Skip to main content
  • 554 Accesses

Abstract

It is well known that noble metals such as copper can be electrodeposited at high current density from aqueous solution. However, hydrogen evolution may take place as a competitive reaction when cathodic deposition of less-noble metals such as Fe and Ni is carried out. Metals which are even less noble, such as Al and Mg, do not electrodeposit from aqueous solution at all, although these metals can be obtained by electrolysis of nonaqueous solutions, such as electrolytes of organic solvents or ammonia. These methods may be used on a laboratory scale but not on a commercial scale because of difficulties in operation and high cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Kameyama, Denki Kagaku no Riron oyohi Oyo (Theory and Application of Electrochemistry), Vol. 1, p. 68, Maruzen, Tokyo (1946).

    Google Scholar 

  2. Yoyuen Bussei Hyo (Data of Molten Salts), edited by the committee, p. 387, Kagaku Dojin, Kyoto (1963).

    Google Scholar 

  3. T. Sato and T. Amano, Kinzoku no Kenkyu (Researches of Metals) 11, 305 (1934).

    CAS  Google Scholar 

  4. P. Pascal and A. Jouniaux, Z. Elektrochem. 22, 71 (1916).

    Google Scholar 

  5. Supplied by Sumitomo Chemical Industry Co. (1968).

    Google Scholar 

  6. Aruminiumu no Shin Seiren Gijutsu Chosa Hokokusho (Report on the New Technologies of Aluminum Production), p. 6, edited by the committee. Electrochemical Society of Japan (1976).

    Google Scholar 

  7. Kagaku Purosesu Shusei (Collection of Chemical Processes), p. 268, edited by the committee, Tokyo Kagaku Dojin (1970).

    Google Scholar 

  8. Anon, Chem. Eng. p. 33 (June 9, 1975).

    Google Scholar 

  9. Anon, Chem. Eng. p. 120 (September 2, 1963).

    Google Scholar 

  10. Anon, Chem. Eng. p. 45 (January 22, 1973).

    Google Scholar 

  11. Anon, Chem. Eng. p. 71 (July 22, 1963).

    Google Scholar 

  12. W. Klemm and P. Weiss, Z. Anorg. Allgem. Chem. 245, 281 (1940).

    Google Scholar 

  13. A. Schmidt, Chem. Ing. Tech., 37, 596 (1965).

    Article  CAS  Google Scholar 

  14. A. Schmidt, Angewandte Elektrochemie, p. 232, Verlage Chemie, Weinheim (1976).

    Google Scholar 

  15. R. M. Hunter, Trans. Electrochem. Soc. 86, 21 (1944).

    Google Scholar 

  16. C. L. Mantell, Electrochemical Engineering, 4th ed. p. 407, McGraw-Hill, New York (1960).

    Google Scholar 

  17. Denki Kagaku Binran (Handbook of Electrochemistry), p. 1026, Maruzen, Tokyo (1964).

    Google Scholar 

  18. W. C. Gardiner, FIAT Final Report 820 (PB 44, 671) (1946).

    Google Scholar 

  19. Kagaku Purosesu Shusei (Collection of Chemical Processes), p. 171, edited by the committee, Tokyo Kagaku Dojin (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Hine, F. (1985). Fused Salt Electrolysis and Electrothermics. In: Electrode Processes and Electrochemical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0109-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0109-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0111-1

  • Online ISBN: 978-1-4757-0109-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics