Skip to main content

In Silico Identification of RNA Modifications from High-Throughput Sequencing Data Using HAMR

  • Protocol
  • First Online:
RNA Methylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1562))

Abstract

RNA molecules are often altered post-transcriptionally by the covalent modification of their nucleotides. These modifications are known to modulate the structure, function, and activity of RNAs. When reverse transcribed into cDNA during RNA sequencing library preparation, atypical (modified) ribonucleotides that affect Watson-Crick base pairing will interfere with reverse transcriptase (RT), resulting in cDNA products with mis-incorporated bases or prematurely terminated RNA products. These interactions with RT can therefore be inferred from mismatch patterns in the sequencing reads, and are distinguishable from simple base-calling errors, single-nucleotide polymorphisms (SNPs), or RNA editing sites. Here, we describe a computational protocol for the in silico identification of modified ribonucleotides from RT-based RNA-seq read-out using the High-throughput Analysis of Modified Ribonucleotides (HAMR) software. HAMR can identify these modifications transcriptome-wide with single nucleotide resolution, and also differentiate between different types of modifications to predict modification identity. Researchers can use HAMR to identify and characterize RNA modifications using RNA-seq data from a variety of common RT-based sequencing protocols such as Poly(A), total RNA-seq, and small RNA-seq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3′:

3-prime (3′)

5′:

5-prime (5′)

bp:

Base pair

cDNA:

Complementary DNA

HAMR:

High-throughput annotation of modified ribonucleotides

mRNA:

Messenger RNA

mRNA-seq:

messenger RNA sequencing

nt:

Nucleotide

RNA-seq:

RNA sequencing

RT:

Reverse transcriptase

smRNA:

Small RNA

smRNA-seq:

Small RNA sequencing

SNP:

single nucleotide polymorphism

tRNA:

Transfer RNA

References

  1. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S et al (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eigenbrod T, Keller P, Kaiser S et al (2015) Recognition of specified RNA modifications by the Innate immune system. Methods Enzymol 560:73–89

    Article  CAS  PubMed  Google Scholar 

  3. Li S, Mason CE (2014) The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet 15:127–150

    Article  CAS  PubMed  Google Scholar 

  4. Lee M, Kim B, Kim VN (2014) Emerging roles of RNA modification: m(6)A and U-tail. Cell 158:980–987

    Article  CAS  PubMed  Google Scholar 

  5. Satterlee JS, Basanta-Sanchez M, Blanco S et al (2014) Novel RNA modifications in the nervous system: form and function. J Neurosci 34:15170–15177

    Article  PubMed  PubMed Central  Google Scholar 

  6. Delatte B, Wang F, Ngoc LV et al (2016) Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351:282–285

    Article  CAS  PubMed  Google Scholar 

  7. Sundaram M, Durant PC, Davis DR (2000) Hypermodified nucleosides in the anticodon of tRNALys stabilize a canonical Uturn structure. Biochemistry 39:12575–12584

    Article  CAS  PubMed  Google Scholar 

  8. Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R (2014) The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42:3492–3501

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz S, Mumbach MR, Jovanovic M et al (2014) Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8:284–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer KD, Jaffrey SR (2014) The dynamic epitranscriptome:N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karijolich J, Yu YT (2015) The new era of RNA modification. RNA 21:659–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun WJ, Li JH, Liu S et al (2016) RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res 44:D259–D265

    Article  PubMed  Google Scholar 

  13. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A (2014b) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vandivier LE, Campos R, Kuksa PP et al (2015) Chemical modifications mark alternatively spliced and uncapped messenger RNAs in arabidopsis. Plant Cell 27:3024–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer KD, Saletore Y, Zumbo P (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gupta RC, Randerath K (1977) Use of specific endonuclease cleavage in RNA sequencing. Nucleic Acids Res 4:1957–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Woodson SA, Muller JG, Burrows CJ et al (1993) A primer extension assay for modification of guanine by Ni(II) complexes. Nucleic Acids Res 21:5524–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Motorin Y, Muller S, Behm-Ansmant I, Branlant C (2007) Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol 425:21–53

    Article  CAS  PubMed  Google Scholar 

  19. Behm-Ansmant I, Helm M, Motorin Y (2011) Use of specific chemical reagents for detection of modified nucleotides in RNA. JNucleic Acids 2011:408053

    Google Scholar 

  20. Ryvkin P, Leung YY, Silverman IM et al (2013) HAMR: high-throughput annotation of modified ribonucleotides. RNA 19: 1684–1692

    Google Scholar 

  21. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    Article  CAS  PubMed  Google Scholar 

  22. Squires JE, Patel HR, Nousch M et al (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horowitz S, Horowitz A, Nilsen TW et al (1984) Mapping of N6-methyladenosine residues in bovine prolactin mRNA. Proc Natl Acad Sci U S A 81:5667–5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ 17(1):10–12

    Article  Google Scholar 

  26. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  27. Machnicka MA, Milanowska K, Osman OO et al (2013) MODOMICS: a database of RNA modification pathways: 2012 update. Nucleic Acids Res 41:D262–D267

    Article  CAS  PubMed  Google Scholar 

  28. Leung YY, Ryvkin P, Ungar LH et al (2013) CoRAL: predicting non-coding RNAs from small RNA-sequencing data. Nucleic Acids Res 41:e137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Institute of General Medical Sciences [R01-GM099962 to P.P.K, Y.Y.L, B.D.G., and L.S.W], National Institute on Aging [U24-AG041689 to L.S.W.], National Science Foundation [CAREER Award MCB-1053846, MCB-1243947, and IOS-1444490 to B.D.G.]. We thank Alexandre Amlie-Wolf and other members of the Wang and Gregory labs for their comments and help with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-San Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kuksa, P.P., Leung, Y.Y., Vandivier, L.E., Anderson, Z., Gregory, B.D., Wang, LS. (2017). In Silico Identification of RNA Modifications from High-Throughput Sequencing Data Using HAMR. In: Lusser, A. (eds) RNA Methylation. Methods in Molecular Biology, vol 1562. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6807-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6807-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6805-3

  • Online ISBN: 978-1-4939-6807-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics