Skip to main content

Abstract

Diabetic nephropathy is an acquired condition due to the glomerular consequences of diabetic microangiopathy. Diabetic microangiopathy is secondary to lasting hyperglycaemia, as this was evidenced by experimental, follow-up and intervention clinical studies. However, the annual and cumulated incidences of diabetic nephropathy are lower than those of diabetic retinopathy or neuropathy [1]. For instance, Pirart [2] reported that among type 1 insulin-dependent patients developing diabetic nephropathy, 86% already ha diabetic retinopathy and 89% diabetic neuropathy, while 61% of those developing diabetic retinopathy already had diabetic neuropathy, but only 24% already had diabetic nephropathy (figure 5-1). Thus, diabetes duration and control are necessary and sufficient conditionals for diabetic retinopathy to develop, while those conditionals are necessary but not sufficient for diabetic nephropathy to develop. Consequently, factors protecting against renal complications due to uncontrolled diabetes must be studied, because their identification may held establishing prognosis of type 1, insulin-dependent diabetic patients and perhaps some peculiar follow-up and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krolewski AJ, Warram JH, Rand LI, Kahn CR. Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. N Engl J Med 1987; 317: 1390.

    Article  CAS  PubMed  Google Scholar 

  2. Pirart J. Diabète et complications dégénératives. Présentation d’une étude prospective portant sur 4400 cas observés entre 1947 et 1973. Diabete Metab 1977; 3: 97–107; 173-182; 245-256.

    CAS  PubMed  Google Scholar 

  3. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease: evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989; 320: 1161–1165.

    Article  CAS  PubMed  Google Scholar 

  4. Pettitt DJ, Knowler WC. »Familial factors in diabetic nephropathy — chapter 3.« In The Kidney and Hypertension in Diabetes Mellitus. Mogensen CE, ed. Boston, Dordrecht, London: Kluwer Academic Publishers, 1994; pp 27–34.

    Chapter  Google Scholar 

  5. Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy: evidence for a role of the angiotensin I converting enzyme gene. Diabetes 1994; 43: 690–695.

    Article  CAS  PubMed  Google Scholar 

  6. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion deletion polymorphism in angiotensin I convertion enzyme gene accounting for half of the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–1346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Erdos EG. Angiotensin I-converting enzyme and the changes in our concepts through the years. Hypertension, 1990; 16: 363–370.

    Article  CAS  PubMed  Google Scholar 

  8. Vane GR. »Sites of conversion of angiotensin I.« In Hypertension. Genest J, Koine E, eds. Springer Verlag, 1972; pp 523-432.

    Google Scholar 

  9. Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F, Soubrier F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 1992; 51: 197–205.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Lieberman J, Sastre A. Serum angiotensin-converting enzyme: elevations in diabetes mellitus. Am Int Med 1980;93:825–826.

    Article  CAS  Google Scholar 

  11. Hallab M, Bled F, Ebran JM, Suraniti S, Girault A, Fressinaud PH, Marre M. Elevated serum angiotensin I converting enzyme activity in type I, insulin-dependent diabetic subjects with persistent microalbuminuria. Acta Diabetologica 1992; 29: 82–85.

    Article  Google Scholar 

  12. Marre M, Bernadet P, Gallois Y, Savagner F, Guyene TT, Hallab M, Cambien F, Passa PH, Alhenc-Gelas F. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes 1994; 43: 384–388.

    Article  CAS  PubMed  Google Scholar 

  13. Tarnow L, Cambien F, Rossing P, Nielsen FS, Hansen BV, Lecerf L, Poirier O, Danilov S, Parving H-H. Lack of relationship between an insertion/deletion polymorphism in the angiotensin I-convervint enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes 1995; 44: 489–494.

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt S, Schone N, Ritz E, and the Diabetic Nephropathy Study Group. Association Of Ace Gene Polymorphism And Diabetic Nephropathy?. Kidney Int 1995; 47: 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  15. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–986.

    Article  Google Scholar 

  16. Powrie JK, Watts GF, Ingham JN, Taub NA, Talmud PJ, Shaw KM. Role of glycæmic control in development of microalbuminuria in patients with insulin-dependent diabetes. BMJ 1994; 309: 1608–1612.

    Article  CAS  PubMed  Google Scholar 

  17. Krolewski AS, Laffel LM, Krolewski M, Quinn M, Warram JH. Glycosylated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus. N Engl J Med 1995; 332: 1251–1255.

    Article  CAS  PubMed  Google Scholar 

  18. Harden PN, Geddes C, Rowe PA, Mcllroy JH, Boulton-Jones M, Rodger RSC, Junor BJR, Briggs JD, Connell JMC, Jardine AG. Polymorphisms in angiotensin-converting-enzyme gene and progression of IgA nephropathy. Lancet 1995; 345: 1540–1542.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida H, Mitarai T, Kawamura T, Kitajima T, Miyasaki Y, Nagasawa R, Kawaguchi Y, Kubo H, Ichikawa I, Sakai O. Role of the deletion polymorphism of the angiotensin-converting-enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J Clin Invest 1995; 96: 2162–2169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Van Essen GG, Rensma PL, De Zeew D, Sluiter WJ, Scheffer H, Apperloo AJ, De Jong PE. Association between angiotensin-converting-enzyme gene polymorphism and failure of renoprotective therapy. Lancet 1996; 347: 94–95.

    Article  PubMed  Google Scholar 

  21. Mizuiri S, Hemmi H, Inoue A, Yoshikawa H, Tanegashima M, Fushimi T, Ishigami M, Amagasaki Y, Ohara T, Shimatake H, Hasegawa A. Angiotensin-converting-enzyme polymorphism and development of diabetic nephropathy in non-insulin-dependent diabetes mellitus. Nephron 1995; 70: 455–459.

    Article  CAS  PubMed  Google Scholar 

  22. Doi Y, Yoshizumi H, Lino K, Yamamoto M, Ichikawa K, Iwase M, Fujishima M. Association between a polymorphism in the angiotensin-converting-enzyme gene and microavascular complications in Japanese patients with NIDDM. Diabetologia 1996; 39: 97–102.

    CAS  PubMed  Google Scholar 

  23. Dubley CRK, Keavney B, Stratton IM, Turner RC, Ratcliffe PJ. U.K. prospective diabetes study XV: relationship of renin-angiotensin system gene polymorphisms with microalbuminuria in NIDDM. Kidney Int 1995; 48: 1907–1911.

    Google Scholar 

  24. Jacobsen P, Tarnow L, Rossing P, Cambien F, Lecerf L, Poirier O, Parving H-H. The insertion/deletion polymorphism in the angiotensin-I-converting enzyme gene predicts the progression of diabetic nephropathy during ACE inhibition in insulin-dependent diabetic patients (Abstract). J Am Soc Nephrol 1995; 6: 450.

    Google Scholar 

  25. Cambien F, Poirier O, Lecerf L, Evans A, Cambou JP, Arveiler D, Luc G, Bard JM, Bara L, Ricard S, Tiret L, Amouyel PH, Alhenc-Gelas F, Soubrier F. Deletion polymorphism in the gene for angiotensin converting enzyme is a potent risk factor for myocardial infarction. Nature 1992; 359: 641–644.

    Article  CAS  PubMed  Google Scholar 

  26. Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil U, Lorell BH, Riegger GAJ. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 1994; 330: 1634–1638.

    Article  CAS  PubMed  Google Scholar 

  27. Raynolds MV, Bristow MR, Bush EW, Abraham WT, Lowes BD, Zisman LS, Taft CS, Perryman MB. Angiotensin-converting-enzyme DD genotype in patients with ischæmic or dilated cardiomyopathy. Lancet 1993; 324: 1073–1075.

    Article  Google Scholar 

  28. Marian AJ, Yu QT, Workman R, Greve G, Roberts R. Angiotensin-converting-enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardio death. Lancet 1993; 342: 1085–1086.

    Article  CAS  PubMed  Google Scholar 

  29. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage: the steno hypothesis. Diabetologia 1989; 32: 219–226.

    Article  CAS  PubMed  Google Scholar 

  30. Ruiz J, Blanche H, Cohen N, Velho G, Cambien F, Cohen D, Passa Ph, Froguel Ph. Insertion/Deletion polymorphism of the angiotensin converting enzyme gene is strongly associated with coronary heart disease in non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1994; 91: 3662–3665.

    Article  CAS  PubMed  Google Scholar 

  31. Keavney BD, Dudley CRK, Stratton IM, Holman RR, Matthews DR, Ratcliffe PJ, Turner RC. UK Prospective Diabetes Study (UKPDS) 14: association of angiotensin-converting-enzyme insertion/deletion polymorphism with myocardial infarction in NIDDM. Diabetologia 1995; 38: 948–952.

    Article  CAS  PubMed  Google Scholar 

  32. Tarnow L, Cambien F, Rossing P, Nielsen FS, Hansen BV, Lecerf L, Poirier O, Danilov S, Boelskifte S, Borch-Johnsen K, Parving H-H. Insertion/deletion polymorphism in the angiotensin-I-converting enzyme gene is associated with coronary heart disease in IDDM patients with diabetic nephropathy. Diabetologia 1995; 38: 798–803.

    Article  CAS  PubMed  Google Scholar 

  33. Lachurie ML, Azzi M, Guyene TT, Alhenc-Gelas F, Menard J. Angiotensin-converting-enzyme gene polymorphism has no influence on the circulating renin-angiotensin-aldosterone system or blood pressure in normotensive subjects. Circulation 1995; 91: 2933–2942.

    Article  CAS  PubMed  Google Scholar 

  34. Ueda S, Elliott HL, Morton JJ, Connell JMC. Enhanced pressor response to angiotensin I in normotensive men with the deletion genotype (DD) for angiotensin-converting enzyme. Hypertension 1995; 25: 1266–1269.

    Article  CAS  PubMed  Google Scholar 

  35. Jeunemaitre X, Soubrier F, Kotelevtsev Y, Lifton R, Williams C, Charru A, Hunt S, Hopkins P, Williams R, Lalouel JM, Corvol P. Mollecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71: 169–180.

    Article  CAS  PubMed  Google Scholar 

  36. Marre M, Jeunemaitre X, Passa P, Gallois Y, Rodier M, Sert C, Dussolier L, Alhenc-Gelas F, for the Genediab Study Group. Contributions of genomic polymorphisms in the renin-angiotensin system (RAS) to diabetic nephropathy. ADA meeting. Diabetes 1996; in press.

    Google Scholar 

  37. Fogarty DG, Maxwell AP, Hughes A, Nevin NC, Doherthy CC. A deletion polymorphism in the angiotensin-converting-enzyme gene is a risk factor for diabetic nephropathy. EDTA proceedings 1994; pp 117.

    Google Scholar 

  38. Hansen PM, Pociot F, Deckert T. A bamhi polymorphism of the perlcan gene in type I diabetic patients — relevance for nephropathy? (Abstract). Diabetologia 1994; 37: A4.

    Google Scholar 

  39. Tarnow L, Pociot F, Hansen PM, et al. Polymorphism in the interleukin-I gene cluster and diabetic nephropathy (Abstract). J Am Soc Nephrol 1995; 6: 456.

    Google Scholar 

  40. Trevisan R, Viberti GC. Genetic factors in the development of diabetic nephropathy. J Lab Clin Med 1995; 126: 342–349.

    CAS  PubMed  Google Scholar 

  41. Tarnow L. Genetic pattern in diabetic nephropathy. Nephrol Dial Transplant 1996; 11: 410.

    Article  CAS  PubMed  Google Scholar 

  42. Parving H-H, Tarnow L, Rossing P. Genetics of diabetic nephropathy. JASN 1996; in press.

    Google Scholar 

  43. The Euclid Study Group. Differences in albumin excretion rate response to lisinopril by ACE-genotype in insulin-dependent diabetes (IDDM). Diabetologia 1996; 39: Suppl. 1: A60.

    Google Scholar 

  44. Parving H-H, Jacobsen P, Tarnow L, Rossing P, Lecerf L, Poirier O, Cambien F: The effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme inhibition: observational follow up study. BMJ 1996; 313: 591–594.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marre, M. (1996). Genetics and Diabetic Nephropathy. In: Mogensen, C.E. (eds) The Kidney and Hypertension in Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6749-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6749-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6751-3

  • Online ISBN: 978-1-4757-6749-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics