Skip to main content

Task-Dependent Nature of Fatigue in Single Motor Units

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

The loss of force production during sustained activity presents the CNS a unique control problem. Different tasks stress the neuromuscular system at different sites and times, and involve different cellular mechanisms. The functional organization of muscles and their motor units has evolved to avoid fatigue processes that impair motor performance. The purpose of this brief review is to examine the fatigue properties of type-identified motor units and to speculate what these properties reveal about the organization and control of muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergström M & Hultman E (1988). Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. Journal of Applied Physiology 65, 1500–1505.

    PubMed  Google Scholar 

  • Bevan L, Laouris Y, Reinking RM & Stuart DG (1992). The effect of the stimulation pattern on the fatigue of single motor units in adult cats. Journal of Physiology (London) 449, 85–108.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Cafarelli E & Vøllestad NK (1986). Fatigue of submaximal static contractions. Acta Physiologica Scandinavica Supplementum 556, 137–148.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ, Smith S & Woods JJ (1983a). Changes in motoneurone firing rates during sustained maximal voluntary contractions. Journal of Physiology (London) 340, 335–346.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ & Woods JJ (1983b). Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50, 313–324.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B & Woods JJ (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & Nerve 7, 691–699.

    Article  CAS  Google Scholar 

  • Binder-Macleod SA & Clamann HP (1989). Force output of cat motor units stimulated with trains of linearly varying frequency. Journal of Neurophysiology 61, 208–217.

    PubMed  CAS  Google Scholar 

  • Botterman BR & Cope TC (1988a). Motor-unit stimulation patterns during fatiguing contractions of constant tension. Journal of Neurophysiology 60, 1198–1214.

    PubMed  CAS  Google Scholar 

  • Botterman BR & Cope TC (1988b). Maximum tension predicts relative endurance of fast-twitch motor units in the cat. Journal of Neurophysiology 60, 1215–1226.

    PubMed  CAS  Google Scholar 

  • Botterman BR, Graf LB & Tansey KE (1992). Fatigability of cat soleus motor units activated at varying force levels. Society for Neuroscience Abstracts 18, 1556.

    Google Scholar 

  • Botterman BR, Iwamoto GA & Gonyea WJ (1985). Classification of motor units in flexor carpi radialis muscle of the cat. Journal of Neurophysiology 54, 676–690.

    PubMed  CAS  Google Scholar 

  • Botterman BR, Iwamoto GA & Gonyea WJ (1986). Gradation of isometric tension by different activation rates on motor units of cat flexor carpi radialis muscle. Journal of Neurophysiology 56, 494–506.

    PubMed  CAS  Google Scholar 

  • Burke RE (1981). Motor units: anatomy, physiology, and functional organization. In: Brookhart JM, Mountcastle VB (eds.), Brooks VB (vol. ed.), Handbook of Physiology, sec. 1, vol. II, pt. 1, The Nervous System: Motor Control, pp. 345-422. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Burke RE, Levine DN, Tsairis P & Zajac FE (1973). Physiological types and histochemical profiles of motor units of cat gastrocnemius. Journal of Physiology (London) 234, 723–748.

    CAS  Google Scholar 

  • Burke RE & Tsairis P (1974) The correlation of physiological properties with histochemical characteristics in single muscle units. Annals New York Academy of Sciences 228, 145–158.

    Article  CAS  Google Scholar 

  • Clamann HP & Robinson AJ (1985). A comparison of electromyographic and mechanical fatigue properties in motor units of the cat hindlimb. Brain Research 327, 203–219.

    Article  PubMed  CAS  Google Scholar 

  • Cope TC & Clark BD (1991). Motor unit recruitment in the decerebrate cat: several unit properties are equally good predictors of order. Journal of Neurophysiology 66, 1127–1138.

    PubMed  CAS  Google Scholar 

  • Cope TC, Webb CB, Yee AK & Botterman BR (1991). Nonuniform fatigue characteristics of slow-twitch motor units activated at a fixed percentage of their maximum tetanic tension. Journal of Neurophysiology 66, 1483–1492.

    PubMed  CAS  Google Scholar 

  • Dawson MJ, Gadian DG & Wilkie DR (1978). Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature (London) 274, 861–866.

    Article  CAS  Google Scholar 

  • Dubose L, Schelhorn TB & Clamann HP (1987). Changes in contractile speed of cat motor units during activity. Muscle & Nerve 10, 744–752.

    Article  CAS  Google Scholar 

  • Duchateau J & Hainaut K (1985). Electrical and mechanical failures during sustained and intermittent contractions in humans. Journal of Applied Physiology 58, 942–947.

    PubMed  CAS  Google Scholar 

  • Edwards RHT, Hill DK, Jones DA & Merton PA (1977). Fatigue of long duration in human skeletal muscle after exercise. Journal of Physiology (London) 272, 769–778.

    CAS  Google Scholar 

  • Enoka RM, Robinson GA & Kossev AR (1989). Task and fatigue effects on low-threshold motor units in human hand muscle. Journal of Neurophysiology 62, 1344–1359.

    PubMed  CAS  Google Scholar 

  • Enoka RM & Stuart DG (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology 72, 1631–1648.

    Article  PubMed  CAS  Google Scholar 

  • Enoka RM, Trayanova N, Laouris Y, Bevan L, Reinking RM & Stuart DG (1992). Fatigue-related changes in motor unit action potentials of adult cats. Muscle & Nerve 14, 138–150.

    Article  Google Scholar 

  • Fitch S & McComas A (1985). Influence of human muscle length on fatigue. Journal of Physiology (London) 362, 205–213.

    CAS  Google Scholar 

  • Fitts RH (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 49–94.

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC, Macefield G, Burke D & McKenzie DK (1990). Voluntary activation of human motor axons in the absence of muscle afferent feedback. The control of the deafferented hand. Brain 113, 1563–1581.

    Article  PubMed  Google Scholar 

  • Gardiner PF & Olha AE (1987). Contractile and electromyographic characteristics of rat plantaris motor unit types during fatigue in situ. Journal of Physiology (London) 385, 13–34.

    CAS  Google Scholar 

  • Garland SJ, Enoka RM, Serrano LP & Robinson GA (1994). Behavior of motor units in human biceps brachii during a submaximal fatiguing contraction. Journal of Applied Physiology 76, 2411–2419.

    PubMed  CAS  Google Scholar 

  • Garnett RAF, O’Donovan MJ, Stephens JA, Taylor A (1979). Motor unit organization of human medial gastrocnemius. Journal of Physiology (London) 287, 33–43.

    CAS  Google Scholar 

  • Gordon DA, Enoka RM, Karst GM & Stuart DG (1990a). Force development and relaxation in single motor units of adult cats during a standard fatigue test. Journal of Physiology (London) 421, 583–594.

    CAS  Google Scholar 

  • Gordon DA, Enoka RM & Stuart DG (1990b). Motor-unit force potentiation in adult cats during a standard fatigue test. Journal of Physiology (London) 421, 569–582.

    CAS  Google Scholar 

  • Henneman E & Olson CB (1965). Relations between structure and function in the design of skeletal muscles. Journal of Neurophysiology 28, 581–598.

    PubMed  CAS  Google Scholar 

  • Henneman E, Somjen G & Carpenter DO (1965a). Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology 28, 560–580.

    PubMed  CAS  Google Scholar 

  • Henneman E, Somjen G & Carpenter DO (1965b). Excitability and inhibitability of motoneurons of different sizes. Journal of Neurophysiology 28, 599–620.

    PubMed  CAS  Google Scholar 

  • Jami L, Murthy KSK, Petit J & Zytnicki D (1983). After-effects of repetitive stimulation at low frequency on fast-contracting motor units of cat muscle. Journal of Physiology (London) 340, 129–143.

    CAS  Google Scholar 

  • Kernell D, Ducati A & Sjöholm H (1975). Properties of motor units in the first deep lumbrical muscle of the cat’s foot. Brain Research 98, 37–55.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D, Eerbeek O & Verhey BA (1983). Relation between isometric force and stimulation rate in cat’s hindlimb motor units of different twitch contraction time. Experimental Brain Research 50, 220–237.

    CAS  Google Scholar 

  • Kernell D & Monster AW (1982). Motoneurone properties and motor fatigue. An intracellular study of gastrocnemius motoneurones of the cat. Experimental Brain Research 46, 197–204.

    CAS  Google Scholar 

  • Krarup C (1981). Enhancement and diminution of mechanical tension evoked by staircase and by tetanus in rat muscle. Journal of Physiology (London) 311, 355–372.

    CAS  Google Scholar 

  • Kugelberg E & Lindegren B (1979). Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres. Journal of Physiology (London) 288, 285–300.

    CAS  Google Scholar 

  • Loiselle DS & Walmsley B (1982). Cost of force development as a function of stimulus rate in rat soleus muscle. American Journal of Physiology 243, C242–C246.

    PubMed  CAS  Google Scholar 

  • Maton B & Garnet D (1989). The fatigability of two agonistic muscles in human isometric voluntary submaximal contraction: and EMG study. II. Motor unit firing rate and recruitment. European Journal of Applied Physiology & Occupational Physiology 58, 369–374.

    Article  CAS  Google Scholar 

  • Metzger JM & Fitts RH (1987). Fatigue from high-and low-frequency muscle stimulation: contractile and biochemical alterations. Journal of Applied Physiology 62, 2075–2082.

    PubMed  CAS  Google Scholar 

  • Nordstrom MA & Miles TS (1990). Fatigue of single motor units in human masseter. Journal of Applied Physiology 68, 26–34.

    PubMed  CAS  Google Scholar 

  • Powers RK & Binder MD (1991). Effects of low-frequency stimulation of the tension-frequency relations of fast-twitch motor units in the cat. Journal of Neurophysiology 66, 905–918.

    PubMed  CAS  Google Scholar 

  • Sandercock TG, Faulkner JA, Albers JW & Abbrecht PH (1985). Single motor unit and fiber action potentials during fatigue. Journal Applied Physiology 58, 1073–1079.

    CAS  Google Scholar 

  • Stephens JA & Usherwood TP (1977). The mechanical properties of human motor units with special reference to their fatiguability and recruitment threshold. Brain Research 125, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Thomas CK, Bigland-Ritchie B & Johansson RS (1991b). Force-frequency relationships of human thenar motor units. Journal of Neurophysiology 65, 1509–1516.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Johansson RS & Bigland-Ritchie B (1991a). Attempts to physiologically classify human thenar motor units. Journal of Neurophysiology 65, 1501–1508.

    PubMed  CAS  Google Scholar 

  • Westerblad H, Lee JA, Lännergren J & Allen DG (1991). Cellular mechanisms of fatigue in skeletal muscle. American Journal of Physiology 261, C195–C209.

    PubMed  CAS  Google Scholar 

  • Westling G, Johansson RS, Thomas CK & Bigland-Ritchie B (1990). Measurement of contractile and electrical properties of single human thenar motor units in response to intraneural motor-axon stimulation. Journal of Neurophysiology 64, 1331–1346.

    PubMed  CAS  Google Scholar 

  • Woods JJ, Furbush F and Bigland-Ritchie B (1987). Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. Journal of Neurophysiology 58, 125–137.

    PubMed  CAS  Google Scholar 

  • Yee AK, Tansey KE & Botterman BR (1990). Relative endurance and recruitment order among pairs of fast-twitch motor units in the cat medial gastrocnemius muscle. Society for Neuroscience Abstracts 16, 888.

    Google Scholar 

  • Zajac FE & Faden JS (1985). Relationship among recruitment order, axonal conduction velocity, and muscle-unit properties of type-identified motor units in the cat plantaris muscle. Journal of Neurophysiology 53, 1303–1322.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Botterman, B.R. (1995). Task-Dependent Nature of Fatigue in Single Motor Units. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics