Skip to main content

Upper Extremity Injury Biomechanics

  • Chapter
  • First Online:
Accidental Injury

Abstract

The scapula, clavicle, humerus, radius and ulna, and bones in the hand are joined by distinct soft tissues and joints in the human. As is true in the other components of the body, these structures are complex and have unique biomechanical characteristics. The purpose of this chapter is to present some of the basic anatomy of this region with a focus on the shoulder and its complex and the forearm. Most of the injuries to this region are high energy injuries. Experimental studies using post mortem human subject (PMHS) delineating the tolerance are described. A considerable majority of tolerance literature due to impact loading is from the automotive area, similar to the other regions. Studies using component models such as isolated forearm and intact PMHS models are described from injuries and injury biomechanics perspectives. Biomechanical testing using component models provide specific loading response information of individual bone and joint, while whole-body PMHS studies facilitate development of injury criteria and understanding of the dynamic interaction between linked components. The chapter concludes with a brief discussion on field injuries and the role of the shoulder in affecting the kinematics, loading and injuries to the thorax, abdomen and pelvis are discussed, with a focus on side impacts. Where possible, injury tolerance information is provided in the form of probability curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dempster WT (1965) Mechanisms of shoulder movement. Arch Phys Med Reha 46:49–70

    CAS  Google Scholar 

  2. Moore KL (1980) Glenohumeral joint. In: Clinically oriented anatomy. Williams & Wilkins, Baltimore, pp 814–819

    Google Scholar 

  3. Basmajian JV (1969) Recent advances in the functional anatomy of the upper limb. Am J Phys Med 48(4):165–177

    CAS  PubMed  Google Scholar 

  4. Burkart AC, Debski RE (2002) Anatomy and function of the glenohumeral ligaments in anterior shoulder instability. Clin Orthop Relat Res 400:32–39

    Article  PubMed  Google Scholar 

  5. Robinson CM (1998) Fractures of the clavicle in the adult. Epidemiology and classification. J Bone Joint Surg Br 80(3):476–484

    Article  CAS  PubMed  Google Scholar 

  6. Duprey S, Bruyere K, Verriest J-P (2008) Influence of geometrical personalization on the simulation of clavicle fractures. J Biomech 41(1):200–207

    Article  PubMed  Google Scholar 

  7. Harrington MA Jr, Keller TS, Seiler JG 3rd, Weikert DR, Moeljanto E, Schwartz HS (1993) Geometric properties and the predicted mechanical behavior of adult human clavicles. J Biomech 26(4–5):417–426

    Article  PubMed  Google Scholar 

  8. Kemper A, Stitzel J, Gabler C, Duma S, Matsuoka F (2006) Biomechanical response of the human clavicle subjected to dynamic bending. Biomed Sci Instrum 42:231–236

    PubMed  Google Scholar 

  9. Weber C (1859) Chirurgische Erfahrungen und Untersuchungen, pp. 171–174. (cited in Melvin 1995)

    Google Scholar 

  10. Melvin JW (1995) Injury assessment reference values for the CRABI 6-month infant dummy in a rear-facing infant restraint with airbag deployment. SAE Congress, Detroit

    Book  Google Scholar 

  11. Messerer O (1880) U X ber ElasticitaX t und Festigkeit der menschlichen Knochen. Stuttgart: J. G. Cotta’schen Buchhandlung. (cited in Melvin, 1995)

    Google Scholar 

  12. Yamada H (1970) In: Evans FG (ed) Strength of biological materials. Williams and Wilkins, Baltimore

    Google Scholar 

  13. Kirkish SL, Begeman PC, Paravasthu NS (1996) Proposed provisional reference values for the humerus for evaluation of injury potential. Paper no. 962416. Society of Automotive Engineers, Warrendale

    Google Scholar 

  14. Mertz HJ (1984) A procedure for normalizing impact response data. Society for Automotive Engineers, Warrendale

    Book  Google Scholar 

  15. Duma S, Schreiber P, McMaster J, Crandall J, Bass C, Pilkey W (1998) Dynamic injury tolerances for long bones of the female upper extremity. In:​ Proceedings of the 1998 International IRCOBI Conference on the Biomechanics of Impact. Sept. 16–18, 1998;​ Göteberg, Sweden. pp 189–201

    Google Scholar 

  16. Eppinger RH, Marcus JH, Morgan RM (1984) Development of dummy and injury index for NHTSA’s thoracic side impact protection research program. Paper no. 840885. Society of Automotive Engineers, Warrendale

    Google Scholar 

  17. van Rooij L, Bours R, van Hoof J, Mihm JJ, Ridella SA, Bass CR, Crandall JR (2003) The development, validation and application of a finite element upper extremity model subjected to air bag loading. Stapp Car Crash J 47:55–78

    PubMed  Google Scholar 

  18. Bass CR, Duma SM, Crandall JR, Morris R, Martin P, PIlkey WD (1997) The interaction of air bags with upper extremities. Paper no. 973324. Society of Automotive Engineers, Warrendale

    Google Scholar 

  19. Pintar FA, Yoganandan N (2002) Dynamic bending tolerance of the human forearm. Traffic Inj Prev 3:48–52

    Article  Google Scholar 

  20. Mather BS (1967) A method of studying the mechanical properties of long bones. J Surg Res 7(5):226–230

    Article  CAS  PubMed  Google Scholar 

  21. Mather BS (1967) Correlations between strength and other properties of long bones. J Trauma 7(5):633–638

    Article  CAS  PubMed  Google Scholar 

  22. Hardy WN, Schneider LW, Rouhana SW (2001) Prediction of airbag-induced forearm fractures and airbag aggressivity. Stapp Car Crash J 45:511–534

    CAS  PubMed  Google Scholar 

  23. Duma SM, Hansen GA, Kennedy EA, Rath AL, McNally C, Kemper AR, Smith EP, Brolinson PG, Stitzel JD, Davis MB, Bass CR, Brozoski FT, McEntire BJ, Alem NM, Crowley JS (2004) Upper extremity interaction with a helicopter side airbag: injury criteria for dynamic hyperextension of the female elbow joint. Stapp Car Crash J 48:155–176

    PubMed  Google Scholar 

  24. Duma SM, Boggess BM, Crandall JR, Mac Mahon CB (2002) Fracture tolerance of the small female elbow joint in compression: the effect of load angle relative to the long axis of the forearm. Stapp Car Crash J 46:195–210

    PubMed  Google Scholar 

  25. Bolte JH, Hines MH, McFadden JD, Saul RA (2000) Shoulder response characteristics and injury due to lateral glenohumeral joint impacts. Stapp Car Crash J 44:261–280

    Google Scholar 

  26. Compigne S, Caire Y, Quesnel T, Verries JP (2004) Non-injurious and injurious impact response of the human shoulder three-dimensional analysis of kinematics and determination of injury threshold. Stapp Car Crash J 48:89–123

    PubMed  Google Scholar 

  27. Irwin A, Walilko T, Cavanaugh J, Zhu Y, King A (1993) Displacement responses of the shoulder and thorax in lateral sled impacts. In: Stapp car crash conference, San Antonio, pp 166–173

    Google Scholar 

  28. Koh SW, Cavanaugh JM, Zhu J (2001) Injury and response of the shoulder in lateral sled tests. Stapp Car Crash J 45:101–142

    CAS  PubMed  Google Scholar 

  29. Duma SM, Crandall JR, Hurwitz SR, PIlkey WD (1998) Small female upper extremity Interaction with a deploying side air bag. Society of Automotive Engineers, Warrendale. Paper no. 983148

    Google Scholar 

  30. Melvin JW, Baron KJ, Little WC, Gideon TW, Pierce J (1998) Biomechanical analysis of Indy race car crashes. Society of Automotive Engineers, Warrendale. Paper no. 983161

    Google Scholar 

  31. Yoganandan N, Stadter GW, Halloway DE, Pintar FA (2013) Injury patterns to other body regions and load vectors in nearside impact occupants with and without shoulder injuries. Ann Adv Autom Med. Annual Scientific Conference Association for the Advancement of Automotive Medicine Association for the Advancement of Automotive Medicine 57:133–144

    Google Scholar 

  32. Stadter GW, Yoganandan N, Halloway DE, Pintar FA Analysis of nearside narrow object impacts with and without shoulder injuries in real-world crashes. In: IRCOBI, Gotenborg, Sweden, 13–15 Sept 2013

    Google Scholar 

  33. AIS (1990) The abbreviated injury scale, 1998 update. American Association for Automotive Medicine, Arlington Heights

    Google Scholar 

  34. Yoganandan N, Pintar FA (2005) Odontoid fracture in motor vehicle environments. Accid Anal Prev 37(3):505–514. doi:10.1016/j.aap.2005.01.002

    Article  PubMed  Google Scholar 

  35. Yoganandan N, Humm JR, Pintar FA, Brasel K (2011) Region-specific deflection responses of WorldSID and ES2-re devices in pure lateral and oblique side impacts. Stapp Car Crash J 55:351–378

    PubMed  Google Scholar 

  36. Yoganandan N, Humm JR, Pintar FA (2012) Modular and scalable load-wall sled buck for pure-lateral and oblique side impact tests. J Biomech 45(8):1546–1549. doi:10.1016/j.jbiomech.2012.03.002

    Article  PubMed  Google Scholar 

  37. Yoganandan N, Humm JR, Pintar FA, Maiman DJ (2013) Determination of peak deflections from human surrogates using chestbands in side impact tests. Med Eng Phys. doi:10.1016/j.medengphy.2012.12.012

    Google Scholar 

  38. Yoganandan N, Humm JR, Pintar FA, Brasel K (2012) Deflection responses post mortem human surroagtes in pure lateral and oblique side impacts. Stapp Car Crash J 55:351–378

    Google Scholar 

  39. Yoganandan N, Pintar FA, Sances A Jr, Walsh PR, Ewing CL, Thomas DJ, Snyder RG (1995) Biomechanics of skull fracture. J Neurotrauma 12(4):659–668

    Article  CAS  PubMed  Google Scholar 

  40. Yoganandan N, Pintar FA (2004) Biomechanics of temporo-parietal skull fracture. Clin Biomech (Bristol, Avon) 19(3):225–239. doi:10.1016/j.clinbiomech.2003.12.014

    Article  Google Scholar 

  41. Lessley D, Shaw G, Parent D, Arregui-Dalmases C, Kindig M, Riley P, Purtsezov S, Sochor M, Gochenour T, Bolton J, Subit D, Crandall J, Takayama S, Ono K, Kamiji K, Yasuki T (2010) Whole-body response to pure lateral impact. Stapp Car Crash J 54:289–336

    PubMed  Google Scholar 

  42. Kuppa S, Eppinger RH, McKoy F, Nguyen T, Pintar FA, Yoganandan N (2003) Development of side impact thoracic injury criteria and their application to the modified ES-2 dummy with Rib extensions (ES-2re). Stapp Car Crash J 47:189–210

    PubMed  Google Scholar 

  43. Maltese MR, Eppinger RH, Rhule HH, Donnelly BR, Pintar FA, Yoganandan N (2002) Response corridors of human surrogates in lateral impacts. Stapp Car Crash J 46:321–351

    PubMed  Google Scholar 

  44. Yoganandan N, Pintar FA, Stemper BD, Gennarelli TA, Weigelt JA (2007) Biomechanics of side impact: injury criteria, aging occupants, and airbag technology. J Biomech 40(2):227–243. doi:10.1016/j.jbiomech.2006.01.002

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This material is the result of work supported with resources and the use of facilities at the Zablocki VA Medical Center, Milwaukee, Wisconsin and the Medical College of Wisconsin. Narayan Yoganandan is a part-time employee of the Zablocki VA Medical Center, Milwaukee, Wisconsin. Any views expressed in this chapter are those of the authors and not necessarily representative of the funding organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Wang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, M., Rao, R.D., Yoganandan, N., Pintar, F.A. (2015). Upper Extremity Injury Biomechanics. In: Yoganandan, N., Nahum, A., Melvin, J. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1732-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1732-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1731-0

  • Online ISBN: 978-1-4939-1732-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics