Skip to main content

Celiac Disease: Background and Historical Context

  • Protocol
Celiac Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1326))

  • 1785 Accesses

Abstract

Medical descriptions of celiac disease date to the first century BC, and the first modern description was published in 1888. Further insights were gained throughout the 1900s, culminating in the identification of the dietary component, the major genetic determinant, and the autoantigen by the turn of the century. Understanding of the age of onset, population prevalence, and the extent of subclinical celiac disease developed in tandem. Thanks to advances in genomics, currently established loci account for over 50 % of the genetic risk. Nonetheless, much remains to be discovered. Advances in high-throughput genomic, biochemical, and cell analyses, as well as the bioinformatics needed to process the data, promise to deepen our understanding further. Here we present a primer of celiac disease, viewing the condition in turn from the historical, epidemiological, immunological, molecular, and genetic points of view. Research into any ailment has specific requirements: study subjects must be identified and relevant tissue samples collected and stored with the appropriate timing and conditions. These requirements are summarized. To conclude, a short discussion of future prospects is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fasano A, Catassi C (2012) Clinical practice. Celiac disease. N Engl J Med 367:2419–26. doi:10.1056/NEJMcp1113994

    Article  CAS  PubMed  Google Scholar 

  2. Reunala TL (2001) Dermatitis herpetiformis. Clin Dermatol 19:728–36

    Article  CAS  PubMed  Google Scholar 

  3. Sollid LM (2002) Celiac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2:647–55. doi:10.1038/nri885

    Article  CAS  PubMed  Google Scholar 

  4. Abraham G, Tye-Din JA, Bhalala OG et al (2014) Accurate and robust genomic prediction of celiac disease using statistical learning. PLoS Genet 10:e1004137. doi:10.1371/journal.pgen.1004137

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kneepkens CMF, von Blomberg BME (2012) Clinical practice : coeliac disease. Eur J Pediatr 171:1011–21. doi:10.1007/s00431-012-1714-8

    Article  PubMed Central  PubMed  Google Scholar 

  6. Di Sabatino A, Corazza GR (2009) Coeliac disease. Lancet 373:1480–1493. doi:10.1016/S0140-6736(09)60254-3

    Article  PubMed  Google Scholar 

  7. Cooper SEJ, Kennedy NP, Mohamed BM et al (2013) Immunological indicators of coeliac disease activity are not altered by long-term oats challenge. Clin Exp Immunol 171:313–8. doi:10.1111/cei.12014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. O’Shea U, Abuzakouk M, O’Morain C et al (2008) Investigation of molecular markers in the diagnosis of refractory coeliac disease in a large patient cohort. J Clin Pathol 61:1200–2. doi:10.1136/jcp.2008.058404

    Article  PubMed  Google Scholar 

  9. Biesiekierski JR, Newnham ED, Irving PM et al (2011) Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am J Gastroenterol 106:508–14. doi:10.1038/ajg.2010.487, quiz 515

    Article  CAS  PubMed  Google Scholar 

  10. Carroccio A, Rini G, Mansueto P (2014) Non-celiac wheat sensitivity is a more appropriate label than non-celiac gluten sensitivity. Gastroenterology 146:320–1. doi:10.1053/j.gastro.2013.08.061

    Article  PubMed  Google Scholar 

  11. Piperno DR, Weiss E, Holst I, Nadel D (2004) Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 430:670–3. doi:10.1038/nature02734

    Article  CAS  PubMed  Google Scholar 

  12. Weiss E, Wetterstrom W, Nadel D, Bar-Yosef O (2004) The broad spectrum revisited: evidence from plant remains. Proc Natl Acad Sci U S A 101:9551–5. doi:10.1073/pnas.0402362101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zhernakova A, Elbers CC, Ferwerda B et al (2010) Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am J Hum Genet 86:970–7. doi:10.1016/j.ajhg.2010.05.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Scorrano G, Brilli M, Martínez-Labarga C et al (2014) Palaeodiet reconstruction in a woman with probable celiac disease: a stable isotope analysis of bone remains from the archaeological site of Cosa (Italy). Am J Phys Anthropol 154:349–56. doi:10.1002/ajpa.22517

    Article  PubMed  Google Scholar 

  15. Pizzuti D, Buda A, D’Odorico A et al (2006) Lack of intestinal mucosal toxicity of Triticum monococcum in celiac disease patients. Scand J Gastroenterol 41:1305–11. doi:10.1080/00365520600699983

    Article  CAS  PubMed  Google Scholar 

  16. Dowd B, Walker-Smith J (1974) Samuel Gee, Aretaeus, and the coeliac affection. Br Med J 2:45–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gee SJ (1888) On the coeliac affection. St Bartholomews Hosp Rep 24:17–20

    Google Scholar 

  18. Haas SV (1924) The value of the banana in the treatment of celiac disease. Am J Dis Child 28:421–37. doi:10.1001/archpedi.1924.04120220017004

    Google Scholar 

  19. Van Berge-Henegouwen GP, Mulder CJ (1993) Pioneer in the gluten free diet: Willem-Karel Dicke 1905-1962, over 50 years of gluten free diet. Gut 34:1473–5

    Article  PubMed Central  PubMed  Google Scholar 

  20. Langman MJ, McConnell TH, Spiegelhalter DJ, McConnell RB (1985) Changing patterns of coeliac disease frequency: an analysis of Coeliac Society membership records. Gut 26:175–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Swinson CM, Levi AJ (1980) Is coeliac disease underdiagnosed? Br Med J 281:1258–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ferguson A, Arranz E, O’Mahony S (1993) Clinical and pathological spectrum of coeliac disease–active, silent, latent, potential. Gut 34:150–1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Catassi C, Fabiani E, Rätsch IM et al (1996) The coeliac iceberg in Italy. A multicentre antigliadin antibodies screening for coeliac disease in school-age subjects. Acta Paediatrica, 85:29–35. doi: 10.1111/j.1651-2227.1996.tb14244.x

  24. Yuan J, Gao J, Li X et al (2013) The tip of the “celiac iceberg” in China: a systematic review and meta-analysis. PLoS One 8:e81151. doi:10.1371/journal.pone.0081151

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ferguson A, Murray D (1971) Quantitation of intraepithelial lymphocytes in human jejunum. Gut 12:988–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Halstensen TS, Brandtzaeg P (1993) Activated T lymphocytes in the celiac lesion: non-proliferative activation (CD25) of CD4+ alpha/beta cells in the lamina propria but proliferation (Ki-67) of alpha/beta and gamma/delta cells in the epithelium. Eur J Immunol 23:505–10. doi:10.1002/eji.1830230231

    Article  CAS  PubMed  Google Scholar 

  27. Buri C, Burri P, Bähler P et al (2005) Cytotoxic T cells are preferentially activated in the duodenal epithelium from patients with florid coeliac disease. J Pathol 206:178–85. doi:10.1002/path.1773

    Article  CAS  PubMed  Google Scholar 

  28. Lundin KE, Scott H, Hansen T et al (1993) Gliadin-specific, HLA-DQ(alpha 1*0501, beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 178:187–96

    Article  CAS  PubMed  Google Scholar 

  29. Meresse B, Malamut G, Cerf-Bensussan N (2012) Celiac disease: an immunological jigsaw. Immunity 36:907–19. doi:10.1016/j.immuni.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  30. Sollid LM, Jabri B (2013) Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol 13:294–302. doi:10.1038/nri3407

    Article  CAS  PubMed  Google Scholar 

  31. Fina D, Sarra M, Caruso R et al (2008) Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut 57:887–92. doi:10.1136/gut.2007.129882

    Article  CAS  PubMed  Google Scholar 

  32. Di Sabatino A, Ciccocioppo R, Cupelli F et al (2006) Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 55:469–77. doi:10.1136/gut.2005.068684

    Article  PubMed Central  PubMed  Google Scholar 

  33. Dieterich W, Ehnis T, Bauer M et al (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3:797–801

    Article  CAS  PubMed  Google Scholar 

  34. Halstensen TS, Scott H, Brandtzaeg P (1989) Intraepithelial T cells of the TcR gamma/delta + CD8- and V delta 1/J delta 1+ phenotypes are increased in coeliac disease. Scand J Immunol 30:665–72

    Article  CAS  PubMed  Google Scholar 

  35. Dunne MR, Elliott L, Hussey S et al (2013) Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One 8:e76008. doi:10.1371/journal.pone.0076008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bhagat G, Naiyer AJ, Shah JG et al (2008) Small intestinal CD8 + TCRgammadelta + NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J Clin Invest 118:281–93. doi:10.1172/JCI30989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Toulon A, Breton L, Taylor KR et al (2009) A role for human skin-resident T cells in wound healing. J Exp Med 206:743–50. doi:10.1084/jem.20081787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. O’Farrelly C, Feighery C, O’Briain DS et al (1986) Humoral response to wheat protein in patients with coeliac disease and enteropathy associated T cell lymphoma. Br Med J (Clin Res Ed) 293:908–10

    Article  Google Scholar 

  39. Cellier C, Delabesse E, Helmer C et al (2000) Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. French Coeliac Disease Study Group. Lancet 356:203–8

    Article  CAS  PubMed  Google Scholar 

  40. Sollid LM, Markussen G, Ek J et al (1989) Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med 169:345–50

    Article  CAS  PubMed  Google Scholar 

  41. Wieser H (1996) Relation between gliadin structure and coeliac toxicity. Acta Paediatr Suppl 412:3–9

    Article  CAS  PubMed  Google Scholar 

  42. Kagnoff MF (2007) Celiac disease: pathogenesis of a model immunogenetic disease. J Clin Invest 117:41–9. doi:10.1172/JCI30253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wieser H (1995) The precipitating factor in coeliac disease. Baillieres Clin Gastroenterol 9:191–207

    Article  CAS  PubMed  Google Scholar 

  44. Shan L, Molberg Ø, Parrot I et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–9. doi:10.1126/science.1074129

    Article  CAS  PubMed  Google Scholar 

  45. Tollefsen S, Arentz-Hansen H, Fleckenstein B et al (2006) HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J Clin Invest 116:2226–36. doi:10.1172/JCI27620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Vartdal F, Johansen BH, Friede T et al (1996) The peptide binding motif of the disease associated HLA-DQ (alpha 1* 0501, beta 1* 0201) molecule. Eur J Immunol 26:2764–72. doi:10.1002/eji.1830261132

    Article  CAS  PubMed  Google Scholar 

  47. Qiao S-W, Bergseng E, Molberg O et al (2005) Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J Immunol 175:254–61

    Article  CAS  PubMed  Google Scholar 

  48. Van de Wal Y, Kooy Y, van Veelen P et al (1998) Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 161:1585–8

    PubMed  Google Scholar 

  49. Fleckenstein B, Molberg Ø, Qiao S-W et al (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277:34109–16. doi:10.1074/jbc.M204521200

    Article  CAS  PubMed  Google Scholar 

  50. Dieterich W, Esslinger B, Trapp D et al (2006) Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut 55:478–84. doi:10.1136/gut.2005.069385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–96. doi:10.1042/BJ20021234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. McManus R, Moloney M, Borton M et al (1996) Association of celiac disease with microsatellite polymorphisms close to the tumor necrosis factor genes. Hum Immunol 45:24–31

    Article  CAS  PubMed  Google Scholar 

  53. Otting N, de Groot NG, Doxiadis GGM, Bontrop RE (2002) Extensive Mhc-DQB variation in humans and non-human primate species. Immunogenetics 54:230–9. doi:10.1007/s00251-002-0461-9

    Article  CAS  PubMed  Google Scholar 

  54. Otting N, Kenter M, van Weeren P et al (1992) Mhc-DQB repertoire variation in hominoid and Old World primate species. J Immunol 149:461–70

    CAS  PubMed  Google Scholar 

  55. Abi-Rached L, Jobin MJ, Kulkarni S et al (2011) The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334:89–94. doi:10.1126/science.1209202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Greco L, Babron MC, Corazza GR et al (2001) Existence of a genetic risk factor on chromosome 5q in Italian coeliac disease families. Ann Hum Genet 65:35–41

    Article  CAS  PubMed  Google Scholar 

  57. Adamovic S, Amundsen SS, Lie BA et al (2008) Fine mapping study in Scandinavian families suggests association between coeliac disease and haplotypes in chromosome region 5q32. Tissue Antigens 71:27–34. doi:10.1111/j.1399-0039.2007.00955.x

    CAS  PubMed  Google Scholar 

  58. Ryan AW, Thornton JM, Brophy K et al (2004) Haplotype variation at the IBD5/SLC22A4 locus (5q31) in coeliac disease in the Irish population. Tissue Antigens 64:195–8. doi:10.1111/j.1399-0039.2004.00251.x

    Article  CAS  PubMed  Google Scholar 

  59. Ryan AW, Thornton JM, Brophy K et al (2005) Chromosome 5q candidate genes in coeliac disease: genetic variation at IL4, IL5, IL9, IL13, IL17B and NR3C1. Tissue Antigens 65:150–5. doi:10.1111/j.1399-0039.2005.00354.x

    Article  CAS  PubMed  Google Scholar 

  60. Holopainen P, Arvas M, Sistonen P et al (1999) CD28/CTLA4 gene region on chromosome 2q33 confers genetic susceptibility to celiac disease. A linkage and family-based association study. Tissue Antigens 53:470–5

    Article  CAS  PubMed  Google Scholar 

  61. Butty V, Roy M, Sabeti P et al (2007) Signatures of strong population differentiation shape extended haplotypes across the human CD28, CTLA4, and ICOS costimulatory genes. Proc Natl Acad Sci U S A 104:570–5. doi:10.1073/pnas.0610124104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Van Heel DA, Franke L, Hunt KA et al (2007) A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 39:827–9. doi:10.1038/ng2058

    Article  PubMed Central  PubMed  Google Scholar 

  63. Hunt KA, Zhernakova A, Turner G et al (2008) Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 40:395–402. doi:10.1038/ng.102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Dubois PCA, Trynka G, Franke L et al (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 42:295–302. doi:10.1038/ng.543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Garner C, Ahn R, Ding YC et al (2014) Genome-wide association study of celiac disease in North America confirms FRMD4B as new celiac locus. PLoS One 9:e101428. doi:10.1371/journal.pone.0101428

    Article  PubMed Central  PubMed  Google Scholar 

  66. Trynka G, Hunt KA, Bockett NA et al (2011) Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 43:1193–201. doi:10.1038/ng.998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Coleman C, Quinn EM, Ryan AW, et al. (2015) Common polygenic variation in coeliac disease and confirmation of ZNF335 and NIFA as disease susceptibility loci. Eur J Hum Genet (in press)

    Google Scholar 

  68. Heap GA, Trynka G, Jansen RC et al (2009) Complex nature of SNP genotype effects on gene expression in primary human leucocytes. BMC Med Genomics 2:1. doi:10.1186/1755-8794-2-1

    Article  PubMed Central  PubMed  Google Scholar 

  69. Galatola M, Izzo V, Cielo D et al (2013) Gene expression profile of peripheral blood monocytes: A step towards the molecular diagnosis of celiac disease? PLoS One 8:e74747. doi:10.1371/journal.pone.0074747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Parmar A, Greco D, Venäläinen J et al (2013) Gene expression profiling of gliadin effects on intestinal epithelial cells suggests novel non-enzymatic functions of pepsin and trypsin. PLoS One 8:e66307. doi:10.1371/journal.pone.0066307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Gamba C, Jones ER, Teasdale MD et al (2014) Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun 5:5257. doi:10.1038/ncomms6257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Lazaridis I, Patterson N, Mittnik A et al (2014) Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513:409–13. doi:10.1038/nature13673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Riveira-Munoz E, He S-M, Escaramís G et al (2011) Meta-analysis confirms the LCE3C_LCE3B deletion as a risk factor for psoriasis in several ethnic groups and finds interaction with HLA-Cw6. J Invest Dermatol 131:1105–9. doi:10.1038/jid.2010.350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Rees E, Moskvina V, Owen MJ et al (2011) De novo rates and selection of schizophrenia-associated copy number variants. Biol Psychiatry 70:1109–14. doi:10.1016/j.biopsych.2011.07.011

    Article  PubMed  Google Scholar 

  75. Fernandez-Jimenez N, Castellanos-Rubio A, Plaza-Izurieta L et al (2014) Coregulation and modulation of NFκB-related genes in celiac disease: uncovered aspects of gut mucosal inflammation. Hum Mol Genet 23:1298–310. doi:10.1093/hmg/ddt520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Megiorni F, Mora B, Bonamico M et al (2008) HLA-DQ and susceptibility to celiac disease: evidence for gender differences and parent-of-origin effects. Am J Gastroenterol 103:997–1003. doi:10.1111/j.1572-0241.2007.01716.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Derek Doherty and Emma Quinn for reading and commenting on this manuscript, and to Eleisa Heron for useful discussion. Anthony W. Ryan acknowledges funding from the Royal City of Dublin Hospital Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Turner, G.D., Dunne, M.R., Ryan, A.W. (2015). Celiac Disease: Background and Historical Context. In: Ryan, A. (eds) Celiac Disease. Methods in Molecular Biology, vol 1326. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2839-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2839-2_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2838-5

  • Online ISBN: 978-1-4939-2839-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics