Skip to main content

Glucose and Fatty Acid Metabolism in the Newborn Pig

  • Chapter
Advances in Swine in Biomedical Research

Abstract

In mammalian species, important modifications in several physiological functions and profound changes of nutrition occur during the perinatal period.1 In utero, the fetus is maintained at a controlled temperature and receives from its mother a continuous supply of nutrients and oxygen used for growth and oxidative metabolism. Fetal nutrition can be classified as a high carbohydrate, low fat diet. After birth, the maternal supply of nutrients ceases and newborns are fed at intervals with milk, which is a high fat, low carbohydrate diet. At birth, the gut becomes the natural route of nutrient delivery to the organism; its postnatal maturation and growth are rapid, especially in the pig,2 and associated with profound modifications in hemodynamics and a high local oxygenation3. As in most species, the newborn pig is exposed to a sudden 15 to 20C decrease in its thermal environment and must maintain its body temperature by shivering thermogenesis, as the piglet is devoid of brown adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Girard, J., Ferré, P., Pégorier, J.P., and Duée, P.H., 1992, Adaptations of glucose and fatty acid metabolism during the perinatal period and the suckling-weaning transition, Physiol. Rev. 72:507–562.

    PubMed  CAS  Google Scholar 

  2. Klein, R.M., and McKenzie, J.C., 1983, The role of cell renewal in the ontogeny of intestine. 1-Cell proliferation patterns in adult, fetal and neonatal intestine, J. Pediatr. Gastroenterol. Nutr. 2:10–43.

    Article  PubMed  CAS  Google Scholar 

  3. Nowicki, P.T., Stonestreet, B.S., Hansen, N.B., Yao, A., and Oh, W., 1983, Gastrointestinal blood flow and oxygen consumption in awake newborn piglets: effect of feeding, Am. J. Physiol. 245:G697–G702.

    PubMed  CAS  Google Scholar 

  4. Reeds, P.J., Burrin, D.G., Davis, T.A., and Fiorotto, M.L., 1993, Postnatal growth of gut and muscle: competitors or collaborators, Proc. Nutr. Soc. 52:57–67.

    Article  PubMed  CAS  Google Scholar 

  5. Cornblath, M., and Schwartz, R., 1993, Hypoglycemia in the neonate, J. Pediatr. Endocrinol. 6:113–129.

    PubMed  CAS  Google Scholar 

  6. Randall, G.C.B., and L’Ecuyer, C., 1976, Tissue glycogen and blood glucose and fructose levels in the pig fetus during the second half of gestation, Biol. Neonate 28:74–82.

    Article  PubMed  CAS  Google Scholar 

  7. Elliot, J.I., and Lodge, G.A., 1977, Body composition and glycogen reserves in the neonatal pig during the first 96 hours postpartum. Can. J. Anim. Sci. 57:141–150.

    Article  CAS  Google Scholar 

  8. Okai, D.B., Wyllie, D., Aherne, F.X., and Ewans, R.C., 1978, Glycogen reserves in the fetal and newborn pig, J. Anim. Sci. 46:391–401.

    PubMed  CAS  Google Scholar 

  9. Widdowson, E.M., 1950, Chemical composition of newly born mammals. Nature 166:626–628.

    Article  PubMed  CAS  Google Scholar 

  10. Manners, M.J., and McCrea, M.R., 1963, Changes in the chemical composition of sow-reared piglets during the first month of life, Br. J. Nutr. 17:495–517.

    Article  PubMed  CAS  Google Scholar 

  11. Curtis, S.E., Christison, G.I., and Robertson, W.D., 1970, Effects of acute cold exposure and age on respiratoty quotients in piglets, Proc. Soc. Exp. Biol. Med. 134:188–191.

    PubMed  CAS  Google Scholar 

  12. Elphick, M.C., Flecknell, P., Hull, D., and McFayden, I.R., 1980, Plasma free fatty acid umbilical venous-arterial concentration differences and placental transfert of [14C] palmitic acid in pigs, J. Develop. Physiol. 2:347–356.

    CAS  Google Scholar 

  13. Duée, P.H., Simoes-Nunes, C., Pégorier, J.P., Gilbert, M., and Girard, J., 1987, Uterine metabolism of the conscious gilt during late pregnancy, Pediatr. Res. 22:587–590.

    Article  PubMed  Google Scholar 

  14. Reynolds, L.P., Ford, S.R., and Ferrell, C.L., 1985, Blood flow and steroid and nutrient uptake of the gravid uterus and fetus of sows, J. Anim. Sci. 61:968–974.

    PubMed  CAS  Google Scholar 

  15. Hausman, D.B., Hausman, G.J., and Martin, R.J., 1993, Endocrine regulation of fetal adipose tissue metabolism in the pig. Role of thyroxine, Biol. Neonate 64:116–126.

    Article  PubMed  Google Scholar 

  16. Ezekwe, M.O., and Martin, R.J., 1980, The effects of maternal alloxan-diabetes on body composition, liver glycogen and metabolism and serum metabolites and hormones of fetal pigs, Horm. Metab. Res. 12:136–139.

    Article  PubMed  CAS  Google Scholar 

  17. Pettigrew, J.E., 1981, Supplemental dietary fat for peripartal sows: a review, J. Anim. Sci. 53:101–107.

    Google Scholar 

  18. Yen, J.T., Eichner, R.D., Arnold, R.J., and Pond, W.G., 1982, Tissue glycogen levels in dams and fetuses as affected by fasting and refeeding pregnant sows, J. Anim. Sci. 54:796–799.

    PubMed  CAS  Google Scholar 

  19. Ezekwe, M.O., Ezekwe, E.I., Sen, D.K., and Ogalla, F., 1984, Effects of maternal streptozotocin-diabetes on fetal growth, energy reserves and body composition of newborn pigs, J. Anim. Sci. 59:974–980.

    PubMed  CAS  Google Scholar 

  20. Pegorier, J.P., Duée, P.H., Assan, R., Peret, J., and Girard, J., 1981, Changes in circulating fuels, pancreatic hormones and liver glycogen concentration in fasting or suckling newborn pigs, J. Develop. Physiol. 3:203–217.

    CAS  Google Scholar 

  21. Mersmann, H.J., Phinney, G., Sanguinetti, C., and Houk, J.M., 1973, Lipogenic capacity of liver from perinatal swine (sus domesticus), Comp. Biochem. Physiol. 46B:493–497.

    CAS  Google Scholar 

  22. Mersmann, H.J., 1974, Metabolic patterns in the neonatal swine, J. Anim. Sci. 38:1022–1030.

    PubMed  CAS  Google Scholar 

  23. Salmon-Legagneur, E., 1965, Quelques aspects des relations nutritionnelles entre la gestation et la lactation chez la truie, Ann. Zootech. 14:1–137.

    Article  Google Scholar 

  24. Moughan, P.J., Birtles, M.J., Cranwell, P.D., Smith, W.C., and Pedraza, M., 1992, The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants, in: Nutritional Triggers for Health and Disease, 67 (D.A.P. Simopoulos, ed.), Karger, Basel, pp 40–113.

    Google Scholar 

  25. Smith, M.W., 1988, Postnatal development of transport function in the pig intestine, Comp. Biochem. Physiol. 90A:577–582.

    Article  CAS  Google Scholar 

  26. Puchal, A.A., and Buddington, R.K., 1992, Postnatal development of monosaccharide transport in pig intestine, Am. J. Physiol. 262:G895–G902.

    PubMed  CAS  Google Scholar 

  27. Coffey, M.T., Shireman, R.B., Herman, D.L., and Jones, E.E., 1991, Carnitine status and lipid utilization in neonatal piglets fed diets low in carnitine, J. Nutr. 121:1047–1053.

    PubMed  CAS  Google Scholar 

  28. Li, B.U.K., Murray, R.D., Heitlinger, L.A., Hughes, A.M., McLung, H.J., and O’Dorisio, T.M., 1992, Enterohepatic distribution of carnitine in developing piglets: relation to glucagon and insulin, Pediatr. Res. 32:312–316.

    Article  PubMed  CAS  Google Scholar 

  29. Swiatek, K.R., Kipnis, D.M., Mason, G., Chao, K.L., and Cornblath, M., 1968, Starvation hypoglycemia in newborn pigs, Am. J. Physiol. 214:400–405.

    PubMed  CAS  Google Scholar 

  30. Gentz, J., Bengtsson, J.K., Hakkarainen, J., Hellstrom, R., and Persson, B., 1970, Metabolic effects of starvation during neonatal period in the piglet, Am. J. Physiol. 218:662–668.

    PubMed  CAS  Google Scholar 

  31. Aherne, F.X., Hays, V.W., Ewan, R.C., and Speer, V.C., 1969, Glucose and fructose in the fetal and newborn pig, J. Anim. Sci. 29:906–911.

    CAS  Google Scholar 

  32. Stanton, H.C., and Woo, S.K., 1978, Development of adrenal medullary function in swine, Am. J. Physiol. 234:E137–E145.

    PubMed  CAS  Google Scholar 

  33. Dvorak, M., 1972, Adrenocortical function in foetal, neonatal and young pigs, J. Endocr. 54:473–481.

    Article  PubMed  CAS  Google Scholar 

  34. Herbein, J.H., Martin, R.J., Griel, L.C., and Kavanaugh, J.F., 1977, Serum hormones in the perinatal pig and the effect of exogenous insulin on blood sugars, Growth 41:277–283.

    PubMed  CAS  Google Scholar 

  35. Kattesh, H.G., Charles, S.F., Baumbach, G.A., and Gillepsie, B.E., 1990, Plasma Cortisol distribution in the pig from birth to six weeks of age, Biol. Neonate 58:220–226.

    Article  PubMed  CAS  Google Scholar 

  36. Campion, D.R., McCusher, R.H., Buonomo, F.C., and Jones, W.K., 1986, Effect of fasting neonatal piglets on blood hormone and metabolite profile and on skeletal muscle metabolism., J. Anim. Sci. 63:1418–1427.

    PubMed  CAS  Google Scholar 

  37. Parker, R.O., Williams, P.E.V., Aherne, F.X., and Young, B.A., 1980, Serum concentration changes in protein, glucose, urea, thyroxine and triiodothyronine and thermostability of neonatal pigs farrowed at 25 and 10°C, Can. J. Anim. Sci. 60:503–509.

    Article  CAS  Google Scholar 

  38. Berthon, D., Herpin, P., Duchamp, C., Dauncey, M.J., and LeDividich, J., 1993, Modification of thermogenic capacity in neonatal pigs by changes in thyroid status during late gestation, J. Develop. Physiol. 19:253–261.

    CAS  Google Scholar 

  39. Pégorier, J.P., Duee, P.H., Simoes-Nunes, C., Girard, J., and Peret, J., 1984, Glucose turnover and recycling in unrestrained and unanesthetized 48 hours old fasting or post-absorptive newborn pigs, Br. J. Nutr. 52:277–287.

    Article  PubMed  Google Scholar 

  40. Flecknell, P.A., Wooton, R., and John, M., 1980, Total body glucose metabolism in the conscious, unrestrained piglet and its relation to body-organ weight, Br. J. Nutr. 44:193–203.

    Article  PubMed  CAS  Google Scholar 

  41. Cote, P.J., Wangsness, P.J., Varela-Avarez, H., Griel, L.C.J., and Kavanaugh, J.F., 1982, Glucose turnover in fast-growing, lean and in slow-growing, obese swine, J. Anim. Sci. 54:89–94.

    PubMed  CAS  Google Scholar 

  42. Robinson, J.L., Duee, P.H., Schreiber, O., Bois-Joyeux, B., Chanez, M., Pegorier, J.-P., and Peret, J., 1981, Development of gluconeogenic enzymes in the liver of fasting or suckling newborn pigs; J. Develop. Physiol. 3:191–201.

    CAS  Google Scholar 

  43. Mersmann, H.J., 1971, Glycolytic and gluconeogenic enzyme levels in pre-and postnatal pigs, Am. J. Physiol. 220:1279–1302.

    Google Scholar 

  44. Pégorier, J.P., Duee, P.H., Girard, J., and Peret, J., 1982, Development of gluconeogenesis in isolated hepatocytes from fasting or suckling newborn pigs, J. Nutr. 112:1038–1046.

    PubMed  Google Scholar 

  45. Swiatek, K.R., 1971, Development of gluconeogenesis in pig liver slices, Biochim. Biophys. Acta 252:274–279.

    Article  PubMed  CAS  Google Scholar 

  46. Helmrath, T.A., and Bieber, L.L., 1974, Development of gluconeogenesis in neonatal pig liver, Am. J. Physiol. 227:1306–1313.

    PubMed  CAS  Google Scholar 

  47. Bird, P.H., and Hartmann, P.E., 1994, The response in the blood of piglets to oral doses of galactose and glucose and intravenous administration of galactose, Br. J. Nutr. 71:553–561.

    Article  PubMed  CAS  Google Scholar 

  48. Duee, P.H., Pegorier, J.P., Peret, P., and Girard, J., 1985, Separate effects of fatty acid oxidation and glucagon on gluconeogenesis in isolated hepatocytes from newborn pigs, Biol. Neonate 41:77–83.

    Google Scholar 

  49. Helmrath, T.A., and Bieber, L.L., 1975, Glucagon stimulation of hepatic gluconeogenesis in neonatal pigs, Proc. Soc. Exp. Biol. Med. 150:561–563.

    PubMed  CAS  Google Scholar 

  50. Boyd, R.D., Whitehead, D.M., and Butler, W.R., 1985, Effect of exogenous glucagon and free fatty acids on gluconeogenesis in fasting neonatal pigs, J. Anim. Sci. 60:659–665.

    PubMed  CAS  Google Scholar 

  51. Lepine, A.J., Watword, M., Boyd, R.D., Ross, D.A., and Whitehead, D., 1993, Relationship between hepatic fatty acid oxidation and gluconeogenesis in the fasting neonatal pig, Brit. J. Nutr. 70:81–91.

    Article  PubMed  CAS  Google Scholar 

  52. LeDividich, J., Esnault, T., Lynch, B., Hoo-Paris, R., Castex, C., and Peiniau, J., 1991, Effect of colostral fat level on fat deposition and plasma metabolites in the newborn pigs, J. Anim. Sci. 69:2480–2488.

    CAS  Google Scholar 

  53. Fleckneil, P.A., Wootton, R., and John, M., 1982, Acute measurement of cerebral metabolism in the conscious, unrestrained neonatal piglet. II glucose and oxygen utilization, Biol. Neonate 41:221–226.

    Article  Google Scholar 

  54. Widdowson, E.M., Colombo, V.E., and Artavanis, C.A., 1976, Changes in organs of pigs in response to feeding for the first 24 h after birth, Biol. Neonate 28:272–281.

    Article  Google Scholar 

  55. Darcy-Vrillon, B., Posho, L., Morel, M.T., Bernard, F., Blachier, F., Meslin, J.C., and Duée, P.H., 1994, Glucose, galactose and glutamine metabolism in pig isolated enterocytes during development, Pediatr. Res. 36:175–181.

    Article  PubMed  CAS  Google Scholar 

  56. Posho, L., Darcy-Vrillon, B., Blachier, F., and Duée, P.H., 1994, The contribution of glucose and glutamine to energy metabolism in newborn pig enterocytes, J. Nutr. Biochem. 5:284–290.

    Article  CAS  Google Scholar 

  57. Posho, L., Darcy-Vrillon, B., Morel, M.T., Cherbuy, C., Blachier, F., and Duée, P.H., 1994, Control of glucose metabolism in newborn pig enterocytes: evidence for the role of hexokinase, Biochim. Biophys. Acta 1224:213–220.

    Article  PubMed  CAS  Google Scholar 

  58. Sheard, N.F., and Walker, W.A., 1988, The role of breast milk in the development of the gastrointestinal tract, Nutr. Rev. 46:1–18.

    Article  PubMed  CAS  Google Scholar 

  59. Mount, L.E., 1959, The metabolic rate of the newborn pig in relation to environmental temperature and to age, J. Physiol. (London) 147:333–345.

    CAS  Google Scholar 

  60. Mellor, D.J., and Cockburn, F., 1986, A comparison of energy metabolism in the newborn infant, piglet and lamb, Quart. J. Exp. Physiol. 71:361–379.

    CAS  Google Scholar 

  61. Duée, P.H., Pégorier, J.P., Le Dividich, J., and Girard, J., 1988, Metabolic and hormonal response to acute cold exposure in newborn pigs, J. Develop. Physiol. 10:371–381.

    Google Scholar 

  62. Herpin, P., LeDividich, J., and Van Os, M., 1992, Contribution of colostral fat to thermogenesis and glucose homeostasis in the newborn pig, J. Develop. Physiol. 17:133–141.

    CAS  Google Scholar 

  63. Mayfield, S.R., Stonestreet, B.S., Brubakk, A.M., Shaul, P.W., and Oh, W., 1986, Regional blood flow in newborn piglets during environmental cold stress, Am. J. Physiol. 251:G308–G313.

    PubMed  CAS  Google Scholar 

  64. Close, W.H., LeDividich, J., and Duée, P.H., 1985, Influence of environmental temperature on glucose tolerance and insulin response in the new-born piglet, Biol. Neonate 47:84–91.

    Article  PubMed  CAS  Google Scholar 

  65. Herpin, P., and LeDividich, J., 1995, Thermoregulation and environment, in: The Neonatal Pig: Development and Survival (M.A. Varley, ed.), pp. 57–95.

    Google Scholar 

  66. Bengtsson, G., Gentz, J., Hakkarainen, J., Hellstrom, R., and Persson, B., 1969, Plasma levels FFA, glycerol, 3-hydroxybutyrate and blood glucose during the postnatal development of pig, J. Nutr. 97:311–315.

    PubMed  CAS  Google Scholar 

  67. Adams, S.H., and Odle, J., 1993, Plasma beta-hydroxybutyrate after octanoate challenge — Attenuated ketogenic capacity in neonatal swine, Am. J. Physiol. 265:R761–R765.

    PubMed  CAS  Google Scholar 

  68. Müller, M.J., Paschen, U., and Seitz, H.J., 1982, Starvation-induced ketone body production in the conscious unrestrained miniature pig, J. Nutr. 112:1379–1386.

    PubMed  Google Scholar 

  69. Bremer, J., and Osmundsen, H., 1984, Fatty acid oxidation and its regulation, in: Fatty Acid Metabolism and its Regulation (S. Numa, ed.), Elsevier Science Publishers B.V, Amsterdam, pp 113–154.

    Chapter  Google Scholar 

  70. Pegorier, J.P., Duee, P.H., Girard, J., and Peret, J., 1983, Metabolic fate of non esterified fatty acids in isolated hepatocytes from newborn and young pigs: evidence for a limited capacity for oxidation and an increased capacity for esterification, Biochem. J. 212:93–97.

    PubMed  CAS  Google Scholar 

  71. Duée, P.H., Pégorier, J.P., Quant, P.A., Herbin, C., Kohl, C., and Girard, J., 1994, Hepatic ketogenesis in newborn pig is limited by low mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity, Biochem. J. 298:207–212.

    PubMed  Google Scholar 

  72. Odle, J., Benevenga, N.J., and Crenshaw, T.D., 1991, Postnatal age and the metabolism of medium-and long-chain fatty acids by isolated hepatocytes from small-for-gestational-age and appropriate-for-gestational-age piglets, J. Nutr. 121:615–621.

    PubMed  CAS  Google Scholar 

  73. Bischoff, M.B., Richter, W.R., and Stein, R.J., 1969, Ultrastructural changes in pig hepatocytes during the transitional period from late fetal to early neonatal life, J. Cell Sci. 4:381–395.

    PubMed  CAS  Google Scholar 

  74. Mersmann, H.J., Goodman, J., Houk, J.M., and Anderson, S., 1972, Studies on the biochemistry of mitochondria and cell morphology in the neonatal swine hepatocyte, J. Cell. Biol. 53:335–347.

    Article  PubMed  CAS  Google Scholar 

  75. McGarry, J.D., Woeltje, K.F., Kuwajima, M., and Foster, D.W., 1989, Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase, Diabetes/ Metab. Rev. 5:271–284.

    Article  CAS  Google Scholar 

  76. Bieber, L.L., Markwell, M.A.K., Blair, M., and Helmrath, T.A., 1973, Studies on the development of carnitine palmitoyltransferase and fatty acid oxidation in the liver mitochondria of neonatal pigs, Biochim. Biophys. Acta 326:145–154.

    Article  PubMed  CAS  Google Scholar 

  77. McGarry, J.D., and Foster, D.W., 1980, Regulation of hepatic fatty acid oxidation and ketone body production, Annu. Rev. Biochem. 49:395–420.

    Article  PubMed  CAS  Google Scholar 

  78. Wolfe, R.G., Maxwell, C.V., and Nelson, E.C., 1978, Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig, J. Nutr. 108:1621–1634.

    PubMed  CAS  Google Scholar 

  79. Werner, J.C., Whitman, V., Vary, T.C., Fripp, R.R., Musselman, J., and Schuler, G., 1983, Fatty acid and glucose utilization in isolated working newborn pig heart, Am. J. Physiol. 244:E19–E23.

    PubMed  CAS  Google Scholar 

  80. Werner, J.C., Sicard, R.E., and Schuler, H.G., 1989, Palmitate oxidation by isolated working fetal and newborn pig hearts, Am. J. Physiol. 256:E315–E321.

    PubMed  CAS  Google Scholar 

  81. Ascuitto, R.J., Ross-Ascuitto, N.T., Chen, V., and Downing, S.E., 1989, Ventricular function and fatty acid metabolism in neonatal piglet heart, Am. J. Physiol. 256:H9–H15.

    PubMed  CAS  Google Scholar 

  82. Tetrick, M.A., Adams, S.H., Odle, J., and Benevenga, N.J., 1995, Contribution of D-(-)-3-hydroxy-butyrate to the energy expenditure of neonatal pigs, J. Nutr. 125:264–272.

    PubMed  CAS  Google Scholar 

  83. Cornblath, M., 1968, Neonatal hypoglycemia, in: Fetal Homeostasis, 4 (R.M. Wynn, ed.), Century Crofts, New York, pp. 122–131.

    Google Scholar 

  84. Bruegger, S.J., and Conrad, J.H., 1972, Effects of orally adminitred albumin and corn oil, on blood constituents, survival and weight gain in neonatal pig, J. Anim. Sci. 34:411–415.

    PubMed  CAS  Google Scholar 

  85. Bieber, L.L., Helmrath, T., Dolanski, E.A., Olgaard, M.K., and Belanger, L.L., 1979, Gluconeogenesis in neonatal piglet liver, J. Anim. Sci. 49:250–257.

    PubMed  CAS  Google Scholar 

  86. Lepine, A.J., Boyd, R.D., Welch, J.A., and Roneker, K.R., 1989, Effect of colostrum or medium-chain triglyceride supplementation in the pattern of plasma glucose, non-esterified fatty acids and survival of neonatal pigs, J. Anim. Sci. 67:983–990.

    PubMed  CAS  Google Scholar 

  87. Odle, J., Benevenga, N.J., and Crenshaw, T.D., 1989, Utilisation of medium-chain triglycerides by neonatal piglets. II Effects of even-and odd-chain triglyceride consumption over the first two days of life on blood metabolites and urinary nitrogen excretion, J. Anim. Sci. 67:3340–3351.

    PubMed  CAS  Google Scholar 

  88. Pégorier, J.P., Simoes-Nunes, C., Duée, P.H., Peret, J., and Girard, J., 1985, Effects of intragastric triglyceride administration on glucose homeostasis in newborn pigs, Am. J. Physiol. 249:E268–E275.

    PubMed  Google Scholar 

  89. Wieland, O.H., 1983, The mammalian pyruvate dehydrogenase complex: structure and regulation, Rev. Physiol. Biochem. Pharmacol. 96:123–170.

    Article  PubMed  CAS  Google Scholar 

  90. Bloom, S.R., and Johnston, D.I., 1972, Failure of glucagon release in infants of diabetic mothers, Br. Med. J. 4:453–454.

    Article  PubMed  CAS  Google Scholar 

  91. Kalhan, S.C., Savin, S.M., and Adam, P.A.J., 1977, Attenuated glucose production rate in newborn infants of infants of insulin-dependent diabetic mothers, N. Engl. J. Med. 296:375–376.

    Article  PubMed  CAS  Google Scholar 

  92. Kollee, L.A., Monnens, L.A., Cezka, V., and Wilms, R.H., 1978, Persitent neonatal hypoglycemia due to glucagon deficiency, Arch. Dis. Child. 53:422–424.

    Article  PubMed  CAS  Google Scholar 

  93. Denne, S.C., and Kalhan, S.C., 1986, Glucose carbon recycling and oxidation in human newborns, Am. J. Physiol. 251:E71–E77.

    PubMed  CAS  Google Scholar 

  94. Bougneres, P.F., 1987, Stable isotopes tracers and the determination of fuel fluxes in newborn infants, Biol Neonate 52(Suppl 1):87–96.

    PubMed  CAS  Google Scholar 

  95. Patel, D., and Kalhan, S.C., 1992, Glycerol metabolism and triglyceride-fatty acid cycling in the human newborn. Effect of maternal diabetes and intrauterine growth retardation, Pediat. Res. 31:52–58.

    Article  PubMed  CAS  Google Scholar 

  96. Bougnères, P.F., Rocchiccioli, F., Nurjhan, N., and Zeller, J., 1995, Stable isotope determination of plasma lactate conversion into glucose in fasting infants, Am. J. Physiol. 268:E652–E659.

    PubMed  Google Scholar 

  97. Bougnères, P.F., Lemmel, C., Ferré, P., and Bier, D.M., 1986, Ketone body transport in the human neonate and infant, J. Clin. Invest. 77:42–48.

    Article  PubMed  Google Scholar 

  98. De Boissieu, D., Rocchiccioli, F., Kalach, N., and Bougneres, P.F., 1995, Ketone body turnover at term and in premature newborns in the first two weeks after birth, Biol. Neonate 67:84–93.

    Article  PubMed  Google Scholar 

  99. Wilkinson, A.W., 1969, The starving newborn baby, Proc. Nutr. Soc. 28:61–66.

    Article  PubMed  CAS  Google Scholar 

  100. Haymond, M.W., Karl, I., and Pagliara, A.S., 1974, Increased gluconeogenesis substrates in the small-for-gestational age infant, N. Engl. J. Med. 291:322–328.

    Article  PubMed  CAS  Google Scholar 

  101. Mestyan, J., Soltesz, G., Schultz, K., and M.H., 1975, Hyperaminoacidemia due to accumulation of gluconeogenic amino acid precursors in hypoglycemic small-for gestational age infants, J. Pediatr 87:409–414.

    Article  PubMed  CAS  Google Scholar 

  102. Säbel, K.G., Olegard, R., Meilander, M., and Hildingsson, K., 1982, Interrelation between fatty acid oxidation and control of gluconeogenic substrates in small for gestational age (SGA) infants with hypoglycemia and with normoglycemia, Acta Paed. Scand. 71:53–61.

    Article  Google Scholar 

  103. Bougneres, P.F., Castano, L., Rocchiccioli, F., Pham Gia, H., Leluyer, B., and Ferré, P., 1989, Medium chain fatty acids increase glucose production in normal and low birth weight newborns, Am. J. Physiol. 256:E692–E697.

    PubMed  CAS  Google Scholar 

  104. Sann, L., 1990, Neonatal hypoglycemia, Biol. Neonate 58(Suppl 1): 16–21.

    PubMed  Google Scholar 

  105. Bougnères, P.F., Saudubray, J.M., Marsac, C., Bernard, O., Odievre, M., and Girard, J., 1980, Decreased ketogenesis due to deficiency of hepatic carnitine acyltransferase, N. Engl. J. Med. 302:123–124.

    PubMed  Google Scholar 

  106. Saudubray, J.M., Coudé, F.X., Demaugre, F., Johnson, C., Gibson, K.M., and Nyhan, W.L., 1982, Oxidation of fatty acids in cultured fibroblasts: a model system for the detection and study of defects in oxidation, Pediatr. Res. 16:877–881.

    Article  PubMed  CAS  Google Scholar 

  107. Bougnères, P.F., Saudubray, J.M., Marsac, C., Bernard, O., Odievre, M., and Girard, J., 1981, Fasting hypoglycemia resulting from carnitine palmitoyltransferase deficiency, J. Pediatrics 98:742–746.

    Article  Google Scholar 

  108. Demaugre, F., Bonnefont, J.P., Mitchell, G., Nguyen-Hoang, N., Pelet, A., Rimoldi, M., Di Donato, S., and Saudubray, J.M., 1988, Hepatic and muscular presentations of carnitine palmitopyltransferase deficiency: two distinct entities, Pediatr. Res. 24:308–312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duee, PH., Pegorier, JP., Darcy-Vrillon, B., Girard, J. (1996). Glucose and Fatty Acid Metabolism in the Newborn Pig. In: Tumbleson, M.E., Schook, L.B. (eds) Advances in Swine in Biomedical Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5885-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5885-9_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7699-6

  • Online ISBN: 978-1-4615-5885-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics