Skip to main content

Simple Models of Self-Phase and Induced-Phase Modulation

  • Chapter
The Supercontinuum Laser Source

Abstract

Supercontinuum (Alfano and Shapiro, 1970) generation is the production of nearly continuous spectra by propagating intense picosecond and subpicosecond laser pulses through nonlinear media. Induced supercontinuum (Manassah et al., 1985; Alfano et al., 1986) is the superbroadening of the spectrum of a weak pulse due to the presence of a strong pulse propagating simultaneously with it in a nonlinear medium. These observable physical effects form the motivation for the study of self-phase and induced-phase modulation. This chapter examines, for some idealized simple models of the nonlinear material and incoming pulse, the amplitude, phase, geometric shape, and spectral distribution of an outgoing pulse on exiting from the nonlinear material for cases of both absent and present pump. The chapter is limited in scope and extent; it is confined to some analytical and semianalytical cases developed by the author and co-workers. Effects related to group velocity dispersion (GVD) are not generally included among our models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfano R.R. (1972) GTE Report, TR-72–230–1, April 1972.

    Google Scholar 

  • Alfano, R.R. and P.P. Ho (1986) Induced phase modulation and induced spectral broadening of propagation laser pulses in condensed matter. Proc. International Conference on Lasers ‘86.

    Google Scholar 

  • Alfano, R.R. and P.P. Ho (1988) IEEE J. Quantum Electron. 24, 351.

    Google Scholar 

  • Alfano, R.R. and S.L. Shapiro (1970) Phys. Rev. Lett. 24, 592

    Google Scholar 

  • Alfano, R.R. Q.X. Li, T. Jimbo, J.T. Manassah, and P.P. Ho (1986) Opt. Lett. 11, 626.

    Google Scholar 

  • Alfano, R.R., Q.Z. Wang, T. Jimbo, P.P. Ho, R.N. Bhargava, and B.J. Fitzpatrick (1987) Phys. Rev. A 35, 459.

    Google Scholar 

  • Anderson, D. and M. Lisak (1983) Phys. Rev. A 27, 1393.

    Google Scholar 

  • Baldeck, P.L., F. Raccah, and R.R. Alfano (1987) Opt. Lett. 12, 588.

    Google Scholar 

  • Bethe, H.A. and E.E. Salpeter (1957) Quantum Mechanics of One-and Two-Electron Atoms. Academic Press, New York.

    MATH  Google Scholar 

  • Bloch, F. (1946) Phys. Rev. 70, 460.

    Article  Google Scholar 

  • Bloembergen, N. (1965) Nonlinear Optics. Benjamin, New York.

    Google Scholar 

  • Born, M. and E. Wolf (1975) Principles of Optics, 5th ed. Pergamon, New York. Dabby, F.W. and J.R. Whinnery (1968) Appl. Phys. Lett. 13, 284.

    Google Scholar 

  • De Martini, F., C.H. Townes, T.K. Gustafson, and P.L. Kelley (1967) Phys. Rev. 164, 312.

    Article  Google Scholar 

  • Feynman, R.P., F.L. Vernon, Jr., and R.W. Hellwarth (1957) J. Appl. Phys. 28, 49.

    Google Scholar 

  • Fork, R.L., C.H. Brito-Cruz, P.C. Becker, and C.V. Shank (1987) Opt. Lett. 12, 483.

    Google Scholar 

  • Friedberg, R. and S. Hartmann (1971) Phys. Lett. A 37, 285.

    Google Scholar 

  • Gaskill, J.D. (1978) Linear Systems, Fourier Transforms and Optics. Wiley, New York.

    Google Scholar 

  • Goodman, J.W. (1968) Introduction to Fourier Optics. McGraw-Hill, New York. Gordon, J.P. (1986) Opt. Lett. 11, 662.

    Google Scholar 

  • Gordon, J.P., R.C.C. Leite, R.S. Moore, S.P.S. Porto, and J R Whinnery (1965) J. Appl. Phys. 36, 3.

    Article  Google Scholar 

  • Grischkowsky, D. and A. Balant (1986) Appl. Phys. Lett. 41, 1.

    Google Scholar 

  • Kelley, P.L. (1965) Phys. Rev. Lett. 15, 1085.

    Google Scholar 

  • Kogelnik, H. (1965) Appl. Opt. 4, 1562.

    Article  Google Scholar 

  • Kogelnik, H. and T. Li (1966) Proc. IEEE 54, 1312.

    Google Scholar 

  • Lamb, W.E. Jr. and R.C. Retherford (1950) Phys. Rev. 79, 549.

    Article  Google Scholar 

  • McCall, S.L. and E.L. Hahn (1969) Phys. Rev. 183, 457.

    Google Scholar 

  • Manassah, J.T. (1986a) Appl. Opt. 25, 1737.

    Google Scholar 

  • Manassah, J.T. (1986b) Phys. Lett. 117A, 5.

    Article  Google Scholar 

  • Manassah, J.T. (1987a) Appl. Opt. 26, 1972.

    Google Scholar 

  • Manassah, J.T. (1987b) Appl. Opt. 26, 3747.

    Google Scholar 

  • Manassah, J.T. (1988a) Opt. Lett. 13, 755.

    Google Scholar 

  • Manassah, J.T. (1988b) Appl. Opt. 28, 206.

    Google Scholar 

  • Manassah, J.T. (1988c) Opt. Lett. April (1989).

    Google Scholar 

  • Manassah, J.T. (1988d) Appl. Opt. 27, 4635.

    Google Scholar 

  • Manassah, J.T. and O. Cockings (1987a) Appl. Opt. 26, 3749.

    Google Scholar 

  • Manassah, J.T. and O. Cockings (1987b) Opt. Lett. 12, 1005.

    Article  Google Scholar 

  • Manassah, J.T. and M.A. Mustafa (1988a) Phys. Lett. A133, 51.

    Article  Google Scholar 

  • Manassah, J.T. and M.A. Mustafa (1988b) Opt. Lett. 13, 752.

    Article  Google Scholar 

  • Manassah, J.T. and M.A. Mustafa (1988c) Appl. Opt. 27, 807.

    Article  Google Scholar 

  • Manassah, J.T. and M.A. Mustafa (1988d) The supercontinuum generated by six-photon mixing. Opt. Lett. 13, 862.

    Google Scholar 

  • Manassah, J.T., M.A. Mustafa, R.R. Alfano, and P.P. Ho (1985) Phys. Lett. 113A, 242. Manassah, J.T., M.A. Mustafa, R.R. Alfano, and P.P. Ho (1986) IEEE J. Quantum Electron. QE-22, 197.

    Google Scholar 

  • Manassah, J.T., P.L. Baldeck, and R.R. Alfano (1988a) Opt. Lett. 13, 589. Manassah, J.T., P.L. Baldeck, and R.R. Alfano (1988b) Opt. Lett. 13, 1090. Manassah, J.T., P.L. Baldeck, and R.R. Alfano (1988c) Appl. Opt. 27, 3586. Marburger, J.H. (1975) Prog. Quantum Electron. 4, 35.

    Google Scholar 

  • Martinez, O.A., J.P. Gordon, and R.L. Fork (1984) J. Opt. Soc. Am. A-1, 1003. Nayfeh, A.H. (1981) Introduction to Perturbation Techniques. Wiley, New York. Robiscoe, R.T. (1978) Phys. Rev. A-17, 247.

    Google Scholar 

  • Rosen, N. and C. Zener (1932) Phys. Rev. 40, 502.

    Article  MATH  Google Scholar 

  • Rothenberg, J.E. and D. Grischkowsky (1987) Opt. Lett. 12, 99.

    Article  Google Scholar 

  • Sargent, M., III, M.O. Scully, and W.E. Lamb, Jr. (1974) Laser Physics. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Thomas, D.G., L.K. Anderson, M.I. Cohen, E.I. Gordon, and P.K. Runge (1982) Lightwave communication. In Innovations in Telecommunications, J.T. Manassah, ed. Academic Press, New York.

    Google Scholar 

  • Tien, P.K., J.P. Gordon, and J.R. Whinnery (1965) Proc. IEEE 53, 129.

    Article  Google Scholar 

  • Tomlinson, W.J., R.H. Stolen, and C.V. Shank (1984) J. Opt. Soc. Am. Bl, 139. Treacy, E.B. (1969) IEEE J. Quantum Electron. 0E-5, 454.

    Google Scholar 

  • Tzoar, N. and M. Jain (1979) Propagation of nonlinear optical pulses in fibers. In Fiber Optics, B. Bendow and S. Mitra, eds. Plenum, New York.

    Google Scholar 

  • Yang, G. and Y.R. Shen (1984) Opt. Lett. 9, 510.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manassah, J.T. (1989). Simple Models of Self-Phase and Induced-Phase Modulation. In: Alfano, R.R. (eds) The Supercontinuum Laser Source. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2070-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2070-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2072-3

  • Online ISBN: 978-1-4757-2070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics