  PubMed  CAS  Google Scholar 

  32. Zrenner E. Will retinal implants restore vision? Science 2002;295:1022–1025.

    Article  PubMed  CAS  Google Scholar 

  33. Safadi MR, Washko F, Lagman A, et al. Development of a microfluidic drug delivery neural stimulating device for vision. Invest Ophthalmol Vis Sci 2003;44:ARVO E-Abstract 5082.

    Google Scholar 

  34. Peterman MC, Mehenti NZ, Bilbao KV, et al. The Artificial Synapse Chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif Organs 2003;27:975–985.

    Article  PubMed  CAS  Google Scholar 

  35. Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA. Localized chemical release from an artificial synapse chip. Proc Natl Acad Sci USA 2004;101:9951–9954.

    Article  PubMed  CAS  Google Scholar 

  36. Dorman MF, Loizou PC, Rainey D. Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. J Acoust Soc Am 1997;102:2993–2996.

    Article  PubMed  CAS  Google Scholar 

  37. Loizou PC. Introduction to cochlear implants. IEEE Eng Med Biol Mag 1999;18:32–42.

    Article  PubMed  CAS  Google Scholar 

  38. De Balthasar C, Cosendai G, Pelizzone M. Simulations of the effects of electrical stimulation selectivity on speech reception with cochlear implants. Med Hyg 1999;2273:1984–1988.

    Google Scholar 

  39. Legge GE, Pelli DG, Rubin GS, Schleske MM. Psychophysics of reading. I. Normal vision. Vision Res 1985;25:239–252.

    Article  PubMed  CAS  Google Scholar 

  40. Legge GE, Rubin GS. Psychophysics of reading. IV. Wavelength effects in normal and low vision. J Optic Soc Am A 1986;3:40–51.

    CAS  Google Scholar 

  41. Legge GE, Rubin GS, Luebker A. Psychophysics of reading. V. The role of contrast in normal vision. Vision Res 1987;27:1165–1177.

    Article  PubMed  CAS  Google Scholar 

  42. Legge GE, Parish DH, Luebker A, Wurm LH. Psychophysics of reading. XI. Comparing color contrast and luminance contrast. J Optic Soc Am A 1990;7:2002–2010.

    CAS  Google Scholar 

  43. Legge GE, Ahn SJ, Klitz TS, Luebker A. Psychophysics of reading. XVI. The visual span in normal and low vision. Vision Res 1997;37:1999–2010.

    Article  PubMed  CAS  Google Scholar 

  44. Chung STL, Mansfield JS, Legge GE. Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision. Vision Res 1998;38:2949–2962.

    Article  PubMed  CAS  Google Scholar 

  45. Toet A, Levi DM. The two-dimensional shape of spatial interaction zones in the parafovea. Vision Res 1992;32:1349–1357.

    Article  PubMed  CAS  Google Scholar 

  46. Latham K, Whitaker D. A comparison of word recognition and reading performance in foveal and peripheral vision. Vision Res 1996;36:2665–2674.

    Article  PubMed  CAS  Google Scholar 

  47. Legge GE, Mansfield JS, Chung STL. Psychophysics of reading XX. Linking letter recognition to reading speed in central and peripheral vision. Vision Res 2001;41:725–743.

    Article  PubMed  CAS  Google Scholar 

  48. Chung ST, Legge GE, Cheung SH. Letter-recognition and reading speed in peripheral vision benefit from perceptual learning. Vision Res 2004;44:695–709.

    Article  PubMed  Google Scholar 

  49. Legge GE, Rubin GS, Pelli DG, Schleske MM. Psychophysics of reading. II. Low vision. Vision Res 1985;25:253–265.

    Article  PubMed  CAS  Google Scholar 

  50. Rubin GS, Legge GE. Psychophysics of reading. VI. The role of contrast in low vision. Vision Res 1989;29:79–91.

    Article  PubMed  CAS  Google Scholar 

  51. Legge GE, Ross JA, Isenberg LM, La May JM. Psychophysics of reading. XII: Clinical predictors of low-vision reading speed. Invest Ophthalmol Vis Sci 1992;33:677–687.

    PubMed  CAS  Google Scholar 

  52. Mousty P, Bertelson P. A study of braille reading: 1. Reading speed as a function of hand usage and context. Q J Exp Psychol A 1985;37:217–233.

    PubMed  CAS  Google Scholar 

  53. Whittaker SG, Lovie-Kitchin J. Visual requirements for reading. Optom Vision Sci 1993;70:54–65.

    Article  CAS  Google Scholar 

  54. Rumney NJ. Using visual thresholds to establish vision performance. Ophthalmic Physiological Optics 1995;15:S18–S24.

    PubMed  Google Scholar 

  55. Sommerhalder J, Rappaz B, de Haller R, Perez Fornos A, Safran AB, Pelizzone M. Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Res 2004;44:1693–1706.

    Article  PubMed  Google Scholar 

  56. Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelised vision system. J Optic Soc Am A 1992;9:673–677.

    Article  CAS  Google Scholar 

  57. Dagnielie G, Barnett D, Humayun MS, Thompson RW. Paragraph text reading using a pixelized prosthetic vision simulator: Parameter dependence and task learning in free-viewing condition. Invest Ophthalmol Vis Sci 2006;47:1241–1250.

    Article  Google Scholar 

  58. Yagi T, Ito Y, Kanda H, Tanaka S, Watanabe M, Uchikawa Y. Hybrid retinal implant: fusion of engineering and neuroscience. Proc 1999 IEEE Int Conf Systems Man Cybernetics 1999;4:382–385.

    Google Scholar 

  59. Ito Y, Yagi T, Kanda H, Tanaka S, Watanabe M, Uchikawa Y. Cultures of neurons on microelectrode array in hybrid retinal implant. Proc 1999 IEEE Int Conf Systems Man Cybernetics 1999;4:414–417.

    Google Scholar 

  60. Terasawa Y, Fujikado T, Yagi T. Simulation of visual prosthesis in virtual space. International J Appl Electromagne Mech 2001/2002;15:431–436.

    Google Scholar 

  61. Legge GE, Ross JA, Luebker A, La May JM. Psychophysics of reading VIII. The Minnesota Low-Vision Reading Test. Optom Vision Sci 66:843–853.

    Google Scholar 

  62. Perez Fornos A, Sommerhalder J, Rappaz B, Safran AB, Pelizzone M. Simulation of artificial vision: III. Do the spatial or temporal characteristics of stimulus pixelization really matter? Invest Ophthalmol Vis Sci 2005;46:3906–3912.

    Article  Google Scholar 

  63. Sjostrand J, Olsson V, Popovic Z, Conradi N. Quantitative estimations of foveal and extrafoveal retinal circuitry in humans. Vision Res 1999;39:2987–2998.

    Article  PubMed  CAS  Google Scholar 

  64. Sommerhalder J, Oueghlani E, Bagnoud M, Leonards U, Safran AB, Pelizzone M. Simulation of artificial vision: I. Eccentric reading of isolated words, and perceptual learning. Vision Res 2003;43:269–283.

    Article  PubMed  Google Scholar 

  65. Beckmann PJ, Legge GE. Psychophysics of reading. XIV. The page navigation problem in using magnifiers. Vision Res 1996;36:3723–3733.

    Article  PubMed  CAS  Google Scholar 

  66. Fine EM, Kirschen MP, Peli E. The necessary field of view to read with an optimal stand magnifier. J Am Optom Assoc 1996;67:382–389.

    PubMed  CAS  Google Scholar 

  67. Fine EM, Peli E. Visually impaired observers require a larger window than normally sighted observers to read from a scroll display. J Am Optom Assoc 1996;67:390–396.

    PubMed  CAS  Google Scholar 

  68. Fine, EM, Peli, E. The role of context in reading with central field loss. Optom Vis Sci 1996;73:533–539.

    Article  PubMed  CAS  Google Scholar 

  69. Fine EM, Hazel CA, Latham K, Rubin GS. Are benefits of sentence context different in central and peripheral vision? Optom Vis Sci 1999;76:764–769.

    Article  PubMed  CAS  Google Scholar 

  70. Harland S, Legge GE, Luebker A. Psychophysics of reading. XVII. Low-vision performance with four types of electronically magnified text. Optom Vis Sci 1998;75:183–190.

    Article  PubMed  CAS  Google Scholar 

  71. Perez Fornos A, Sommerhalder J, Rappaz B, Pelizzone M, Safran AB. Processes involved in oculomotor adaptation fo eccentric reading. Invest Ophthalmol Vis Sci 2006;47:1439–1447.

    Article  Google Scholar 

  72. Crist RE, Li W, Gilbert CD. Learning to see: experience and attention in primary visual cortex. Nature Neuroscience 2001;4:519–525.

    PubMed  CAS  Google Scholar 

  73. Leat SJ, Li W, Epp K. Crowding in central and eccentric vision: the effects of contour interaction and attention. Invest Ophthalmol Vis Sci 1999;40:504–512.

    PubMed  CAS  Google Scholar 

  74. Sireteanu R, Rettenbach R. Perceptual learning in visual search generalizes over tasks, locations, and eyes. Vision Res 2000;40:2925–2949.

    Article  PubMed  CAS  Google Scholar 

  75. Wensveen JM, Bedell HE, Loshin DS. Reading rates with artificial central scotoma with and without spatial remapping of print. Optom Vis Sci 1995;72:100–114.

    Article  PubMed  CAS  Google Scholar 

  76. Bowers AR, Reid VM. Eye movements and reading with simulated visual impairment. Ophthalmic Physiol Opt 1997;17:392–402.

    Article  PubMed  CAS  Google Scholar 

  77. Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E. Electrical multisite stimulation of the isolated chicken retina. Vision Res 2000;40:1785–1795.

    Article  PubMed  CAS  Google Scholar 

  78. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 2003;44:5362–5369.

    Article  PubMed  Google Scholar 

  79. Harmon LD, Julesz B. Masking in visual recognition: effects of two-dimensional filtered noise. Science 1973;180:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  80. Bachmann T, Kahusk N. The effects of coarseness of quantisation, exposure duration, and selective spatial attention on the perception of spatially quantised (‘blocked’) visual images. Perception 1997;26:1181–1196.

    Article  PubMed  CAS  Google Scholar 

  81. Zrenner E. The subretinal implant: can microphotodiode arrays replace degenerated retinal photoreceptors to restore vision? Ophthalmologica 2002;216:8–20.

    Article  PubMed  Google Scholar 

  82. Ziegler D, Linderhalm P, McCormick K, et al. An active microelectrode array of oscillating pixels for retinal stimulation. Sensors and Actuators A 2004;110:11–17.

    Article  CAS  Google Scholar 

  83. Wolffsohn JS, Cochrane AL. The changing face of the visually impaired: the Kooyong low vision clinic’s past, present, and future. Optom Vis Sci 1999;76:747–754.

    Article  PubMed  CAS  Google Scholar 

  84. Hazel CA, Petre KL, Armstrong RA, Benson MT, Frost NA. Visual function and subjective quality of life compared in subjects with acquired macular disease. Invest Ophthalmol Vis Sci 2000;41:1309–1315.

    PubMed  CAS  Google Scholar 

  85. McClure ME, Hart PM, Jackson AJ, Stevenson MR, Chakravarthy U. Macular degeneration: do conventional measurements of impaired visual function equate with visual disability? Br J Ophthalmol 2000;84:244–250.

    Article  PubMed  CAS  Google Scholar 

  86. Yanai D, Weiland JD, Mahadevappa M, et al. Visual Perception in Blind Subjects with Microelectronic Retinal Prosthesis. Invest Ophthalmol Vis Sci 2003;44: ARVO E-Abstract 5056.

    Google Scholar 

  87. Loewenstein JI, Montezuma SR, Rizzo JF. Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy. Arch Ophthalmol 2004;122:587–596.

    Article  PubMed  Google Scholar 

  88. Cha K, Horch KW, Normann RA. Mobility performance with a pixelized vision system. Vision Res 1992;32:1367–1372.

    Article  PubMed  CAS  Google Scholar 

  89. Thompson RW, Barnett GD, Humayun MS, Dagnelie G. Facial recognition using simulated prosthetic pixelized vision. Invest Ophthalmol Vis Sci 2003;44:5035–5042.

    Article  PubMed  Google Scholar 

  90. Perez Fornos A, Sommerhalder J, Chanderli K, et al. Minimum requirements for mobility in known environments and perceptual learning of this task in eccentric vision. Invest Ophthalmol Vis Sci 2004;45:ARVO E-Abstract 5445.

    Google Scholar 

  91. Perez Fornos A, Sommerhalder J, Pittard A, Safran AB, Pelizzone M. Minimum requirements for visuomotor coordination and learning of such tasks in eccentric vision. Invest Ophthalmol Vis Sci 2005;46:ARVO E-Abstract 1533.

    Google Scholar 

  92. Wilms M, Eger M, Schanze T, Eckhorn R. Visual resolution with epi-retinal electrical stimulation estimated from activation profiles in cat visual cortex. Vis Neurosci 2003;20:543–555.

    Article  PubMed  Google Scholar 

  93. Eger M, Wilms M, Eckhorn R, Schanze T, Hesse L. Retino-cortical information transmission achievable with a retina implant. Biosystems 2005;79:133–142.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa NJ

About this chapter

Cite this chapter

Sommerhalder, J. (2007). How to Restore Reading With Visual Prostheses. In: Tombran-Tink, J., Barnstable, C.J., Rizzo, J.F. (eds) Visual Prosthesis and Ophthalmic Devices. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-449-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-449-0_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-16-9

  • Online ISBN: 978-1-59745-449-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics