Skip to main content

The Genetic Architecture of Idiopathic Scoliosis

  • Chapter
  • First Online:
Molecular Genetics of Pediatric Orthopaedic Disorders
  • 676 Accesses

Abstract

Idiopathic scoliosis (IS) is the most common pediatric spinal deformity, affecting 2–3 % of school age children worldwide. This disease is typically classified by age at onset, with the great majority occurring around the time of the adolescent growth spurt, so-called AIS. AIS can progress rapidly, threatening pain, deformity, and pulmonary dysfunction. Heritability of AIS is high, with genetic factors likely explaining over 80 % of disease risk. Population studies have consistently found that AIS is best explained by a polygenic inheritance model, in which many genetic risk factors combine to cause the disease. Population studies have associated AIS with candidate genes, including the LBX1 homeobox transcription factor, and the G protein-coupled receptor GPR126. AIS candidate genes thus far identified function in muscle and nerve specification in early development, suggesting neuromuscular disease origins, but their role in later human development and growth of the axial spine is an unexplored area of developmental biology. Animal models that can address these issues will become a valuable resource for the AIS research community. Likewise continued gene discovery efforts, aided by next-generation genomic platforms, are a priority for the field and will provide the tools for biological investigations of AIS pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scoliosis. In: Herring J, editor. Tachdjian’s Pediatric Orthopaedics. 5th edn. Philadelphia: Elsevier-Saunders: 2014.

    Google Scholar 

  2. Herring JA. Tachdjian’s pediatric orthopaedics. Philadelphia: WB Saunders; 2008.

    Google Scholar 

  3. Hresko MT. Clinical practice. Idiopathic scoliosis in adolescents. N Engl J Med. 2013;368(9):834–41.

    Article  CAS  PubMed  Google Scholar 

  4. Akbarnia BA. Management themes in early onset scoliosis. J Bone Joint Surg Am. 2007;89 Suppl 1:42–54.

    Article  PubMed  Google Scholar 

  5. Richards BS, Vitale MG. Screening for idiopathic scoliosis in adolescents. An information statement. J Bone Joint Surg Am. 2008;90(1):195–8.

    Article  PubMed  Google Scholar 

  6. Katz DE, Herring JA, Browne RH, Kelly DM, Birch JG. Brace wear control of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2010;92(6):1343–52.

    Article  PubMed  Google Scholar 

  7. Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984;66(7):1061–71.

    CAS  PubMed  Google Scholar 

  8. Akbarnia GMB. Idiopathic scoliosis: infantile and juvenile. In: Thompson GH, editor. The growing spine: management of spinal disorders in young children. New York: Springer-Verlag; 2011. pp. 199–212.

    Google Scholar 

  9. Karol LAM, Johnston CE II MD, Browne RH PhD, Madison M PhD. Progression of the curve in boys who have idiopathic scoliosis. J Bone Joint Surg Am. 1993;75-A(12):1804–10.

    Google Scholar 

  10. http://www.richardiii.net/2_4_0_riii_appearance.php - description. Feb 14, 2014.

    Google Scholar 

  11. Shands AR Jr, Eisberg HB. The incidence of scoliosis in the state of Delaware; a study of 50,000 minifilms of the chest made during a survey for tuberculosis. J Bone Joint Surg Am. 1955;37-A(6):1243–9.

    PubMed  Google Scholar 

  12. Rogala EJ, Drummond DS, Gurr J. Scoliosis: incidence and naturel history. A prospective epidemiological study. J Bone Joint Surg Am. 1978;60(2):173–6.

    CAS  PubMed  Google Scholar 

  13. Willner S, Uden A. A prospective prevalence study of scoliosis in Southern Sweden. Acta Orthop Scand. 1982;53(2):233–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ohtsuka Y, Yamagata M, Arai S, Kitahara H, Minami S. School screening for scoliosis by the Chiba University Medical School screening program. Results of 1.24 million students over an 8-year period. Spine (Phila Pa 1976). 1988;13(11):1251–7.

    Article  CAS  Google Scholar 

  15. Soucacos PN, Soucacos PK, Zacharis KC, Beris AE, Xenakis TA. School-screening for scoliosis. A prospective epidemiological study in northwestern and central Greece. J Bone Joint Surg Am. 1997;79(10):1498–503.

    CAS  PubMed  Google Scholar 

  16. Dickson RA. Scoliosis in the community. Br Med J. 1983;286(6365):615–8.

    Article  CAS  Google Scholar 

  17. Horton WA. Common skeletal deformities. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR, editor. Emery and Rimoinʼs principles and practice of medical genetics. 4th edn. London: Churchill Livingstone; 2002. pp. 4236–44.

    Google Scholar 

  18. Sharma S, Wise C. Current understanding of genetic factors in idiopathic scoliosis. In: Kusumi K and Dunwoodie S, editor. The genetics and development of scoliosis. New York: Springer; 2010. pp. 167–90.

    Google Scholar 

  19. Kimberly L, Kesling M, Reinker KA MD. Scoliosis in twins: a meta-analysis of the literature and report of six cases. Spine. 1997;22(17):2009–15.

    Article  Google Scholar 

  20. Andersen MO, Thomsen K, Kyvik KO. Adolescent idiopathic scoliosis in twins: a population-based survey. Spine (Phila Pa 1976). 2007;32(8):927–30.

    Article  Google Scholar 

  21. Tang NL, Yeung HY, Hung VW, Di Liao C, Lam TP, Yeung HM et al. Genetic epidemiology and heritability of AIS: a study of 415 Chinese female patients. J Orthop Res. 2012;30(9):1464–9.

    Article  PubMed  Google Scholar 

  22. Riseborough EJ, Wynne-Davies R. A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am. 1973;55(5):974–82.

    CAS  PubMed  Google Scholar 

  23. Ward K, Ogilvie J, Argyle V, Nelson L, Meade M, Braun J et al. Polygenic inheritance of adolescent idiopathic scoliosis: a study of extended families in Utah. Am J Med Genet A. 2010;152A(5):1178–88.

    Article  PubMed  Google Scholar 

  24. Raggio CL, Giampietro PF, Dobrin S, Zhao C, Dorshorst D, Ghebranious N et al. A novel locus for adolescent idiopathic scoliosis on chromosome 12p. J Orthop Res. 2009;27(10):1366–72.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Carter CO, Evans KA. Inheritance of congenital pyloric stenosis. J Med Genet. 1969;6(3):233–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kruse LM, Buchan JG, Gurnett CA, Dobbs MB. Polygenic threshold model with sex dimorphism in adolescent idiopathic scoliosis: the Carter effect. J Bone Joint Surg Am. 2012;94(16):1485–91.

    Article  PubMed  Google Scholar 

  27. Li Z, Tuteja G, Schug J, Kaestner KH. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell. 2012;148(1–2):72–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pyeritz RE. Common disorders of connective tissue. In: King RA, Rotter JI, Motulsky AG, editor. Genetic basis of common diseases. Oxford: Oxford University Press; 2002. pp. 638–45.

    Google Scholar 

  29. Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine (Phila Pa 1976). 1993;18(12):1609–15.

    Article  CAS  Google Scholar 

  30. Machida M, Miyashita Y, Murai I, Dubousset J, Yamada T, Kimura J. Role of serotonin for scoliotic deformity in pinealectomized chicken. Spine (Phila Pa 1976). 1997;22(12):1297–301.

    Article  CAS  Google Scholar 

  31. Fjelldal PG, Grotmol S, Kryvi H, Gjerdet NR, Taranger GL, Hansen T et al. Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J Pineal Res. 2004;36(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  32. Guo X, Chau WW, Hui-Chan CW, Cheung CS, Tsang WW, Cheng JC. Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function. Spine. 2006;31(14):E437–40.

    Article  PubMed  Google Scholar 

  33. Lonstein JE. Adolescent idiopathic scoliosis. Lancet. 1994;344(8934):1407–12.

    Article  CAS  PubMed  Google Scholar 

  34. Mallau S, Bollini G, Jouve JL, Assaiante C. Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine. 2007;32(1):E14–22.

    Article  PubMed  Google Scholar 

  35. Rousie D, Hache JC, Pellerin P, Deroubaix JP, Van Tichelen P, Berthoz A. Oculomotor, postural, and perceptual asymmetries associated with a common cause. Craniofacial asymmetries and asymmetries in vestibular organ anatomy. Ann N Y Acad Sci. 1999;871:439–46.

    Article  CAS  PubMed  Google Scholar 

  36. Wiener-Vacher SR, Mazda K. Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr. 1998;132(6):1028–32.

    Article  CAS  PubMed  Google Scholar 

  37. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497(7450):490–3.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng JC, Guo X, Sher AH. Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine (Phila Pa 1976). 1999;24(12):1218–22.

    Article  CAS  Google Scholar 

  39. Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP et al. Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int. 2005;16(12):1924–32.

    Article  PubMed  Google Scholar 

  40. Hung VW, Qin L, Cheung CS, Lam TP, Ng BK, Tse YK et al. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2005;87(12):2709–16.

    Article  CAS  PubMed  Google Scholar 

  41. Hadley-Miller N, Mims B, Milewicz DM. The potential role of the elastic fiber system in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 1994;76(8):1193–206.

    CAS  PubMed  Google Scholar 

  42. Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA et al. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am. 2000;82-A(8):1157–68.

    CAS  PubMed  Google Scholar 

  43. Lonstein JE. Adolescent idiopathic scoliosis. Lancet. 1994;344:1407–12.

    Article  CAS  PubMed  Google Scholar 

  44. Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322(5903):881–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Chan V, Fong GC, Luk KD, Yip B, Lee MK, Wong MS et al. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet. 2002;71(2):401–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Salehi LB, Mangino M, De Serio S, De Cicco D, Capon F, Semprini S et al. Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum Genet. 2002;111(4–5):401–4.

    Article  CAS  PubMed  Google Scholar 

  47. Ocaka L, Zhao C, Reed JA, Ebenezer ND, Brice G, Morley T et al. Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J Med Genet. 2008;45(2):87–92.

    Article  CAS  PubMed  Google Scholar 

  48. Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J et al. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet. 2007;80(5):957–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Miller NH, Justice CM, Marosy B, Doheny KF, Pugh E, Zhang J et al. Identification of candidate regions for familial idiopathic scoliosis. Spine (Phila Pa 1976). 2005;30(10):1181–7.

    Article  Google Scholar 

  50. Edery P, Margaritte-Jeannin P, Biot B, Labalme A, Bernard JC, Chastang J et al. New disease gene location and high genetic heterogeneity in idiopathic scoliosis. Eur J Hum Genet. 2011;19(8):865–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36(9):955–7.

    Article  CAS  PubMed  Google Scholar 

  52. Doyle C, Blake K. Scoliosis in CHARGE: a prospective survey and two case reports. Am J Med Genet A. 2005;133A(3):340–3.

    Article  PubMed  Google Scholar 

  53. Sharma S, Gao X, Londono D, Devroy SE, Mauldin KN, Frankel JT et al. Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet. 2011;20(7):1456–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 2011;43(12):1237–40.

    Article  CAS  PubMed  Google Scholar 

  55. Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013;45(6):676–9.

    Article  CAS  PubMed  Google Scholar 

  56. Bashiardes S, Veile R, Allen M, Wise CA, Dobbs M, Morcuende JA et al. SNTG1, the gene encoding gamma1-syntrophin: a candidate gene for idiopathic scoliosis. Hum Genet. 2004;115(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  57. Jagla K, Frasch M, Jagla T, Dretzen G, Bellard F, Bellard M. ladybird, a new component of the cardiogenic pathway in Drosophila required for diversification of heart precursors. Development. 1997;124(18):3471–9.

    CAS  PubMed  Google Scholar 

  58. Jagla K, Jagla T, Heitzler P, Dretzen G, Bellard F, Bellard M. ladybird, a tandem of homeobox genes that maintain late wingless expression in terminal and dorsal epidermis of the Drosophila embryo. Development. 1997;124(1):91–100.

    CAS  PubMed  Google Scholar 

  59. Gross MK, Moran-Rivard L, Velasquez T, Nakatsu MN, Jagla K, Goulding M. Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development. 2000;127(2):413–24.

    CAS  PubMed  Google Scholar 

  60. Gross MK, Dottori M, Goulding M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron. 2002;34(4):535–49.

    Article  CAS  PubMed  Google Scholar 

  61. Muller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR, Jessell TM et al. The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron. 2002;34(4):551–62.

    Article  CAS  PubMed  Google Scholar 

  62. Langenhan T, Aust G, Hamann J. Sticky signaling–adhesion class g protein-coupled receptors take the stage. Sci Signal. 2013;6(276):re3.

    Article  PubMed  Google Scholar 

  63. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C et al. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science. 2009;325(5946):1402–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Monk KR, Oshima K, Jors S, Heller S, Talbot WS. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development. 2011;138(13):2673–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Waller-Evans H, Promel S, Langenhan T, Dixon J, Zahn D, Colledge WH et al. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PloS One. 2010;5(11):e14047.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004;305(5685):869–72.

    Article  CAS  PubMed  Google Scholar 

  67. Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Londono D, Chen KM, Musolf A, Wang R, Shen T, Brandon J et al. A novel method for analyzing genetic association with longitudinal phenotypes. Stat Appl Genet Mol Biol. 2013;12(2):241–61.

    PubMed  Google Scholar 

  69. Ward K, Ogilvie JW, Singleton MV, Chettier R, Engler G, Nelson LM. Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35(25):E1455–64.

    Article  Google Scholar 

  70. Wise CA, Garcia CA, Davis SN, Heju Z, Pentao L, Patel PI et al. Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMTIA duplication. Am J Hum Genet. 1993;53(4):853–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Greenberg F, Guzzetta V, Montes de Oca-Luna R, Magenis RE, Smith AC, Richter SF et al. Molecular analysis of the Smith-Magenis syndrome: a possible contiguous-gene syndrome associated with del(17)(p11.2). Am J Hum Genet. 1991;49(6):1207–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Sucato DJ. Spine deformity in spinal muscular atrophy. J Bone Joint Surg Am. 2007;89 Suppl 1:148–54.

    Article  PubMed  Google Scholar 

  73. Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in cancer. Nat Genet. 2005;37 Suppl:S11–7.

    Article  Google Scholar 

  74. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525–8.

    Article  CAS  PubMed  Google Scholar 

  75. Jiang L, Willner D, Danoy P, Xu H, Brown MA. Comparison of the performance of two commercial genome-wide association study genotyping platforms in Han Chinese samples. G3 (Bethesda). 2013;3(1):23–9.

    Article  CAS  Google Scholar 

  76. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet. 2012;44(6):631–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Morrison AC, Voorman A, Johnson AD, Liu X, Yu J, Li A et al. Whole-genome sequence-based analysis of high-density lipoprotein cholesterol. Nat Genet. 2013;45(8):899–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S et al. A mutation in APP protects against Alzheimerʼs disease and age-related cognitive decline. Nature. 2012;488(7409):96–9.

    Article  CAS  PubMed  Google Scholar 

  79. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Iyengar SK, Elston RC. The genetic basis of complex traits: rare variants or “common gene, common disease”? Methods Mol Biol. 2007;376:71–84.

    Article  CAS  PubMed  Google Scholar 

  81. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2011;13(2):135–45.

    Article  Google Scholar 

  82. Asimit J, Zeggini E. Rare variant association analysis methods for complex traits. Annu Rev Genet. 2010;44:293–308.

    Article  CAS  PubMed  Google Scholar 

  83. Antonarakis SE, Chakravarti A, Cohen JC, Hardy J. Mendelian disorders and multifactorial traits: the big divide or one for all? Nat Rev Genet. 2010;11(5):380–4.

    Article  CAS  PubMed  Google Scholar 

  84. Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991;28(8):511–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Hayes M, Naito M, Daulat A, Angers S, Ciruna B. Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/beta-catenin-dependent cell fate decisions during vertebrate development. Development. 2013;140(8):1807–18.

    Article  CAS  PubMed  Google Scholar 

  86. Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR, Kunkel LM. Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2011;108(13):5331–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Kim HK, Aruwajoye O, Sucato D, Richards BS, Feng GS, Chen D et al. Induction of SHP2 deficiency in chondrocytes causes severe scoliosis and Kyphosis in mice. Spine (Phila Pa 1976). 2013;38(21):E1307–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Wise PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wise, C. (2015). The Genetic Architecture of Idiopathic Scoliosis. In: Wise, C., Rios, J. (eds) Molecular Genetics of Pediatric Orthopaedic Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2169-0_5

Download citation

Publish with us

Policies and ethics