Skip to main content

Dietary n-3 Polyunsaturated Fatty Acids Modulate T-Lymphocyte Activation

Clinical Relevance in Treating Diseases of Chronic Inflammation

  • Chapter
Nutrition and Immunology

Abstract

Approximately 40 million Americans (1 in 7) are afflicted with arthritis. Arthritis costs the economy an estimated 54.6 billion annually in medical care and indirect costs (i.e., lost wages) and is the number one cause of disability in the United States. The Centers for Disease Control and Prevention project that by the year 2020, the number of cases of arthritis will increase to 59.4 million Americans (1). Current therapy includes the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and slow-acting antirheumatic drugs, but because of side effects, these drugs are usually not administered for more than 2 yr (2,3) The development of safer therapeutic strategies are required to improve patient quality of life in the long term. One such therapeutic approach has been the use of fish oil supplementation. Epidemiological data collected in the 1970s indicate that Greenland Eskimos have a decreased incidence of inflammatory disease despite their high-fat diet. Similar observations were made in the Japanese population, which led to the correlation between a lower incidence of inflammatory disease and high consumption, relative to Americans, of cold-water marine fish (4). Scientists have tested the effects of dietary fish oil supplementation on rheumatoid arthritis (RA) in human clinical trials (3,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adapted from the Arthritis Foundation. World Wide Web address: http://www.arthritis.org/facts/index.html.

  2. Pincus T, Callahan LF. What is the natural history of rheumatoid arthritis? Rheum Dis Clin North Am 1993; 19: 123–51.

    CAS  Google Scholar 

  3. Kremer JM. Clinical studies of omega-3 fatty acid supplementation in patients who have rheumatoid arthritis. Rheum Dis Clin North Am 1991; 17: 391–402.

    CAS  Google Scholar 

  4. Simopoulos AP. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 1991; 54: 438–63.

    CAS  Google Scholar 

  5. Nielsen GL, Farrvang KL, Thomsen BS, Teglbjerg KL, Jensen LT, Hansen TM, et al. The effects of dietary supplementation with n-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: a randomized, double blind trial. Eur J Clin Invest 1992; 22: 687–91.

    CAS  Google Scholar 

  6. Bang HO, Dyerberg J, Sinclair HM. The composition of the Eskimo food in north western Greenland. Am J Clin Nutr 1980; 33: 2657–61.

    CAS  Google Scholar 

  7. Kinsella JE. Dietary fats and cardiovascular disease. In: Kinsella JE, ed, Seafoods and Fish Oils in Human Health and Disease, pp. 14–260. Marcell Dekker, New York, 1987.

    Google Scholar 

  8. Hosack-Fowler K, Chapkin RS, McMurray DN. Effects of purified dietary n-3 ethyl esters on murine T lymphocyte function. J Immunol 1993; 151: 5186–97.

    Google Scholar 

  9. Jonnalagadda SS, Egan SK, Heimbach JT, Harris SS, Kris-Etherton PM. Fatty acid consumption pattern of Americans: 1987–1988 USDA nationwide food consumption survey. Nutr Res 1995; 15: 1767–81.

    Google Scholar 

  10. Kjeldsen-Kragh J, Lund JA, Ruse T, Finnanger B, Haaland K, Finstad R, et al. Dietary omega-3 fatty acid supplementation and naproxen treatment in patients with rheumatoid arthritis. J Rheumatol 1992; 19: 1531–6.

    CAS  Google Scholar 

  11. Skoldstam L, Borjesson O, Kjallman A, Seiving B, Akesson B. Effect of six months of fish oil supplementation in stable rheumatoid arthritis. A double-blind, controlled study. Scand J Rheumatol 1992; 21: 178–85.

    CAS  Google Scholar 

  12. Lau CS, Morley KD, Belch JJ. Effects of fish oil supplementation on non-steroidal anti-inflammatory drug requirement in patients with mild rheumatoid arthritis-a double-blind placebo controlled study. Br J Rheumatol 1993; 32: 982–89.

    CAS  Google Scholar 

  13. Geusens P, Wouters C, Nijs J, Jiang Y, Dequeker J. Long-term effect of omega-3 fatty acid supplementation in active rheumatoid arthritis. Arthritis Rheum 1994; 37: 824–29.

    CAS  Google Scholar 

  14. Kremer JM, Lawrence DA, Petrillo GF, Litts LL, Mullaly PM, Rynes RL, et al. Effects of high-dose fish oil on rheumatoid arthritis after stopping nonsteroidal antiinflammatory drugs. Arthritis Rheum 1995; 38: 1107–14.

    CAS  Google Scholar 

  15. Endres S, De Caterina R, Schmidt EB, Kristensen SD. n-3 polyunsaturated fatty acids: update 1995. Eur J Clin Invest 1995; 25: 629–38.

    CAS  Google Scholar 

  16. Morrow WJW, Homsy J, Levy JA. The influence of nutrition on experimental autoimmune disease. In: Cunningham-Rundles S, ed, Nutrient Modulation of the Immune Response, pp. 153–67. Marcel Dekker, New York, 1993.

    Google Scholar 

  17. Prickett JD, Robinson DR, Steinberg AD. Effects of dietary enrichment with eicosapentaenoic acid upon autoimmune nephritis in female NZBxNZW/Fl mice. Arthritis Rheum 1983; 26: 133–9.

    CAS  Google Scholar 

  18. Venkatraman JT, Fernandes G. Mechanisms of delayed autoimmune disease in B/W mice by omega-3 lipids and food restriction. In: Chandra RK, ed, Nutrition and Immunology, pp. 309–23. ARTS Biomedical Publishers and Distributors, St. John’s, Newfoundland, Canada, 1992.

    Google Scholar 

  19. Alexander NJ, Smythe NL, Jokinen MP. The type of dietary fat affects the severity of autoimmune disease in NZB/NZW mice. Am J Pathol 1987; 127: 106–21.

    CAS  Google Scholar 

  20. Westberg G, Tarkowski A, Svalander C. Effect of eicosapentaenoic acid rich menhaden oil and MaxEPA on the autoimmune disease of Mrl/1 mice. Int Arch Allergy Appl Immunol 1989; 88: 454–61.

    CAS  Google Scholar 

  21. Watson J, Godfrey D, Stimson WH, Belch JJF, Sturrock RD. The therapeutic effects of dietary fatty acid supplementation in the autoimmune disease of the MRL-mp-1pr/lpr mouse. Int J Immunopharmacol 1988; 10: 467–71.

    CAS  Google Scholar 

  22. Prickett JD, Trentham DE, Robinson DR. Dietary fish oil augments the induction of arthritis in rats immunized with type II collagen. J Immunol 1984; 132: 725–9.

    CAS  Google Scholar 

  23. Leslie CA, Gonnerman WA, Ullman MD, Hayes KC, Franzblau C, Cathcart ES. Dietary fish oil modulates macrophage fatty acids and decreases arthritis susceptibility in mice. J Exp Med 1985; 162: 1336–49.

    CAS  Google Scholar 

  24. Panayi GS. The pathogenesis of rheumatoid arthritis: from molecules to the whole patient. Br J Rheumatol 1993; 32: 533–6.

    CAS  Google Scholar 

  25. Abbas AK, Lichtman AH, Pober JS. Lymphocyte specificity and activation. In Wonsiewicz MJ, ed, Cellular and Molecular Immunology, pp. 35–68, WB Saunders Company, Philadelphia, 1991.

    Google Scholar 

  26. Munoz-Fernandez MA, Pimentel-Muinos FX, Alonso MA, Campa-nero M, Sanchez-Madrid F, Silva A, et al. Synergy of tumor necrosis factor with protein kinase C activators on T cell activation. Eur J Immunol 1990; 20: 605–10.

    CAS  Google Scholar 

  27. Calder PC. Fatty acids, dietary lipids and lymphocyte functions. Biochem Soc Trans 1995; 23: 302–9.

    CAS  Google Scholar 

  28. VanMeter AR, Ehringer WD, Stillwell W, Blumenthal EJ, Jenski LJ. Aged lymphocyte proliferation following incorporation and retention of dietary omega-3 fatty acids. Mech Age Dev 1994; 75: 95–114.

    CAS  Google Scholar 

  29. Vallette L, Croset M, Prigent AF, Meskini N, LaGarde M. Dietary polyunsaturated fatty acids modulate fatty acid composition and early activation steps of concanavalin A-stimulated rat thymocytes. J Nutr 1991; 121: 1844–59.

    Google Scholar 

  30. Hwang D. Essential fatty acids and immune response. FASEB J 1989; 3: 2052–61.

    CAS  Google Scholar 

  31. Fritsche KL, Johnston PV. Effect of dietary omega-3 fatty acids on cell-mediated cytotoxic activity in BALB/C mice. Nutr Res 1990; 10: 577–88.

    CAS  Google Scholar 

  32. Endres S, Meydani SN, Ghorbani R, Schindler R, Dinarello CA. Dietary supplementation with n-3 fatty acids suppresses interleukin2 production and mononuclear cell proliferation. J Leuk Biol 1993; 54: 599–603.

    CAS  Google Scholar 

  33. Meydani SN, Endres S, Woods MM, Goldin BR, Soo C, MorrillLabrode A, et al. Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J Nutr 1991; 121: 547–55.

    CAS  Google Scholar 

  34. Meydani SN, Lichtenstein AH, Cornwall S, Meydani M, Goldin BR, Rasmussen H, et al. Immunologic effects of National Cholesterol Education Panel Step-2 diets with and without fish-derived n-3 fatty acid enrichment. J Clin Invest 1993; 92: 105–13.

    CAS  Google Scholar 

  35. Yaqoob P, Newsholme EA, Calder PC. The effect of dietary lipid manipulation on rat lymphocyte subsets and proliferation. Immunology 1994; 82: 603–10.

    CAS  Google Scholar 

  36. Yaqoob P, Newsholme EA, Calder PC. The effect of fatty acids on leucocyte subsets and proliferation in rat whole blood. Nutr Res 1995; 15: 279–87.

    CAS  Google Scholar 

  37. Shapiro AC, Wu D, Hayek MG, Meydani M, Meydani SN. Role

    Google Scholar 

  38. of eicosanoids and vitamin E in fish oil-induced changes of splenocyte proliferation to T cell mitogens in mice. Nutr Res 1994; 14: 1339–54.

    Google Scholar 

  39. Wu D, Meydani SN, Meydani M, Hayek MG, Huth P, Nicolosi RJ. Immunologic effects of marine-and plant-derived n-3 polyunsaturated fatty acids in nonhuman primates. Am J Clin Nutr 1996; 63: 273–80.

    CAS  Google Scholar 

  40. Payan DG, Wong MYS, Chernov-Rogan T, Valone FH, Pickett WC, Blake VA, et al. Alterations in human leukocyte function induced by ingestion of ecosapentaenoic acid. J Clin Immunol 1986; 6: 402–10.

    CAS  Google Scholar 

  41. Surette MEJ, Whelan J, Lu G, Hardard’ottir I, Kinsella JE. Dietary n-3 polyunsaturated fatty acids modify Syrian hamster platelet and macrophage phospholipid fatty acyl composition and eicosanoid synthesis: a controlled study. Biochim Biophys Acta 1995; 1255: 185–91.

    Google Scholar 

  42. Chapkin RS, Coble IO. Remodeling of mouse kidney phospholipid classes and subclasses by diet. J Nutr Biochem 1991; 2: 158–64.

    CAS  Google Scholar 

  43. Jolly CA, Jiang YH, Chapkin RS, McMurray DN. Dietary n-3 polyunsaturated fatty acid modulation of murine lymphoproliferation and interleukin-2 secretion: correlation with alterations in diacylglycerol and ceramide mass. J Nutr 1997; 127: 37–43.

    CAS  Google Scholar 

  44. Brenner RR. Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog Lipid Res 1984; 23: 69–96.

    CAS  Google Scholar 

  45. Hagve TA. Effects of unsaturated fatty acids on cell membrane functions. Scand J Clin Lab Invest 1988; 48: 381–8.

    CAS  Google Scholar 

  46. Conroy DM, Stubbs CD, Belin J, Pryor CL, Smith AD. The effects of dietary (n-3) fatty acid supplementation on lipid dynamics and composition in rat lymphocytes and liver microsomes. Biochim Biophys Acta 1986; 861: 457–62.

    CAS  Google Scholar 

  47. Housley MD, Stanley KK. Lipid-protein interactions. In: Houslay MD, Stanley KK, eds, Dynamics of Biological Membranes, pp. 92–151, Wiley, New York, 1982.

    Google Scholar 

  48. Brouard C, Pascaud M. Effects of moderate dietary supplementations with n-3 fatty acids on macrophage and lymphocyte phospholipid and macrophage eicosanoid synthesis in the rat. Biochim Biophys Acta 1990; 1047: 19–28.

    CAS  Google Scholar 

  49. Huang X, Li Y, Tanaka K, Moores KG, Hayashi H. Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase Cyl, Grb2, and phosphatidylinositol 3-kinase. Proc Natl Acad Sci 1995; 92: 11, 618–22.

    Google Scholar 

  50. Chapkin RS, Akoh CC, Miller CC. Influence of dietary n-3 fatty acids on macrophage glycerophospholipid molecular species and peptido leukotriene synthesis. J Lipid Res 1991; 32: 1205–13.

    CAS  Google Scholar 

  51. Zurier RB. Prostaglandins, fatty acids, and arthritis. In: CunninghamRundles, S, ed, Nutrient Modulation of the Immune Response, pp. 201–21. Marcel Dekker, New York, 1993.

    Google Scholar 

  52. Raclot T, Groscolas R, Langin D, Ferre P. Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues. J Lipid Res 1997; 38: 1963–72.

    CAS  Google Scholar 

  53. Wander RC, Hall JA, Gradin JL, Du SH, Jewell DE. The ratio of dietary (n-6) to (n-3) fatty acids influences immune system function, eicosanoid metabolism, lipid peroxidation and vitamin E status in aged dogs. J Nutr 1997; 127: 1198–205.

    CAS  Google Scholar 

  54. Scherer JM, Stillwell W, Jenski U. Spleen survival and proliferation are differentially altered by docosahexaenoic acid. Cell Immunol 1997; 180: 153–61.

    CAS  Google Scholar 

  55. Rossetti RG, Seiler CM, DeLuca P, Laposata M, Zurier RB. Oral administration of unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation. J Leuk Biol 1997; 62: 438–43.

    CAS  Google Scholar 

  56. Masters C. Omega-3 fatty acids and the peroxisome. Mol Cell Biochem 1996; 165: 83–93.

    CAS  Google Scholar 

  57. Fujikawa M, Yamashita N, Yamazaki K, Sugiyama E, Suzuki H, Hamazaki T. Eicosapentaenoic acid inhibits antigen-presenting cell function of mutine splenocytes. Immunology 1992; 75: 330–35.

    CAS  Google Scholar 

  58. Hughes DA, Pinder AC, Piper Z, Johnson IT, Lund EK. Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am J Clin Nutr 1996; 63: 267–72.

    CAS  Google Scholar 

  59. Renier G, Skamene E, DeSanctis J, Radzioch D. Dietary n-3 polyunsaturated fatty acids prevent the development of atherosclerotic lesions in mice. Arterioscler Thromb 1993; 13: 1515–24.

    CAS  Google Scholar 

  60. Somers SD, Erickson KL. Alteration of tumor necrosis factor-a production by macrophages from mice fed diets high in eicosapentaenoic and docosahexaenoic fatty acids. Cell Immunol 1994; 153: 287–97.

    CAS  Google Scholar 

  61. Hardard’Ottir I, Whelan J, Kinsella JE. Kinetics of tumour necrosis factor and prostaglandin production by murine resident peritoneal macrophages as affected by dietary n-3 polyunsaturated fatty acids. Immunology 1992; 76: 572–7.

    Google Scholar 

  62. Jenski U, Bowker GM, Johnson MA, Ehringer WD, Fetterhoff T, Stillwell W. Docosahexaenoic acid-induced alteration of Thy-1 and CD8 expression on murine splenocytes. Biochim Biophys Acta 1995; 1236: 39–50.

    Google Scholar 

  63. Soyland E, Lea T, Sandstad B, Drevon A. Dietary supplementation with very long-chain n-3 fatty acids in man decreases expression of the interleukin-2 receptor (CD25) on mitogen-stimulated lymphocytes from patients with inflammatory skin diseases. Eur J Clin Invest 1994; 24: 236–42.

    CAS  Google Scholar 

  64. Fraser JD, Straus D, Weiss A. Signal transduction events leading to T-cell lymphokine gene expression. Immunol Today 1993; 14: 357–62.

    CAS  Google Scholar 

  65. Liu Y. Molecular basis of T cell costimulation. In: Liu Y, ed, The Costimulatory Pathways for T Cell Responses, pp. 30–67. R. G. Landes Company, Austin, TX, 1994.

    Google Scholar 

  66. Weiss A, Imboden J, Hardy K, Manger B, Terhorst C, Stobo J. The role of the T3/antigen receptor complex in T-cell activation. Annu Rev Immunol 1986; 4: 593–619.

    CAS  Google Scholar 

  67. Ullman KS, Northrop JP, Verweij CL, Crabtree GR. Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function. Annu Rev Immunol 1990; 8: 421–52.

    CAS  Google Scholar 

  68. Serfling E, Avots A, Neumann M. The architecture of the interleukin2 promoter: a reflection of T lymphocyte activation. Biochim Biophys Acta 1995; 1263: 181–200.

    Google Scholar 

  69. Pahlavani MA, Harris MD, Richardson A. The increase in the induction of IL-2 expression with caloric restriction is correlated to changes in the transcription factor NFAT. Cell Immunol 1997; 180: 10–9.

    CAS  Google Scholar 

  70. Nabholz M, Soldaini E, Sperisen P, Pla M, Wang SM, MacDonald HR, et al. The cis-acting elements controlling mouse IL-2Ra transcription. Immunobiology 1995; 193: 259–62.

    CAS  Google Scholar 

  71. Sperisen P, Wang SM, Soldaini E, Pla M, Rusterholz C, Bucher P, et al. Mouse interleukin-2 receptor a gene expression. J Biol Chem 1995; 270: 10, 743–53.

    Google Scholar 

  72. Pimentel-Muinos FX, Mazana J, Fresno M. Regulation of interleukin-2 receptor a chain expression and nuclear factor-kB activation by protein kinase C in T lymphocytes. J Biol Chem 1994; 269: 24, 424–9.

    Google Scholar 

  73. Soldaini E, Pla M, Beermann F, Espel E, Corthesy P, Barange S, Waanders GA, et al. Mouse interleukin-2 receptor a gene expression. J Biol Chem 1995; 270: 10, 733–42.

    Google Scholar 

  74. Ng J, Cantrell D. STAT3 is a serine kinase target in T lymphocytes. J Biol Chem 1997; 272: 24, 542–9.

    Google Scholar 

  75. Meyer WKH, Reichenbach P, Schindler U, Soldaini E, Nabholz M. Interaction of STATS dimers on two low affinity binding sites mediates interleukin 2 (IL-2) stimulation of IL-2 receptor a gene transcription. J Biol Chem 1997; 272: 31, 821–8.

    Google Scholar 

  76. Ascherman DP, Migone TS, Friedmann MC, Leonard WJ. Interleukin-2 (IL-2)-mediated induction of the IL-2 receptor a chain gene. J Biol Chem 1997; 272: 8704–9.

    CAS  Google Scholar 

  77. Mills GB, Schmandt R, Gibson S, Leung B, Hill M, May C, et al. Transmembrane signaling by the interleukin-2 receptor: progress and conundrums. Semin Immunol 1993; 5: 345–64.

    CAS  Google Scholar 

  78. Downward J, Graves J, Cantrell D. The regulation and function of p2lras in T cells. Immunol Today 1992; 13: 89–92.

    CAS  Google Scholar 

  79. Howe LR, Weiss A. Multiple kinases mediate T-cell-receptor signaling. TIBS 1995; 20: 59–64.

    CAS  Google Scholar 

  80. Park DJ, Rho HW, Rhee SG. CD3 stimulation causes phosphorylation of phospholipase C-y1 on serine and tyrosine residues in a human T-cell line. Proc Natl Acad Sci USA 1991; 88: 5453–6.

    CAS  Google Scholar 

  81. Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell 1994; 76: 263–74.

    CAS  Google Scholar 

  82. Hug H, Sarre TF. Protein kinase C isoenzymes: divergence in signal transduction. Biochem J 1993; 291: 329–43.

    CAS  Google Scholar 

  83. Szamel M, Leufgen H, Kurrle R, Resch K. Differential signal transduction pathways regulating interleukin-2 synthesis and interleukin2 receptor expression in stimulated human lymphocytes. Biochim Biophys Acta 1995; 1235: 33–42.

    Google Scholar 

  84. Izquierdo M, Leevers SJ, Williams DH, Marshall CJ, Weiss A, Cantrell D. The role of protein kinase C in the regulation of extracellular signal-regulated kinase by the T cell antigen receptor. Eur J Immunol 1994; 24: 2462–8.

    CAS  Google Scholar 

  85. Rudd CE, Janssen O, Cai Y, da Silva AJ, Raab M, Prasad KVS. Two-step TCRÇ/CD3–CD4 and CD28 signaling in T cells: SH2/ SH3 domains, protein-tyrosine and lipid kinases. Immunol Today 1994; 21:123–32.

    Google Scholar 

  86. Palmer RH, Dekker LV, Woscholski R, Le Good JA, Gigg R, Parker PJ. Activation of PRK1 by phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate. J Biol Chem 1995; 270: 22, 412–6.

    Google Scholar 

  87. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, et al. Signaling by the cyokine receptor superfamily: JAKs and STATS. TIBS 1994; 19: 222–7.

    CAS  Google Scholar 

  88. Kawahara A, Minami Y, Miyazaki T, Ihle JN, Taniguchi T. Critical role of the interleukin-2 (IL-2) receptor y-chain-associated JAK3 in the IL-2-induced c-fos and c-myc but not bc1–2, gene induction. Proc Natl Acad Sci 1995; 92: 8724–8.

    CAS  Google Scholar 

  89. Kirken RA, Rui H, Malabarba MG, Howard OMZ, Kawamura M, O’Shea JJ, et al. Activation of JAK3, but not JAK1, is critical for IL-2-induced proliferation and STATS recruitment by a COOHterminal region of the IL-2 receptor (3-chain Cytokine 1995; 7: 689–700.

    CAS  Google Scholar 

  90. Gilmour KC, Pine R, Reich NC. Interleukin 2 activates STATS transcription factor (mammary gland factor) and specific gene expression in T lymphocytes. Proc Natl Acad Sci 1995; 92: 10, 772–6.

    Google Scholar 

  91. Gaffen SL, Lai SV, Xu W, Gouilleux F, Groner B, Goldsmith MA, et al. Signaling through the interleukin 2 receptor (3 chain activates a STAT-5-like DNA-binding activity. Proc Natl Acad Sci 1995; 92: 7192–6.

    CAS  Google Scholar 

  92. Nielsen M, Svejgaard A, Skov S, Odum N. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of STAT3 in human T lymphocytes. Eur J Immunol 1994; 24: 3082–6.

    CAS  Google Scholar 

  93. Brunn GJ, Falls EL, Nilson AE, Abraham RT. Protein-tyrosine kinase-dependent activation of STAT transcription factors in interleukin-2- or interleukin-4-stimulated T lymphocytes. J Biol Chem 1995; 270: 11, 628–35.

    Google Scholar 

  94. Szamel M, Resch K. T-cell antigen receptor-induced signal-transduction pathways: activation and function of protein kinases C in T lymphocytes. Eur J Biochem 1995; 228: 1–15.

    CAS  Google Scholar 

  95. Keenan C, Long A, Kelleher D. Protein kinase C and T cell function. Biochim Biophys Acta 1997; 1358: 111–26.

    Google Scholar 

  96. Depper JM, Leonard MJ, Kronke M, Noguchi PD, Cunningham RE, Waldmann TA, et al. Regulation of interleukin 2 receptor expression: effects of phorbol diester, phospholipase C, and reexposure to lectin or antigen. J Immunol 1984; 84: 3054–61.

    Google Scholar 

  97. Farrar WL, Ruscetti FW. Association of protein kinase C activation with IL 2 receptor expression. J Immunol 1986; 136: 1266–73.

    CAS  Google Scholar 

  98. Hengel H, Allig B, Wagner H, Heeg K. Dissection of signals controlling T cell function and activation: H7, an inhibitor of protein kinase C, blocks induction of primary T cell proliferation by suppressing interleukin (IL) 2 receptor expression without affecting IL 2 production. Eur J Immunol 1991; 21: 1575–82.

    CAS  Google Scholar 

  99. Isakov N, Altman A. Human T lymphocyte activation by tumor promoters: role of protein kinase C J Inimunol 1987; 138: 3100–7.

    CAS  Google Scholar 

  100. Kumagai N, Benedict SH, Mills GB, Gelfand EW. Requirements for the simultaneous presence of phorbol esters and calcium ionophores in the expression of human T lymphocyte proliferation-related genes. J Immunol 1987; 139: 1393–9.

    CAS  Google Scholar 

  101. Barja P, Alavi-Nasab A, Turck CW, Freire-Moar J. Inhibition of T cell activation by protein kinase C pseudosubstrates. Cell Immunol 1994; 153: 28–38.

    CAS  Google Scholar 

  102. Modiano JF, Kolp R, Lamb RJ, Nowell PC. Protein kinase C regulates both production and secretion of interleukin 2. J Biol Chem 1991; 266: 10, 552–61.

    Google Scholar 

  103. Izquierdo M, Downward J, Graves JD, Cantrell DA. Role of protein kinase C in T-cell antigen receptor regulation of p2lras: evidence that two p2lras regulatory pathways coexist in T cells. Mol Cell Biol 1992; 12: 3305–12.

    CAS  Google Scholar 

  104. William DH, Woodrow M, Cantrell DA, Murray EJ. Protein kinase C is not a downstream effector of p2lras in activated T cells. Eur J Immunol 1995; 25: 42–7.

    Google Scholar 

  105. Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L, et al. Protein kinase C Ç isoform is critical for kB-dependent promoter activation by sphingomyelinase. J Biol Chem 1994; 269: 19, 200–2.

    Google Scholar 

  106. Whisler RL, Newhouse YG, Grants IS, Hackshaw KV. Differential expression of the a-and (3-isoforms of protein kinase C in peripheral blood T and B cells from young and elderly adults. Mech Age Dev 1995; 77: 197–211.

    CAS  Google Scholar 

  107. Tarantino N, Debre P, Korner M. Differential expression of PKCa and PKC(3 isozymes in CD4+, CD8+ and CD4+/CD8+ double positive human T cells. FEBS Lett 1994; 338: 339–42.

    CAS  Google Scholar 

  108. Corrigan E, Kelleher D, Feighery C, Long A. Protein kinase C isoform expression in CD45RA+ and CD45RO+ T lymphocytes. Immunology 1995; 85: 299–303.

    CAS  Google Scholar 

  109. Gupta S, Harris W. Phorbol myristate acetate-induced changes in protein kinase C isozymes (a, 13, and in human T cell subsets. In: Gupta VS, ed, Mechanisms of Lymphocyte Activation and Immune Regulation, pp. 143–448. Plenum, New York, 1994.

    Google Scholar 

  110. Lucas S, Marais R, Graves JD, Alexander D, Parker P, Cantrell, DA. Heterogeneity of protein kinase C expression and regulation in T lymphocytes. FEBS Lett 1990; 260: 53–6.

    CAS  Google Scholar 

  111. Terajima J, Tsutsumi A, Freire-Moar J, Cherwinski HM, Ransom JT. Evidence for clonal heterogeneity of the expression of six protein kinase C isoforms in murine B and T lymphocytes. Cell Immunol 1992; 142: 197–206.

    CAS  Google Scholar 

  112. Kvanta A, Jondal M, Fredholm BB. Translocation of the a-and (3isoforms of protein kinase C following activation of human T-lymphocytes. FEBS Lett 1991; 283: 321–4.

    CAS  Google Scholar 

  113. Fulop T Jr, Leblanc C, Lacombe G, Dupuis G. Cellular distribution of protein kinase C isozymes in CD3-mediated stimulation of human T lymphocytes with aging. FEBS Lett 1995; 375: 69–74.

    CAS  Google Scholar 

  114. Iwamoto T, Hagiwara M, Hidaka H, Isomura T, Kioussis D, Nakashima I. Accelerated proliferation and interleukin-2 production of thymocytes by stimulation of soluble anti-CD3 monoclonal antibody in transgenic mice carrying a rabbit protein kinase Ca. J Biol Chem 1992; 267: 18, 644–8.

    Google Scholar 

  115. Genot EM, Parker PJ, Cantrell DA. Analysis of the role of protein kinase C-a, -e, and in T cell activation. J Biol Chem 1995; 270: 9833–9.

    CAS  Google Scholar 

  116. Muramatsu MA, Kaibuchi K, Arai KI. A protein kinase C cDNA without the regulatory domain is active after transfection in vivo in the absence of phorbol ester. Mol Cell Biol 1989; 9: 831–6.

    CAS  Google Scholar 

  117. Hama N, Paliogianni F, Fessler BJ, Boumpas DT. Calcium/calmodulin-dependent protein kinase II downregulates both calcineurin and protein kinase C-mediated pathways for cytokine gene transcription in human T cells. J Exp Med 1995; 181: 1217–22.

    CAS  Google Scholar 

  118. Aggarwal S, Lee S, Marthur A, Gollapudi S, Gupta S. 12-Deoxyphorbol-13-O-phenylacetate 20 acetate [an agonist of protein kinase Cß1 (PKC(31)] induces DNA synthesis, interleukin-2 (IL-2) production, IL-2 receptor a-chain (CD25) and ß-chain (CD 122) expression, and translocation of PKC(3 isozyme in human peripheral blood lymphocytes: evidence for a role of PKCf31 in human T cell activation. J Clin Immunol 1994; 14: 248–56.

    CAS  Google Scholar 

  119. Szamel M, Bartels F, Resch K. Cyclosporin A inhibits T cell receptor-induced interleukin-2 synthesis of human T lymphocytes by selectively preventing a transmembrane signal transduction pathway leading to sustained activation of a protein kinase C isoenzyme, protein kinase C-p. Eur J Immunol 1993; 23: 3072–81.

    CAS  Google Scholar 

  120. Koretzky GA, Wahi M, Newton ME, Weiss A. Heterogeneity of protein kinase C isoenzyme gene expression in human T cell lines. J Immunol 1989; 143: 1692–5.

    CAS  Google Scholar 

  121. Kelleher D, Long A. Development and characterization of a protein kinase C 13-isozyme-deficient T-cell line. FEBS Lett 1992; 301: 310–4.

    CAS  Google Scholar 

  122. Long A, Kelleher D. Conventional protein kinase C isoforms are not essential for cellular proliferation of a T cell lymphoma line. FEBS Lett 1993; 333: 243–7.

    CAS  Google Scholar 

  123. Altman A, Mally MI, Isakov N. Phorbol ester synergized with Ca’ ionophore in activation of protein kinase C (PKC)a and PKC isoenzymes in human T cells and in induction of related cellular functions. Immunology 1992; 76: 465–71.

    CAS  Google Scholar 

  124. Freire-Moar J, Cherwinski H, Hwang F, Ransom J, Webb D. Expression of protein kinase C isoenzymes in thymocyte subpopulations and their differential regulation. J Immunol 1991; 147: 405–9.

    CAS  Google Scholar 

  125. Isakov N, Mally MI, Altman A. Mitogen-induced human T cell proliferation is associated with increased expression of selected PKC genes. Mol Immunol 1992; 29: 927–33.

    CAS  Google Scholar 

  126. Tsutsumi A, Kubo M, Fujii H, Freire-Moar J, Turck CW, Ransom JT. Regulation of protein kinase C isoform proteins in phorbol ester-stimulated Jurkat T lymphoma cells. J Immunol 1993; 150: 1746–54.

    CAS  Google Scholar 

  127. Keenan C, Kelleher D, Long A. Regulation of non-classical protein kinase C isoenzymes in a human T cell line. Eur J Immunol 1995; 25: 13–7.

    CAS  Google Scholar 

  128. Valge VE, Wong JGP, Datlof BM, Sinskey AJ, Rao A. Protein kinase C is required for responses to T cell receptor ligands but not to interleukin-2 in T cells. Cell 1988; 55: 101–12.

    CAS  Google Scholar 

  129. Mills GB, Girard P, Grinstein S, Gelfand EW. Interleukin-2 induces proliferation of T lymphocyte mutants lacking protein kinase C. Cell 1988; 55: 91–100.

    CAS  Google Scholar 

  130. Gomez J, De La Hera A, Silva A, Pitton C, Garcia A, Rebollo A. Implication of protein kinase C in IL-2 mediated proliferation and apoptosis in a murine T cell clone. Exp Cell Res 1994; 213: 178–82.

    CAS  Google Scholar 

  131. Gomez J, Pitton C, Garcia A, De Aragon AM, Silva A, Rebollo A. The isoform of protein kinase C controls interleukin-2 mediated proliferation in a murine T cell line: Evidence for an additional role of protein kinase C e and p. Exp Cell Res 1995; 218: 105–13.

    CAS  Google Scholar 

  132. Farrar WL, Anderson WB. Interleukin-2 stimulates association of protein kinase C with plasma membrane. Nature 1985; 315: 233–5.

    CAS  Google Scholar 

  133. Lu Y, Tramblay R, Jouishomme H, Chakravarthy B, Durkin JP. Evidence that the activation of an inactive pool of membrane-associated protein kinase C is linked to the IL-2-dependent survival of T lymphocytes. J Immunol 1994; 153: 1495–504.

    CAS  Google Scholar 

  134. Mollinedo F, Gajate C, Flores I. Involvement of phospholipase D in the activation of transcription factor AP-1 in human T lymphoid Jurkat cells. J Immunol 1994; 153: 2457–69.

    CAS  Google Scholar 

  135. Aussel C, Pelassy C, Rossi B. Breakdown of a phosphatidylcholine pool arising from the metabolic conversion of phosphatidylethanolamine as a novel source of diacylglycerol in activated T cells. J Lipid Med 1990; 2: 103–16.

    CAS  Google Scholar 

  136. Stewart SJ, Cunningham GR, Strupp JA, House FS, Kelley LL, Henderson GS, et al. Activation of phospholipase D: a signaling system set in motion by perturbation of the T lymphocyte antigen receptor/CD3 complex. Cell Regul 1991; 2: 841–50.

    CAS  Google Scholar 

  137. Exton JH. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1994; 1212: 26–42.

    CAS  Google Scholar 

  138. Berry NK, Ase K, Kishimoto A, Nishizuka Y. Activation of resting human T cells requires prolonged stimulation of protein kinase C. Proc Natl Acad Sci 1990; 87: 2294–8.

    CAS  Google Scholar 

  139. Asaoka Y, Oka M, Yoshida K, Nishizuka Y. Metabolic rate of membrane-permeant diacylglycerol and its relation to human resting T-lymphocyte activation. Proc Natl Acad Sci 1991; 88: 8681–5.

    CAS  Google Scholar 

  140. Davis LS, Lipsky PE. T cell activation induced by anti-CD3 antibod ies requires prolonged stimulation of protein kinase C. Cell Immunol 1989; 118: 208–21.

    CAS  Google Scholar 

  141. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–14.

    CAS  Google Scholar 

  142. Rosoff PM, Savage N, Dinarello CA. Interleukin-1 stimulates diacylglycerol production in T lymphocytes by a novel mechanism. Cell 1988; 54: 73–81.

    CAS  Google Scholar 

  143. Dobson PRM, Plested CP, Jones DR, Barks T, Brown BL. Interleukin-1 induces a pertussis toxin-sensitive increase in diacylglycerol accumulation in mouse thymoma cells. J Endocrinol 1989; 2: R5 - R8.

    CAS  Google Scholar 

  144. Nunes J, Klasen S, Franco MD, Lipcey C, Mawas C, Bagnasco M, et al. Signalling through CD28 T-cell activation pathway involves an inositol phospholipid-specific phospholipase C activity. Biochem J 1993; 293: 835–42.

    CAS  Google Scholar 

  145. Pelassy C, Mary D, Aussel C. Diacylglycerol production in Jurkat T-cells: differences between CD3, CD2 and PHA activation pathways. Cell Signal 1991; 3: 35–40.

    CAS  Google Scholar 

  146. Eardley DD, Koshland ME. Glycosylphosphatidylinositol: a candidate system for interleukin-2 signal transduction. Science 1991; 251: 78–81.

    CAS  Google Scholar 

  147. Mills GB, Stewart DJ, Mellors A, Gelfand EW. Interleukin 2 does not induce phosphatidylinositol hydrolysis in activated T cells. J Immunol 1986; 136: 3019–24.

    CAS  Google Scholar 

  148. Merida I, Pratt JC, Gaulton GN. Regulation of interleukin 2-dependent growth responses by glycosylphosphatidylinositol molecules. Proc Natl Acad Sci USA 1990; 87: 9421–25.

    CAS  Google Scholar 

  149. Kolesnick R, Fuks Z. Ceramide: a signal for apoptosis or mitogenesis? J Exp Med 1995; 181: 1949–52.

    CAS  Google Scholar 

  150. Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. TIBS 1995; 20: 73–7.

    CAS  Google Scholar 

  151. Blusztajn JK, Hudson PL, Slack BE. Sphingoid-base-containing modulators of biological signalling. In: Liscovitch M, ed, Signal-Activated Phospholipases, pp. 212–30, R. G. Landes Company, Austin, TX, 1994.

    Google Scholar 

  152. Heller RA, Kronke M. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol 1994; 126: 5–9.

    CAS  Google Scholar 

  153. Schutze S, Machleidt T, Kronke M. The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J Leuk Biol 1994; 56: 533–41.

    CAS  Google Scholar 

  154. Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 1994; 78: 1005–15.

    CAS  Google Scholar 

  155. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M. TNF activates NF-kB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 1992; 71: 765–76.

    CAS  Google Scholar 

  156. Kolesnick RN. 1,2-diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J Biol Chem 1987; 262:16,759–62.

    Google Scholar 

  157. Dbaibo GS, Obeid LM, Hannun YA. Tumor necrosis factor-a (TNFa) signal transduction through ceramide. J Biol Chem 1993; 268: 17, 762–6.

    Google Scholar 

  158. Machleidt T, Wiegmann K, Henkel T, Schutze S, Baeuerle P, Kronke M. Sphingomeylinase activates proteolytic I1cB-a degradation in a cell-free system. J Biol Chem 1994; 269: 13, 760–5.

    Google Scholar 

  159. Mathias S, Younes A, Kan CC, Orlow I, Joseph C, Kolesnick RN. Activation of the sphinomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-113. Science 1993; 259: 519–22.

    CAS  Google Scholar 

  160. Boucher LM, Wiegmann K, Futterer A, Pfeffer K, Machleidt T, Schutze S et al. CD28 signals through acidic sphingomyelinase. J Exp Med 1995; 181: 2059–68.

    CAS  Google Scholar 

  161. Chan G, Ochi A. Sphingomyelin-ceramide turnover in CD28 co-stimulatory signaling. Eur J Immunol 1995; 25: 1999–2004.

    CAS  Google Scholar 

  162. Borchardt RA, Lee WT, Kalen A, Buckley RH, Peters C, Schiff S, et al. Growth-dependent regulation of cellular ceramides in human T-cells. Biochim Biophys Acta 1994; 1212: 327–36.

    CAS  Google Scholar 

  163. Dobrowsky RT, Hannun YA. The sphingomyelin cycle and ceramide second messengers. In: Liscovitch M, ed, Signal-Activated Phospholipases, pp. 85–99. R. G. Landes Company, Austin, TX, 1994.

    Google Scholar 

  164. Yao B, Zhang Y, Delikat S, Mathias S, Basu S, Kolesnick R. Phosphorylation of raf by ceramide-activated protein kinase Nature 1995; 378: 307–10.

    CAS  Google Scholar 

  165. Belka C, Wiegmann K, Adam D, Holland R, Neuloh M, Herrmann F, et al. Tumor necrosis factor (TNF)-a activates c-raf-1 kinase via the p55 TNF receptor engaging neutral sphingomyelinase. EMBO J 1995; 14: 1156–65.

    CAS  Google Scholar 

  166. Sasaki T, Hazeki K, Hazeki O, Ui M, Katada T. Permissive effect of ceramide on growth factor-induced cell proliferation. Biochem J 1995; 311: 829–34.

    CAS  Google Scholar 

  167. Westwick JK, Bielawska AE, Dbaibo G, Hannun YA, Brenner DA. Ceramide activates the stress-activated protein kinases. J Biol Chem 1995; 270: 22, 689–92.

    Google Scholar 

  168. Nakamura S, Kozutsumi Y, Sun Y, Miyake Y, Fujita T, Kawasaki T. Dual roles of sphingolipids in signaling of the escape from and onset of apoptosis in a mouse cytotoxic T-cell line, CTLL-2. J Biol Chem 1996; 271: 1255–57.

    CAS  Google Scholar 

  169. Yamada K, Sakane F, Imai S, Takemura H. Sphingosine activates cellular diacylglycerol kinase in intact Jurkat cells, a human T-cell line. Biochim Biophys Acta 1993; 1169: 217–24.

    CAS  Google Scholar 

  170. Yamada K, Sakane F. The different effects of sphingosine on diacylglycerol kinase isozymes in Jurkat cells, a human T-cell line. Biochim Biophys Acta 1993; 1169: 211–16.

    CAS  Google Scholar 

  171. Sakane F, Yamada K, Kanoh H. Different effects of sphingosine, R59022 and anionic amphiphiles on two diacylglycerol kinase isozymes purified from porcine thymus cytosol. FEBS Lett 1989; 255: 409–13.

    CAS  Google Scholar 

  172. Pushkareva MY, Khan WA, Alessenko AV, Sahyoun N, Hannun YA. Sphingosine activation of protein kinases in Jurkat T cells. J Biol Chem 1992; 267: 15, 246–51.

    Google Scholar 

  173. Jolly CA, Laurenz JC, McMurray DN, Chapkin RS. Diacylglycerol and ceramide kinetics in primary cultures of activated T-lymphocytes. Immunol Lett 1996; 49: 43–8.

    CAS  Google Scholar 

  174. Goppelt-Strube M, Resch K. Polyunsaturated fatty acids are enriched in the plasma membranes of mitogen-stimulated T-lymphocytes. Biochim Biophys Acta 1987; 904: 22–8.

    CAS  Google Scholar 

  175. And A, Naval J, Gonzalez B, Tones JM, Mishal Z, Uriel J, et al. Fatty acid metabolism in human lymphocytes. I. Time-course changes in fatty acid composition and membrane fluidity during blastic transformation of peripheral blood lymphocytes. Biochim Biophys Acta 1990; 1044: 323–31.

    Google Scholar 

  176. Szamel M, Rehermann B, Krebs B, Kurrle R, Resch K. Incorporation of polyunsaturated fatty acids into plasma membrane phospholipid regulates IL-2 synthesis via sustained activation of protein kinase C. J Immunol 1989; 143: 2806–13.

    CAS  Google Scholar 

  177. Ahmed AA, Holub BJ. Alteration and recovery of bleeding times, platelet aggregation and fatty acid composition of individual phospholipids in platelets of human subjects receiving a supplement of cod-liver oil. Lipids 1984; 19: 617–24.

    CAS  Google Scholar 

  178. Hosack-Fowler K, McMurray DN, Fan YY, Aukema HM, Chapkin RS. Purified dietary n-3 polyunsaturated fatty acids alter diacylglycerol mass and molecular species composition in concanavalin A-stimulated murine splenocytes. Biochim Biophys Acta 1993; 1210: 89–96.

    Google Scholar 

  179. Sperling RI, Benincaso AI, Knoell CT, Larkin JK, Austen KF, Robinson DR. Dietary w-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest 1993; 91: 651–60.

    CAS  Google Scholar 

  180. Marignani PA, Sebaldt RJ. Formation of second messenger diradylglycerol in murine peritoneal macrophages is altered after in vivo (n-3) polyunsaturated fatty acid supplementation. J Nutr 1995; 125: 3030–40.

    CAS  Google Scholar 

  181. Jolly CA, McMurray DN, Chapkin RS. Effect of dietary n-3 fatty acids on interleukin-2 and interleukin-2 receptor a expression in activated murine lymphocytes. Prost Leuk Essen Fatty Acids 1998; 58: 287–97.

    Google Scholar 

  182. Jiang YH, Lupton JR, Chapkin RS. Dietary fish oil blocks carcinogen-induced down-regulation of colonic protein kinase C isozymes. Carcinogenesis 1997; 18: 351–7.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chapkin, R.S., McMurray, D.N., Jolly, C.A. (2000). Dietary n-3 Polyunsaturated Fatty Acids Modulate T-Lymphocyte Activation. In: Gershwin, M.E., German, J.B., Keen, C.L. (eds) Nutrition and Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-709-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-709-3_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-148-6

  • Online ISBN: 978-1-59259-709-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics