Skip to main content

Detection and Measurement of Reactive Oxygen Intermediates in Mitochondria and Cells

  • Protocol
  • First Online:
Redox-Mediated Signal Transduction

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 476))

Abstract

Reactive oxygen intermediates (ROIs) play a key role in a number of human diseases either by inducing cell death, cellular proliferation, or by acting as mediators in cellular signaling. Therefore, their measurement in vivo and in cell culture is desirable but technically difficult and often troublesome. To address some of the key methodological issues in examining the formation of ROI in cells and mitochondria, this chapter discusses the following: (a) the cellular sources of ROI and their enzymatic removal, (b) common methods used to determine cellular and mitochondrial ROI such as chemiluminescence, electron paramagnetic resonance spectroscopy, fluorescence, and enzymatic techniques, and (c) some common problems associated with these assays and the interpretation of data. We also provide some simple protocols for the estimation of ROI production in cells and mitochondria, and when measuring ROI in cells and mitochondria, we emphasize the need for thorough understanding of results obtained and their interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halliwell, B., and Gutteridge, J. M. C. (2007) Free Radicals in Biology and Medicine (4th Ed). Oxford University Press, Oxford, England. ISBN-10: 019856869X

    Google Scholar 

  2. Lambert, A. J. and Brand, M. D. (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 279, 39414–394120.

    Article  PubMed  CAS  Google Scholar 

  3. Turrens, J. F. (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17, 3–8.

    Article  PubMed  CAS  Google Scholar 

  4. Raha, S. and Robinson, B. H. (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25, 502–508.

    Article  PubMed  CAS  Google Scholar 

  5. Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H., Wallace, D. C., and Epstein, C. J. (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11, 376–381.

    Article  PubMed  CAS  Google Scholar 

  6. Tarpey, M. M. and Fridovich, I. (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89, 224–236.

    Article  PubMed  CAS  Google Scholar 

  7. Munzel, T., Afanas'ev, I. B., Kleschyov, A. L., and Harrison, D. G. (2002) Detection of superoxide in vascular tissue. Arterioscler Thromb Vasc Biol 22, 1761–1768.

    Article  PubMed  Google Scholar 

  8. Auclair, C. and Voisin, E. (1985) Nitroblue tetrazolium reduction, in CRC Handbook of Methods for Oxygen Radical Research (Greenwald R. A., ed.), CRC Press, Boca Raton, FL, pp. 123–132.

    Google Scholar 

  9. Grozdanovic, Z., Nakos, G., Christova, T., Nikolova, Z., Mayer, B., and Gossrau, R. (1995) Demonstration of nitric oxide synthase (NOS) in marmosets by NADPH diaphorase (NADPH-d) histochemistry and NOS immunoreactivity. Acta Histochem 97, 321–331.

    PubMed  CAS  Google Scholar 

  10. Thomson, L., Trujillo, M., Telleri, R., and Radi, R. (1995) Kinetics of cytochrome c oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems. Arch Biochem Biophys 319, 491–497.

    Article  PubMed  CAS  Google Scholar 

  11. Azzi, A., Montecucco, C., and Richter, C. (1975) The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun 65, 597–603.

    Article  PubMed  CAS  Google Scholar 

  12. Kuthan, H., Ullrich, V., and Estabrook, R. W. (1982) A quantitative test for superoxide radicals produced in biological systems. Biochem J 203, 551–558.

    PubMed  CAS  Google Scholar 

  13. Gardner, P. R. and Fridovich, I. (1991) Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266, 19328–19333.

    PubMed  CAS  Google Scholar 

  14. Hausladen, A. and Fridovich, I. (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269, 29405–29408.

    PubMed  CAS  Google Scholar 

  15. Bass, D. A., Parce, J. W., Dechatelet, L. R., Szejda, P., Seeds, M. C., and Thomas, M. (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130, 1910–1917.

    PubMed  CAS  Google Scholar 

  16. Whiteman, M., Armstrong, J. S., Jones, D. P., and Halliwell, B. (2004) Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J 18, 1395–1397.

    PubMed  CAS  Google Scholar 

  17. Whiteman, M., Rose, P., Siau, J. L., Cheung, N. S., Tan, G. S., Halliwell, B., and Armstrong, J. S. (2005) Hypochlorous acid-mediated mitochondrial dysfunction and apoptosis in human hepatoma HepG2 and human fetal liver cells: role of mitochondrial permeability transition. Free Rad Biol Med 38, 1571–1584.

    Article  PubMed  CAS  Google Scholar 

  18. Armstrong, J. S. and Jones, D. P. (2002) Glutathione depletion enforces mitochondrial permeability transition and apoptosis in HL60 cells overexpressing Bcl-2. FASEB J 16, 1263–1265.

    PubMed  CAS  Google Scholar 

  19. Armstrong, J. S., Whiteman, M., Yang, H., Jones, D. P., and Sternberg, P. (2004) Cysteine-starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells. IOVS 45, 4183–4189.

    Google Scholar 

  20. Armstrong, J. S., Yang, H., Duan, W., Chua, Y., and Whiteman, M. (2004) Cytochrome bc 1 regulates the mitochondrial permeability transition by two distinct pathways. J Biol Chem 279, 50420–50428.

    Article  PubMed  CAS  Google Scholar 

  21. Whiteman, M., Chua, Y. L., Zhang, D., Duan, W., Liou, Y. C., and Armstrong, J. S. (2006) Nitric oxide blocks glutathione-dependent cell death independently of mitochondrial reactive oxygen species: potential role of s-nitrosylation? Biochem Biophys Res Commun 339, 255–262.

    Article  PubMed  CAS  Google Scholar 

  22. Halliwell, B. and Whiteman, M. (2004) Measuring reactive species and oxidative damage in vivo and cell culture. How should you do it and what does it mean? Br J Pharmacol 142, 231–255.

    Article  PubMed  CAS  Google Scholar 

  23. LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5, 227–231.

    Article  PubMed  CAS  Google Scholar 

  24. Rota, C., Chignell, C. F., and Mason, R. P. (1999) Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 27, 873–881.

    Article  PubMed  CAS  Google Scholar 

  25. Halliwell, B. and Whiteman, M. (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142, 231–255.

    Article  PubMed  CAS  Google Scholar 

  26. Rothe, G. and Valet, G. (1990) Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2,7-dichlorofluorescin. J Leukocyte Biol 47, 440–448.

    PubMed  CAS  Google Scholar 

  27. Bindokas, V. P., Jordan, J., Lee, C. C., and Miller, R. J. (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine J Neurosci 16, 1324–1326.

    PubMed  CAS  Google Scholar 

  28. Olive, P. L. (1989) Hydroethidine: a fluorescent redox probe for locating hypoxic cells in spheroids and murine tumours. Br J Cancer 160, 332–328.

    Article  Google Scholar 

  29. Benov, L., Sztejnberg, L., and Fridovich, I. (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25, 826–831.

    Article  PubMed  CAS  Google Scholar 

  30. Papapostolou, I., Patsoukis, N., and Georgiou, C. D. (2004) The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins. Anal Biochem 332, 290–298.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J., and Kalyanaraman, B. (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34, 1359–1368.

    Article  PubMed  CAS  Google Scholar 

  32. Totter, J. R., de Dugros, E. C., and Riveiro, C. (1960) The use of chemiluminescent compounds as possible indicators of radical production during xanthine oxidase action. J Biol Chem 235, 1839–18342.

    PubMed  CAS  Google Scholar 

  33. Storch, J. and Ferber, E. (1988) Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Anal Biochem 169, 262–267.

    Article  PubMed  CAS  Google Scholar 

  34. Faulkner, K. and Fridovich, I. (1993) Luminol and lucigenin as detectors for O2 . Free Radic Biol Med 15, 447–451.

    Article  PubMed  CAS  Google Scholar 

  35. Spasojevic, I., Liochev, S. I., and Fridovich, I. (2000) Lucigenin: redox potential in aqueous media and redox cycling with O2 production. Arch Biochem Biophys 373, 447–450.

    Article  PubMed  CAS  Google Scholar 

  36. Liochev, S. I. and Fridovich, I. (1997) Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Arch Biochem Biophys 337, 115–120.

    Article  PubMed  CAS  Google Scholar 

  37. Tarpey, M. M., White, C. R., Suarez, E., Richardson, G., Radi, R., and Freeman, B. A. (1999) Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84, 1203–1211.

    PubMed  CAS  Google Scholar 

  38. Sohn, H. Y., Keller, M., Gloe, T., Crause, P., and Pohl, U. (2000) Pitfalls of using lucigenin in endothelial cells: implications for NAD(P)H dependent superoxide formation. Free Radic Res 32, 265–272.

    Article  PubMed  CAS  Google Scholar 

  39. Wardman, P., Burkitt, M. J., Patel, K. B., Lawrence, A., Jones, C. M., Everett, S. A., and Vojnovic, B. (2002) Pitfalls in the use of common luminescent probes for oxidative and nitrosative stress. J Fluorescence 12, 65–68.

    Article  Google Scholar 

  40. Tarpey, M. M., White, C. R., Suarez, E., Richardson, G., Radi, R., and Freeman, B. A. (1999) Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84, 1203–1211.

    PubMed  CAS  Google Scholar 

  41. Hodgson, E. K., and Fridovich, I. (1973) The role of O2 in the chemiluminescence of luminol. Photochem Photobiol 18, 451–455.

    Article  PubMed  CAS  Google Scholar 

  42. Teranishi, K. and Shimomura, O. (1997) Coelenterazine analogs as chemiluminescent probe for superoxide anion. Anal Biochem 249, 37– 43.

    Article  PubMed  CAS  Google Scholar 

  43. Tampo, Y., Tsukamoto, M., and Yonaha, M. (1998) The antioxidant action of 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-alpha]pyra z in-3-one (MCLA), a chemiluminescence probe to detect superoxide anions. FEBS Lett 430, 348–352.

    Article  PubMed  CAS  Google Scholar 

  44. Khan, N., Wilmot, C. M., Rosen, G. M., Demidenko, E., Sun, J., Joseph, J., O'Hara, J., Kalyanaraman, B., and Swartz, H. M. (2003) Spin traps: in vitro toxicity and stability of radical adducts. Free Radic Biol Med 34, 1473–1481.

    Article  PubMed  CAS  Google Scholar 

  45. Bottle, S. E., Hanson, G. R., and Micallef, A. S. (2003) Application of the new EPR spin trap 1,1,3-trimethylisoindole N-oxide (TMINO) in trapping HO. and related biologically important radicals. Org Biomol Chem 1, 2585–2589.

    Article  PubMed  CAS  Google Scholar 

  46. Stolze, K., Udilova, N., Rosenau, T., Hofinger, A., and Nohl, H. (2003) Spin trapping of superoxide, alkyl- and lipid-derived radicals with derivatives of the spin trap EPPN. Biochem Pharmacol 66, 1717–1726.

    Article  PubMed  CAS  Google Scholar 

  47. Frejaville, C., Karoui, H., Tuccio, B., Le Moigne, F., Culcasi, M., Pietri, S., Lauricella, R., and Tordo, P. (1995) 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J Med Chem 38, 258–265.

    Article  PubMed  CAS  Google Scholar 

  48. Liu, K. J., Miyake, M., Panz, T., and Swartz, H. (1999) Evaluation of DEPMPO as a spin trapping agent in biological systems. Free Radic Biol Med 26, 714–721.

    Article  PubMed  CAS  Google Scholar 

  49. Armstrong, J. S., Rajasekaran, M., Chamulitrat, W., Gatti, P. J., Hellstrom, W. J., and Sikka, S. C. (1999) The effects of reactive oxygen intermediates on human spermatozoa movement and energy metabolism. Free Radic Biol Med 26, 869–880.

    Article  PubMed  CAS  Google Scholar 

  50. Laurindo, F. R., Pedro Mde, A., Barbeiro, H. V., Pileggi, F., Carvalho, M. H., Augusto, O., and da Luz, P. L. (1994) Vascular free radical release: ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circ Res 74, 700–709.

    PubMed  CAS  Google Scholar 

  51. Rosen, G. M., Britigan, B., Halpern, H., and Pou, S. (1999) Free Radicals Biology and Detection by Spin Trapping, Oxford University Press, Oxford..

    Google Scholar 

  52. Makino, K., Hagiwara, T., Hagi, A., Nishi, M., and Murakami A. (1990) Cautionary note for DMPO spin trapping in the presence of iron ion. Biochem Biophys Res Commun 172, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  53. Halliwell, B. (1995) Antioxidant characterization. Methodology and mechanism. Biochem Pharmacol 49, 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  54. Rizzi, C., Samouilov, A., Kutala, V. K., Parinandi, N. L., Zweier, J. L., and Kuppusamy, P. (2003) Application of a trityl-based radical probe for measuring superoxide. Free Radic Biol Med 35, 1608–1618.

    Article  PubMed  CAS  Google Scholar 

  55. Valgimigli, L., Pedulli, G. F., and Paolini, M. (2001) Measurement of oxidative stress by EPR radical-probe technique. Free Radic Biol Med 31, 708–716.

    Article  PubMed  CAS  Google Scholar 

  56. Zhou, M., Diwu, Z., Panchuk-Voloshina, N., and Haugland, R. P. (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253, 162–168.

    Article  PubMed  CAS  Google Scholar 

  57. Halliwell, B. (2003) Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett 540, 3–6.

    Article  PubMed  CAS  Google Scholar 

  58. Wright, W. E. and Shay, J. W. (2002) Historical claims and current interpretations of replicative aging. Nat Biotechnol 20, 682–688.

    Article  PubMed  CAS  Google Scholar 

  59. Grzelak, A., Rychlik, B., and Bartosz, G. (2000) Reactive oxygen species are formed in cell culture media. Acta Biochim Pol 47, 1197–1198.

    PubMed  CAS  Google Scholar 

  60. Roques, S. C., Landrault, N., Teissedre, P. L., Laurent, C., Besancon, P., Rouane, J. M., and Caporiccio, B. (2002) Hydrogen peroxide generation in caco-2 cell culture medium by addition of phenolic compounds: effect of ascorbic acid. Free Radic Res 36, 593–599.

    Article  PubMed  CAS  Google Scholar 

  61. Wee, L. M., Long, L. H., Whiteman, M., and Halliwell, B. (2003) Factors affecting the ascorbate- and phenolic-dependent generation of hydrogen peroxide in Dulbecco's Modified Eagles Medium. Free Radic Res 37, 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  62. Clement, M. V., Ramalingam, J., Long, L. H., and Halliwell, B. (2001) The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. Antioxid Redox Signal 3, 157–163.

    Article  PubMed  CAS  Google Scholar 

  63. Long, L. H. and Halliwell, B. (2001) Antioxidant and prooxidant abilities of foods and beverages. Methods Enzymol 335, 181–190.

    Article  Google Scholar 

  64. Clement, M. V., Long, L. H., Ramalingam, J., and Halliwell, B. (2002) The cytotoxicity of dopamine may be an artifact of cell culture. J Neurochem 81, 414–421.

    Article  PubMed  CAS  Google Scholar 

  65. Henzler, T. and Steudle, E. (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51, 2053–2066.

    Article  PubMed  CAS  Google Scholar 

  66. Lynch, R. E. and Fridovich, I. (1978) Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem 253, 4697–4699.

    PubMed  CAS  Google Scholar 

  67. Marla, S. S., Lee, J., and Groves, J. T. (1997) Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci USA 94, 14243–14248.

    Article  PubMed  CAS  Google Scholar 

  68. Meister, A. and Anderson, M. E. (1983) Glutathione. Ann Rev Biochem 52, 711–760.

    Article  PubMed  CAS  Google Scholar 

  69. Halliwell, B. (1989) Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radic Biol Med 7, 645–651.

    Article  PubMed  CAS  Google Scholar 

  70. Doulias, P. T., Christoforidis, S., Brunk, U. T., and Galaris, D. (2003) Endosomal and lysosomal effects of desferrioxamine: protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest. Free Radic Biol Med 35, 719–728.

    Article  PubMed  CAS  Google Scholar 

  71. Rius, M., Nies, A. T., Hummel-Eisenbeiss, J., Jedlitschky, G., and Keppler, D. (2003) Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38, 374–384.

    Article  PubMed  CAS  Google Scholar 

  72. Pou, S., Huang, Y. I., Bhan, A., Bhadti, V. S., Hosmane, R. S., Wu, S. Y., Cao, G. L., and Rosen, G. M. (1993) A fluorophore-containing nitroxide as a probe to detect superoxide and hydroxyl radical generated by stimulated neutrophils. Anal Biochem 212, 85–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Whiteman, M., Dogra, Y., Winyard, P.G., Armstrong, J.S. (2008). Detection and Measurement of Reactive Oxygen Intermediates in Mitochondria and Cells. In: Hancock, J.T. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology™, vol 476. Humana Press. https://doi.org/10.1007/978-1-59745-129-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-129-1_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-842-3

  • Online ISBN: 978-1-59745-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics