Skip to main content

Methodology for Studying the Compartments of the Human Breast

  • Chapter
  • First Online:
Techniques and Methodological Approaches in Breast Cancer Research

Abstract

A shortcoming of using human breast tissue for molecular analysis is the heterogeneous nature of the sample. To resolve this, various microdissection techniques have been employed to obtain homogeneous cells, such as manual scraping of tissue with scalpel blades, needles, or other probes to positively select cells of interest. These techniques are limited because of poor delineation of tissue and high susceptibility to contamination from dissimilar cells. Infrared laser capture microdissection (LCM), developed at the National Institute סf Health, has become increasingly commercially available in the last two decades of the twentieth century [1–3]. Laser capture microdissection, also called microdissection, laser microdissection (LMD), is a method for isolating cells or specific regions of interest from cells, tissue, or organisms. This technique enables researchers to investigate DNA/RNA and proteins from specific cells or regions of tissue. LCM consists of an LMD system, camera, and software used to select and collect the areas of interest. The basic principle of LCM involves a laser which fuses the desired material onto a specialized cap which can be then close over a 0.5 mL microcentrifuge tube. Before LCM can be performed, a paraffin-embedded tissue (PET) is sectioned with a regular microtome, or a cryostat is used to create histological sections from frozen tissue. The histological sections are placed onto a membrane slide which is then freshly hemotoxylin and eosin (H&E) stained. After the slide has been stained, the sample is set in 100 % EtOH followed by air drying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  1. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001

    Article  CAS  PubMed  Google Scholar 

  2. Bonner RF, Emmert-Buck MR, Cole K, Pohida T, Chuaqui RF, Goldstein SR, Liotta LA (1997) Laser capture microdissection: molecular ana1ysis of tissue. Science 278:1481–1483

    Article  CAS  PubMed  Google Scholar 

  3. Simone NL, Bonner RF, Gillespie JW, Emmert-Buck MR, Liotta LA (1998) Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet 14:272–276

    Article  CAS  PubMed  Google Scholar 

  4. Balogh GA, Heulings R, Mailo DA, Russo PA, Sheriff F, Russo IH, Moral R, Russo J (2006) Genomic signature induced by pregnancy in the human breast. Int J Oncol 28:399–410

    CAS  PubMed  Google Scholar 

  5. Mies C (1994) Molecular biological analysis of paraffin-embedded tissues. Hum Pathol 25:555–560

    Article  CAS  PubMed  Google Scholar 

  6. Walsh PS, Varlaro J, Reynolds R (1992) A rapid chemiluminescent method for quantitation of human DNA. Nucleic Acids Res 20:5061–5065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Blumenstein R, Dias M, Russo IH, Tahin Q, Russo J (2002) DNA content and cell number determination in microdissected samples of breast carcinoma in situ. Int J Oncol 21:447–450

    PubMed  Google Scholar 

  8. Singer VL, Jones IJ, Yue ST, Haugland RP (1997) Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantification. Anal Biochem 249:228–238

    Article  CAS  PubMed  Google Scholar 

  9. Zhuang Z, Bertheau P, Emmert-Buck MR et al (1995) A microdissection technique for archival DNA analysis of specific cell populations in lesions <1 mm in size. Am J Pathol 146:620–625

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Shibata D, Hawes D, Li ZH, Hernandez AM, Spruck CH, Nichols PW (1992) Specific genetic analysis of microscopic tissue after selective ultraviolet radiation fractionation and the polymerase chain reaction. Am J Pathol 141:539–543

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Whetsell L, Maw G, Nadon N, Ringer D, Schaefer FVL (1992) Polymerase chain reaction microanalysis of tumors from stained histological slides. Oncogene 7:2355–2362

    CAS  PubMed  Google Scholar 

  12. Kuppers R, Rajewsky K, Zhao M et al (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A 91:10962–10966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schuetz CS, Bonin M, Clare SE et al (2006) Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 66:5278–5286

    Article  CAS  PubMed  Google Scholar 

  14. Yang F, Foekens JA, Yu J et al (2006) Laser microdissection and microarray analysis of breast tumors reveal ER-alpha related genes and pathways. Oncogene 25:1413–1419

    Article  CAS  PubMed  Google Scholar 

  15. Nishidate T, Katagiri T, Lin ML et al (2004) Genome-wide gene expression profiles of breast-cancer cells purified with laser microbeam microdissection: identification of genes associated with progression and metastasis. Int J Oncol 25:797–819

    CAS  PubMed  Google Scholar 

  16. Sgroi DC, Teng S, Robinson G, Le Vangie R, Hudson JR Jr, Elkahloun AG (1999) In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 59:5656–5661

    CAS  PubMed  Google Scholar 

  17. Luzzi V, Mahadevappa M, Raja R, Warrington JA, Watson MA (2003) Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J Mol Diagn 5:9–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. King C, Guo N, Frampton GM, Gerry NP, Lenburg ME, Rosenberg CL (2005) Reliability and reproducibility of gene expression measurements using amplified RNA from laser microdissected primary breast tissue with oligonucleotide arrays. J Mol Diagn 7:57–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Luzzi V, Holtschlag V, Watson MA (2001) Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am J Pathol 158: 2005–2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89:3010–3014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Phillips J, Eberwine JH (1996) Antisense RNA amplification: a linear amplification method for analyzing the mRNA population from single living cells. Methods 10:283–288

    Article  CAS  PubMed  Google Scholar 

  22. Upson JJ, Stoyanova R, Cooper HS et al (2004) Optimized procedures for microarray analysis of histological specimens processed by laser capture Microdissection. J Cell Physiol 201: 366–373

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  24. Benoy IH, Elst H, van der Auwera I et al (2004) Real-time RT-PCR correlates with immunocytochemistry for the detection of disseminated epithelial cells in bone marrow aspirates of patients with breast cancer. Br J Cancer 91:1813–1820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Russo M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Russo, J., Sheriff, F., de Cicco, R.L., Pogash, T.J., Nguyen, T., Russo, I.H. (2014). Methodology for Studying the Compartments of the Human Breast. In: Techniques and Methodological Approaches in Breast Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0718-2_3

Download citation

Publish with us

Policies and ethics