Skip to main content

Part of the book series: Endocrine Updates ((ENDO,volume 7))

Abstract

Since the introduction of radioactive 131I and the success achieved in imaging of the thyroid there has been great interest in the development of agents for localization of other endocrine glands. The scintigraphic imaging of the adrenal glands spans an almost 4 decade interval during which high resolution computed tomography (CT), magnetic resonance imaging (MRI) and sensitive hormone analyses have been developed and are now often taken for granted in our modern, medical imaging environment. Despite their advancing age and relative lack of high spatial resolution, even the oldest adrenal scintigraphic techniques continue to provide clinically useful information that is often complimentary, unique and not duplicated by other more contemporary, high resolution, imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shapiro B, Gross MD. Adrenocortical Scintigraphy. (Chapter 64) In: Murray PS, Ell ICP (editors), Nuclear Medicine in clinical diagnosis and treatment (Volume 2), Churchill Livingston, Edinburgh UK, 1994, p. 737.

    Google Scholar 

  2. Gross MD, Falke THM, Shapiro B, Sandler MD. Adrenal glands. In: Sandler MD, Patton JA, Gross MD, Shapiro B, Falke THM, (editors), Endocrine Imaging, Appleton and Lange, Connecticut, 1992, p. 271.

    Google Scholar 

  3. Gross MD, Shapiro B, Bouffard JA, et al. Distinguishing benign from malignant euadrenal masses. Ann Int Med. 1988;109:613.

    PubMed  CAS  Google Scholar 

  4. Shapiro B, Fig LM, Gross MD„ Khafagi F. Radiochemical diagnosis of adrenal disease. Crit Rev Clin Lab Sci. 1989;27:265.

    Article  PubMed  CAS  Google Scholar 

  5. Lynn MD, Gross MD, Shapiro B. Entero-hepatic circulation and distribution of I-131-6-iodomethyl-19-norcholesterol (NP-59). Nucl Med Comm. 1986;7:625.

    Article  CAS  Google Scholar 

  6. Hawkins LA, Britton KE, Shapiro B. Selenium 75 selenomethyl cholesterol: A new agent for quantitative functional scintigraphy of the adrenals: Physical aspects. Brit J Radiol. 1980;53:833.

    Article  Google Scholar 

  7. Shapiro B, Britton KE, Hawkins LA, Edwards CE. Clinical experience with 75 Se-selenomethyl-cholesterol adrenal imaging. Clin Endocrinol. 1981;15:19.

    Article  CAS  Google Scholar 

  8. Liu B-L, Jin Y-T, Pan Z-Y, Minora M, Masaharu K. Radiobromine labeled cholesterol analogs; synthesis and tissue distribution of Bromine 82 labeled 6 Bromocholesterol. J Labl Comp Radiopharm. 1982;19:1089.

    Article  Google Scholar 

  9. Hay RV, Flemming RM, Ryan JW, et al. Nuclear Imaging analysis of human low density lipoprotein biodistribution in rabbits and monkeys. J Nucl Med. 1991;32:1239.

    PubMed  CAS  Google Scholar 

  10. Hay RV, Ryan JW, Williams KA, et al. Biodistribution parameters and radiation absorbed close estimates for radiolabeled human low density lipoprotein. In: Watson, EE, Schlafke-Stelson, AT (editors), Fifth International Radiopharmaceutical Dosimetry Symposium Proceedings of Oak Ridge Tennessee Conference May 7–10, 1991, US Department of Energy, 1992, p. 256.

    Google Scholar 

  11. Isaacsohn JL, Lees AM, Lees RS, Strauss HW, Barlai-Kovach M, Moore TJ. Adrenal Imaging with Technetium-99m-labeled low density lipoproteins. Metabolism 1986;35:364.

    Article  PubMed  CAS  Google Scholar 

  12. Boland GN, Goldberg MA, Lee MJ, et al. Intermediate adrenal mass in patients with cancer: evaluation at PET with 2[F-18]-fluoro-2-dioxy-D-glucose. Radiology 1995;194:131.

    PubMed  CAS  Google Scholar 

  13. Bergstrom M, Bonasera TA, Bergstrom E, Backlin C, Juhlin C, Langstrom B. In vivo and in vitro primate evaluation of carbon 11-etiomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med. 1998;39:982.

    PubMed  CAS  Google Scholar 

  14. Gross MD, Walk TW, Swanson DP, et al. The role of pharmacologic manipulation in adrenal cortical scintigraphy. Semin Nucl Med. 1981;9:128.

    Google Scholar 

  15. Gross MD, Shapiro B, Beierwaltes WH. Functional characterization of the adrenal gland by quantitative scintigraphy. In: Winshell S, Lawrence J (editors), Recent Adv Nucl Med. Academic Press, 1983;6:83.

    Google Scholar 

  16. Shapiro B, Nakajo M, Gross MD, Freitas JE, Copp JE, Beierwaltes WH. Value of bowel preparation in adrenocortical scintigraphy with NP-59. J Nucl Med. 1983;24:732.

    PubMed  CAS  Google Scholar 

  17. Fig LM, Gross MD, Shapiro B, et al. Adrenal localization in ACTH-independent Cushing’s syndrome. Ann Intern Med. 1988;109:547.

    PubMed  CAS  Google Scholar 

  18. Francis IR, Korobkin M, Quint L, Gross MD, Shapiro B. Integrated imaging of adrenal disease. Radiology 1992;182:1.

    Google Scholar 

  19. Gross MD, Thompson NW, Beierwaltes WH: Scintigraphic approach to the localization of adrenal lesions causing hypertension. Urologie Radiology 1982;3:241.

    Article  CAS  Google Scholar 

  20. Gross MD, Shapiro B, Grekin RJ, et al. The scintigraphic localization of the adrenal lesion in primary aldosteronism. Am J Med. 1984;77:839.

    Article  PubMed  CAS  Google Scholar 

  21. Mountz EM, Gross MD, Shapiro B, et al. Scintigraphic localization of ovarian dysfunction I-131-6-ß-iodomethyl-norcholesterol (NP-59). J Nucl Med. 1988;29:1644.

    PubMed  CAS  Google Scholar 

  22. Shapiro B, Gross MD. Functional imaging of the adrenal cortex. In: Bhatt HR, James VHT, Besser GM, Bottazzo GF, Keen H (editors). Advances in Thomas Addison’s Diseases: Clinical developments in adrenal cortical disease and vitamin B12 deficiency (Volume 1), The Society for Endocrinology and the Thomas Addison Society, Page Brothers, Norwich, UK, 1994, p. 143.

    Google Scholar 

  23. Kloos RT, Gross MD, Francis IR, Korobkin M, Shapiro B. Incidentally discovered adrenal masses. Endocr Rev. 1995;16:460.

    PubMed  CAS  Google Scholar 

  24. Gross MD, Shapiro B, Francis IR, Glazer GM, et al. Scintigraphic evaluation of clinically silent adrenal masses. J Nucl Med. 1994;35:1145.

    PubMed  CAS  Google Scholar 

  25. Gross MD, Shapiro B, Francis IR, Bree RI, et al. Incidentally discovered bilateral adrenal masses. Eur J Nucl Med. 1995;22:315.

    Article  PubMed  CAS  Google Scholar 

  26. Kloos RT, Gross MD, Shapiro B, Francis IR, et al. The diagnostic dilemma of small incidentally discovered adrenal masses: a role for 131I-6ß-Iodomethyl-norcholesterol (NP-59) scintigraphy. World J Surgery. 1997;21:36.

    Article  CAS  Google Scholar 

  27. Dwamena B, Kloos RT, Fendrick AM, Gross MD, et al. Diagnostic evaluation of the adrenal incidentaloma decision and cost effectiveness analyses. J Nucl Med. 1998;39:707.

    PubMed  CAS  Google Scholar 

  28. Lieberman LM, Beierwaltes WH, Varma VM, Weinhold P, Ling R. Labeled dopamine concentration in human adrenal medulla and in neuroblastoma. J Nucl Med. 1969;10:93.

    PubMed  CAS  Google Scholar 

  29. Yu T, Wieland DM, Brown LE, Beierwaltes WH. Synthesis of radiolabeled inhibitors of phenylethanol-amine-N-methyltransferase. J Labeled Compd. 1979;16:173.

    CAS  Google Scholar 

  30. Korn N, Buswink A, Yu T, Carr EA, Carroll M, Counsell RE. A radioiodinated bretylium analog as a potential agent for scanning the adrenal medulla. J Nucl Med. 1977;18:87.

    PubMed  CAS  Google Scholar 

  31. Wieland DM, Wu JL, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron blocking agents: Adrenal medulla imaging with (131I) iodobenzylguanidine. J Nucl Med. 1980;21:349.

    PubMed  CAS  Google Scholar 

  32. Wieland DM, Brown LE, Tobes MD, et al. Imaging the primate adrenal medulla with 123I and 131I metaiodobenzylguanidine. J Nucl Med. 1981;22:358.

    PubMed  CAS  Google Scholar 

  33. Sisson JD, Frager MS, Valk TW, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med. 1981;305:12.

    Article  PubMed  CAS  Google Scholar 

  34. Valk TW, Frager MS, Gross MD, et al. Spectrum of pheochromocytoma in multiple endocrine neoplasia: A scintigraphic portrayal using 131-I-metaiodobenzylguanidine. Ann Intern Med. 1981;94:762.

    PubMed  CAS  Google Scholar 

  35. Nakajo M, Shapiro B, Copp J, et al: The normal and abnormal distribution of the adrenomedullary imaging agent I-131-metaiodobenzylguanidine (131I-MIBG) in man: Evaluation by scintigraphy. J Nucl Med. 1983;24:672.

    PubMed  CAS  Google Scholar 

  36. Shapiro B, Wieland DM, Brown, LE, Nakajo M, Sisson JC, Beierwaltes WH. 131I-meta-iodobenzylguanidine. (MIBG) adrenal medullary scintigraphy: interventional studies. In: Spencer RP, ed. Interventional Nuclear Medicine. New York: Grune, Stratton, p. 451, 1983.

    Google Scholar 

  37. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med. 1989;30:481.

    PubMed  CAS  Google Scholar 

  38. Schwaiger M, Kalff V, Rosenspire KC, et al. The noninvasive evaluation of the sympathetic nervous system in the human heart by PET. Circulation 1990;82:457.

    Article  PubMed  CAS  Google Scholar 

  39. Shulkin BL, Wieland DM, Schwaiger M, et al. PET scanning with hydroxy epinephrine: An approach to the localization of pheochromocytoma. J Nucl Med. 1992;33:1125.

    PubMed  CAS  Google Scholar 

  40. Chakraborty PK, Gildersleeve DL, Jewett DM., et al. High yield synthesis of high specific activity R-(−) {11C}16 epinephrine for routine PET studies in humans. Nucl Med Biol. 1993;20:939.

    Article  PubMed  CAS  Google Scholar 

  41. Shapiro B, Sisson JC, Beierwaltes WH. Experience with the use of 131-I-metaiodobenzylguanidine for locating pheochromocytomas. In: Raynaud C, ed. Nuclear Medicine and Biology. Vol. II. Paris: Pergamon Press, 1982: p. 1265.

    Google Scholar 

  42. Lynn MD, Shapiro B, Sisson JC, et al. Portrayal of pheochromocytoma and normal human adrenal medulla by 123I-metaiodobenzylguanidine 123I-MIBG. J Nucl Med. 1984;25:436.

    PubMed  CAS  Google Scholar 

  43. Manger W, Gifford RW Current concepts of pheochromocytoma. Cardiovasc Med. 1978;12:289.

    Google Scholar 

  44. Shapiro B, Sisson JC, Kalff V, et al. The location of middle mediastinal pheochromocytomas. J Thorac Cardiovasc Surg. 1984;87:814.

    PubMed  CAS  Google Scholar 

  45. Shapiro B, Sisson JC, Lloyd RV, et al. A newly described type of familial pheochromocytoma: Fulfilling the possibilities. Clin Res. 1982;30:721A.

    Google Scholar 

  46. Shapiro B, Sisson JC, Lloyd R, Satterlee W, Beierwaltes WH. Malignant pheochromocytoma: Clinical, biochemical and scintigraphic characterization. Clin Endocrinol. 1984;20:189.

    Article  CAS  Google Scholar 

  47. Sisson JD, Shapiro B, Beierwaltes WH et al. Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med. 1984;25:197.

    PubMed  CAS  Google Scholar 

  48. Kalff V, Shapiro B, Lloyd R, et al. The spectrum of pheochromocytoma in hypertensive patients with neurofibromatosis. Arch Intern Med. 1982;142:2092.

    Article  PubMed  CAS  Google Scholar 

  49. Shulkin BL, Shapiro B, Radioiodinated metaiodobenzylguanidine in the management of neuroblastoma. In: Pochedly C, ed. Neuroblastoma. Boca Raton, FL: CRC Press, 1990: p. 171.

    Google Scholar 

  50. Shulkin Bl, Wieland DM, Baro ME, et al. PET studies of neuroblastoma with carbon 11-hydroxyephedrine. J Nucl Med. 1993;33:220.

    Google Scholar 

  51. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WAP, et al. Somatostatin receptor scintigraphy with [111In-DTPA-d-Phe1] and 123-I-Tyr3 — octreotide: The Rotterdam experience with more than 1,000 patients. Eur J Nucl Med. 1994;21:545.

    Google Scholar 

  52. Hoefnagel CA Metaiodobenzylguanidine and somatostatin in oncology: Role in the management of neural crest tumors. Eur J Nucl Med. 1994;21:561.

    PubMed  CAS  Google Scholar 

  53. Stolz B, Weckbecker G, Smith-Jones PM, Albert R, Raulf F, Bruns, C. The somatostatin receptor-targeted radiotherapeutic [90Y-DOTA-d-Phel,Tyr3] octreotide (90Y-SMT 487) eradicates experimental rat pancreatic tumors. Eur J Nucl Med. 1998;25:668.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gross, M.D., Shapiro, B., Shreve, P., Shulkin, B.I. (2000). Scintigraphy of Adrenal Disorders. In: de Herder, W.W. (eds) Functional and Morphological Imaging of the Endocrine System. Endocrine Updates, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4341-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4341-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6950-9

  • Online ISBN: 978-1-4615-4341-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics