Skip to main content

PEST sequences in calmodulin-binding proteins

  • Chapter
Signal Transduction Mechanisms

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 15))

Abstract

Many short-lived proteins which are devoid of proteolytic activity contain PEST sequences which are segments along the polypeptide chain that are rich in proline (P), glutamate (E), serine (S) and threonine (T). These designated PEST sequences are believed to be putative intramolecular signals for rapid proteolytic degradation. Calmodulin is a ubiquitous, 17 kDa, acidic Ca2+-binding protein which plays an important role in the regulation of many physiological processes through its interaction with a wide range of calmodulin-binding proteins. Several calmodulin-binding proteins are known to contain PEST sequences and are susceptible to proteolysis by endogenous neutral proteases such as calpain I and calpain II. In this report, we discuss the functions of PEST sequences in calmodulin-binding proteins and assess the correlation between calmodulin-binding proteins and PEST sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cohen C: Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci 17: 408–413, 1992

    Article  PubMed  CAS  Google Scholar 

  2. Taylor CW, Marshall ICB: Calcium and inositol 1,4,5-triphosphate receptors: a complex relationship. Trends Biochem Sci 67: 403–407, 1992

    Article  Google Scholar 

  3. Dunn LA, Holz RW: Catecholamine secretion by digitonin-treated adrenal medullary chromaffin cells. J Biol Chem 258: 4989–4993, 1983

    PubMed  CAS  Google Scholar 

  4. Walsh MP: Calcium-dependent mechanisms of regulation of smooth muscle contraction. Biochem Cell Biol 69: 771–800, 1991

    Article  PubMed  CAS  Google Scholar 

  5. Wang YP, Fuchs F: Length, force and Ca(2+)-troponin-C affinity in cardiac and slow skeletal muscle. Amer J Physiol 266:1077–1082, 1994

    Google Scholar 

  6. Burgoyne RD, Geisow MJ: The annexin family of calcium-binding proteins. Cell Calcium 10: 1–10, 1989

    Article  PubMed  CAS  Google Scholar 

  7. Babu YS, Bugg CE, Cook WJ: Structure of Calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204, 1988

    Article  PubMed  CAS  Google Scholar 

  8. daSilva ACR, Reinach FC: Calcium binding induces conformational changes in muscle regulatory proteins. Trends Biochem Sci 16: 53–57, 1991

    Article  Google Scholar 

  9. Baimbridge KG, Celio MR, Rogers JH: Calcium-binding proteins in the nervous system. Trends Neuroscience 8: 303–308, 1992

    Article  Google Scholar 

  10. Kretsinger RH, Rudhick SE, Weissman LJ: Crystal structure of calmodulin. J Inorg Biochem 28: 289–302, 1986

    Article  PubMed  CAS  Google Scholar 

  11. Seller JR, Adelstein RS: Regulation of contractile activity in: The enzymes XVIII Academic Press, New York 381–418, 1986

    Google Scholar 

  12. Knowles R-G, Moncada S: Nitric oxide as a signal in blood vessels. Trends Biochem Sci 17: 399–402, 1992

    Article  PubMed  CAS  Google Scholar 

  13. Blackshear PJ, Nairn AC, Kuo JF: Protein kinases 1988: a current perspective. FASEB J 2:2957–2969, 1988

    PubMed  CAS  Google Scholar 

  14. Klee CB, Vannaman TC: Calmodulin. Adv Prot Chem 35: 213–321, 1982

    Article  CAS  Google Scholar 

  15. Silva AJ, Stevens CF, Tonegawa S, Wang Y: Deficient hippocampal long-term potentiation in a-calcium calmodulin kinase II mutant mice. Science 257: 201–206, 1992

    Article  PubMed  CAS  Google Scholar 

  16. Silva AJ, Paylor S. Wehwer JM, Tonegawa S: Impaired spatial learning in a-calcium-calmodulin kinase II mutant mice. Science 257: 206–211, 1992

    Article  PubMed  CAS  Google Scholar 

  17. O’Neal KT, De Grado WF: How calmodulin binds its target:sequence independent recognition of amphiphilic a-helices. Trends Biochem Sci 15: 59–64, 1990

    Article  Google Scholar 

  18. Dice JF: Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15: 305–309, 1990

    Article  PubMed  CAS  Google Scholar 

  19. Doherty FJ, Mayer RJ: Molecular recognition and intracellular proteolysis. In Intracellular Protein Degradation. Oxford University Press pp 33–42, 1992

    Google Scholar 

  20. Doherty FJ, Mayer RJ: The mechanisms-pathways of intracellular proteolysis. In Intracellular Protein Degradation. Oxford University Press pp 15–32, 1992

    Google Scholar 

  21. Hershiko A: Ubiquitin-mediated protein degradation. J Biol Chem 263: 15237–15240, 1988

    Google Scholar 

  22. Martin SJ, Green DR, Cotter TG: Dicing with death: Dissecting the components of the apoptosis machinery. Trends Biol Sci 19: 26–30, 1994

    Article  CAS  Google Scholar 

  23. Wang KKW, Villalobo A, Roufogalis BD: Calmodulin-binding proteins as calpain substrates. Biochem J 262: 693–706, 1989

    PubMed  CAS  Google Scholar 

  24. Rechsteiner M: Regulation of enzyme levels by proteolysis: the role of PEST regions. Adv Enzyme Regul 27: 135–151, 1988

    Article  PubMed  CAS  Google Scholar 

  25. Rogers S, Wells R, Rechsteiner M: Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368, 1986

    Article  PubMed  CAS  Google Scholar 

  26. Wang KK, Villalobo A, Roufogalis BD: Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+-dependent neutral protease. Arch Biochem Biophys 260: 696–704, 1988

    Article  PubMed  CAS  Google Scholar 

  27. Wallace RW, Tallantea, McManus MC: Human platelet calmodulin binding proteins: identification and Ca2+-dependent proteolysis upon platelet activation. Biochemistry 26: 2766–2773, 1987

    Article  PubMed  CAS  Google Scholar 

  28. Croall DE, Demartino GN: Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 71: 813–847, 1991

    PubMed  CAS  Google Scholar 

  29. Litersky JM, Scott CW, Johnson GV: Phosphorylation, calpain proteolysis and tubulin binding of recombinant tau isoforms. Brain Res 604: 32–40, 1993

    Article  PubMed  CAS  Google Scholar 

  30. Greenwood JA, Troncoso JC, Costello AC Johnson GVW: Phosphorylation modulates calpain-mediated proteolysis and calmodulin binding of the 200-kDa and 160-kDa neurofilament protein. J Neurochem 61: 191–199, 1993

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki K: Calcium activated neutral protease: domain structure and activity regulation. Trends Biochem Sci 12: 103–105, 1987

    Article  CAS  Google Scholar 

  32. Rechsteiner M: PEST sequences are signals for rapid intracellular proteolysis. Seminars Cell Biol 1: 433–440, 1990

    CAS  Google Scholar 

  33. Brautigan DL, Sunwoo J, Labbe J-C, Fernandez A, Lamb NJC: Cell cycle oscillation of phosphatase inhibitor-2 in rat fibroblasts coincident with p34cdc2 restriction. Nature 344: 74–78, 1990

    Article  PubMed  CAS  Google Scholar 

  34. Phillips MA, Coffino P, Wang CC: Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. J Biol Chem 262: 8721–8727, 1987

    PubMed  CAS  Google Scholar 

  35. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T: Cyclin:a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33: 389–396, 1983

    Article  PubMed  CAS  Google Scholar 

  36. Ghoda L, Van Daalen Wetters T, Macrae M, Ascherman D, Coffino P: Carboxyl-terminal truncation prevents rapid intracellular degradation of ornithine decarboxylase. Science 243: 1493–1495, 1989

    Article  PubMed  CAS  Google Scholar 

  37. Hochstrasser M, Varshavsky A: In vivo degradation of a transcriptional regulator: the yeast α2 repressor. Cell 61: 697–708, 1990

    CAS  Google Scholar 

  38. Oren M, Maltzman W, Levine AJ: Post-translational regulation of the 54K cellular tumour antigen in normal and transformed cells. Mol Cell Biol 1: 101–110, 1982

    Google Scholar 

  39. Woodgett JR, Hunter T: Immunological evidence for two physiological forms of protein kinase C. Mol Cell Biol 7: 85–96, 1987

    PubMed  CAS  Google Scholar 

  40. Hemmings BA: Regulation of cAMP-dependent protein kinase in cultured cells. Curr Top Cell Regul 27: 117–132, 1985

    PubMed  CAS  Google Scholar 

  41. McCurdy DW, Pratt LH: Immunogold electron microscopy of the phytochrome in Avena: Identification of intracellular sites responsible for phytochrome sequestering and enhanced pelletability. J Cell Biol 103: 2541–2550, 1986

    Article  PubMed  CAS  Google Scholar 

  42. Jones EW: The synthesis and function of proteases in Saccharomyces:genetic approaches. Annu Rev Genet 18: 233–270, 1984

    Article  PubMed  CAS  Google Scholar 

  43. Pakdel F, Le Goff P, Katzenellenbogen BS: An assessment of the role of domain F and PEST sequences in estrogen receptor half-life and bioactivity. J Steroid Biochem Mol Biol 46: 663–672, 1993

    Article  PubMed  CAS  Google Scholar 

  44. Puca GA, Noia E, Sica V, Bresciani F: Estrogen binding proteins of calf uterus. Molecular and functional characterization of the receptor transforming factor: a Ca2+-activated protease. J Biol Chem 252:1358–1466, 1977

    CAS  Google Scholar 

  45. Barnes JA, King MJ, Kalra J, Sharma RK: Novel bovine calmodulin-dependent protein kinase which phosphorylates a high molecular weight calmodulin-binding protein. Biochem Biophys Res Commun 186: 819–826, 1992

    Article  PubMed  CAS  Google Scholar 

  46. Kishimoto A, Kajikawa N, Shiota M, Nishizuka Y: Proteolytic activation of calcium-activated, phospholipid dependent protein kinase by calcium-dependent neutral protease. J Biol Chem 258: 1156–1164, 1983

    PubMed  CAS  Google Scholar 

  47. James PT, Vorherr T, Krebs J, Morelli A, Costello G, McCormick DJ, Penniston JT, Deflora A, Carafoli E: Modulation of erythrocyte Ca2+-ATPase by selective calpain cleavage of the calmodulin-binding domain. J Biol Chem 264: 8289–8296, 1989

    PubMed  CAS  Google Scholar 

  48. Sasaki T, Kikuchi T, Yumoto N, Yoshimura N, Murachi T: Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occuring peptides and synthetic fluorogenic substrates. J Biol Chem 259: 12489–12494, 1984

    PubMed  CAS  Google Scholar 

  49. Charbonneau H, Kumar S, Novack JP, Blumenthal DK, Griffin PR, Shabanowitz J, et al. Evidence for domain organization within the 61-kDa Calmodulin dependent cyclic nucleotide phosphodiesterase from bovine brain. Biochemistry 30: 7931–7940, 1991

    Article  PubMed  CAS  Google Scholar 

  50. Picciotto MR, Czernik AJ, Nairn AC: Calcium/Calmodulin-dependent Protein Kinase I. J Biol Chem 268: 26512–26521, 1993

    PubMed  CAS  Google Scholar 

  51. Tobimatsu T, Kameshita I, Fujisawa H: Molecular cloning of the cDNA encoding the third polypeptide (γ) of brain calmodulin-dependent protein kinase II. J Biol Chem 263: 16082–16086, 1988

    PubMed  CAS  Google Scholar 

  52. Means AR, Cruzalegui F, LeMagueresse B, Needleman DS, Slaughter GR, Ono T: Anovel Ca2+ /calmodulin-dependent protein kinase and a male germ cell-specific calmodulin-binding protein are derived from the same gene. Mol Cell Biol 11: 3960–3971, 1991

    PubMed  CAS  Google Scholar 

  53. Takazawa K, Erneux C: Identification of residues essential for catalysis and binding of calmodulin in rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J 280: 125–129, 1991

    PubMed  CAS  Google Scholar 

  54. Poorman RA, Randolph A, Kemp RG, Heinrikson RL: Evolution of phosphofructokinase-gene duplication and creation of new effector sites. Nature: 309,467–469, 1984

    CAS  Google Scholar 

  55. Ohmstede C, Jensen KF Sahyoun NE: Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells: Identification of a novel neuronal calmodulin-dependent protein kinase. J Biol Chem 264: 5866–5875, 1989

    PubMed  CAS  Google Scholar 

  56. Takio K, Smith SB, Krebs EG, Walsh KA, Titani K: Amino acid sequence of the regulatory subunit of bovine type II adenosine cyclic 3’,5’-phosphate dependent protein kinase. Biochemistry 23: 4200–4206, 1984

    Article  PubMed  CAS  Google Scholar 

  57. Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H: A plant glutamate decarboxylase containing a calmodulin binding domain. J Biol Chem 268: 19610–19617, 1993

    PubMed  CAS  Google Scholar 

  58. Kincaid RL, Nightingale MS, Martin BM: Characterization of a cDNA encoding the calmodulin-binding domain of mouse brain calcineurin. Proc Natl Acad Sci 85: 8983–8987, 1988

    Article  PubMed  CAS  Google Scholar 

  59. Orlowski J, Kandasamy RA, Shull GE: Molecular cloning of putative members of the Na/H exchange family: cDNA cloning, deduced amino acid sequence and mRNA tissue expression of the rat Na/H exchanger NHE-1 and two structurally related proteins. J Biol Chem 267: 9331–9339, 1992

    PubMed  CAS  Google Scholar 

  60. Nunokawa Y, Ishida N, Tanaka S: Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem Biophys Res Commun 191: 89–94, 1993

    Article  PubMed  CAS  Google Scholar 

  61. Joshi R, Gilligan DM, Otto E, McLaughlin T, Bennett V: Primary structure and domain organization of human alpha and beta adducin. J Cell Biol 115: 665–675, 1991

    Article  PubMed  CAS  Google Scholar 

  62. Hayashi K, Kanda K, Kimiwka F, Kato I, Sobue K: Primary structure and functional expression of h-caldesmon complementary DNA Biochem Biophys Res Commun 164: 503–511, 1989

    Article  CAS  Google Scholar 

  63. Ono T, Slaughter GR, Cook RG, Means AR: Molecular cloning sequence and distribution of rat calspermin a high affinity calmodulin-binding protein. J Biol Chem 264: 2081–2087, 1989

    PubMed  CAS  Google Scholar 

  64. Culic O, Huang Q-H, Flanagan D, Hixson D, Lin S-H: Molecular cloning and expression of a new rat liver cell-CAM 105 isoform. Differential phosphorylation of isoforms. Bichem J: 285, 47–53, 1992

    CAS  Google Scholar 

  65. lacangelo A, Affolter HU, Eiden LE, Herbert E, Grimes M: Bovine chromogranin A sequence and tissue distribution of its messenger RNA in endocrine tissues. Nature 323: 82–86, 1986

    Article  Google Scholar 

  66. Gibbons IR, Gibbons BH, Mocz G, Asai DJ: Multiple nucleotide binding sites in the sequence of dynein heavy chain. Nature 352: 640–643, 1991

    Article  PubMed  CAS  Google Scholar 

  67. Moore KS, Kozak C, Robinson EA, Ullrich SJ, Appella E: Murine 86-and 84-kDa Heat Shock Protein, DNA sequences, chromosome assignments, and evolutionary Origins. J Biol Chem 264: 5343–5351, 1989

    PubMed  CAS  Google Scholar 

  68. Sekora JT, Ravetch, JV, Aderem A: Cloning and molecular characterization of the murine macrophage 68-kDa protein kinase C substrate and its regulation by bacterial lipopolysaccharide. Proc Natl Acad Sci USA 88: 2505–2509, 1991

    Article  Google Scholar 

  69. Baudier J, Deloulme JC, Van Dorsselaer A, Black D, Matthes HWD: Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p 17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain; J Biol Chem 266: 229–237, 1991

    PubMed  CAS  Google Scholar 

  70. Chapman ER, Au D, Alexander KA, Nicolson TA, Storm DR: Characterization of the calmodulin binding domain of neuromodulin. J Biol Chem 266: 207–213, 1991

    PubMed  CAS  Google Scholar 

  71. Maekawa S, Maekawa M, Hattori S, Nakamura S: Purification and molecular cloning of a novel acidic calmodulin-binding protein from rat brain. J Biol Chem 268: 13703–13709, 1993

    PubMed  CAS  Google Scholar 

  72. Winkelmann JC, Chang J-G, Tse WT, Scarpa AL, Marchesi VT, Forget BG: Full-length sequence of the cDNA for human erythroid b-spectrin. J Biol Chem 265: 11827–11832, 1990

    PubMed  CAS  Google Scholar 

  73. Shiraga H, Stallwood D, Ebadi M, Pfeiffer R, Landers D, Paul S: Inhibition of calmodulin-dependent myosin-light chain kinase by growth-hormone-releasing factor and vasoactive intestinal peptide. Biochem J 300: 901–905, 1994

    PubMed  CAS  Google Scholar 

  74. Dunaway G, Weber G: Effects of hormonal and nutritional changes on the rates of synthesis and degradation of hepatic phosphofructokinase isozyme. Arch Biochem Biophys 162: 629–637, 1974

    Article  PubMed  CAS  Google Scholar 

  75. Salamino F, De Tullio R, Mengotti P, Viotti PL, Melloni E, Pontremoli S: Site-directed activation of calpain is promoted by a membrane-associated natural activator protein. Biochem J 290: 191–197, 1993

    PubMed  CAS  Google Scholar 

  76. Maras B, Sweeney G, Barra D, Bossa F, John RA: The amino acid sequence of glutamate decarboxylase from Escherichia coli: Evolutionary relationship between Mammalian and bacterial enzymes. European J Biochem 204: 93–98, 1992

    Article  CAS  Google Scholar 

  77. Verma AK, Filoteo AG, Stanford DR, Wieben ED, Penniston JT, Strehler EE, et al: Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 263: 14152–14159, 1988

    PubMed  CAS  Google Scholar 

  78. MacLennan DH, Brandl CJ, Korczak B, Green NM: Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316: 696–700, 1985

    Article  PubMed  CAS  Google Scholar 

  79. Yui Y, Hattori R, Kosuga K, Eizawa H, Hiki K, Ohkawa S, Ohnishi K, Terao S, Kawai C: Calmodulin-independent nitric oxide synthase from rat polymorphonuclear neutrophils. J Biol Chem 266: 3369–3371, 1991

    PubMed  CAS  Google Scholar 

  80. Sessa WC, Barber CM, Lynch KR: Mutation of N-myristolyation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. Cir Res 72: 921–924, 1993

    Article  CAS  Google Scholar 

  81. Tallant EA, Brumley LM, Wallace RW: Activation of a calmodulin dependent phosphatase by a Ca2+-dependent protease. Biochemistry 27: 2205–2211, 1988

    Article  PubMed  CAS  Google Scholar 

  82. Seubert P, Baudry M, Dudek S, Lynch G: Calmodulin stimulates the degradation of brain spectrin by calpain. Synapse 1: 20–24, 1987

    Article  PubMed  CAS  Google Scholar 

  83. Kosaki G, Tsujinaka T, Kambayashi J, Morimoto K, Yamamoto K, Yamagami K, Sobue K, Kakiuchi S: Specific cleavage of calmodulin-binding proteins by low Ca2+-requiring form of Ca2+-activated neutral protease inhuman platelets. Biochem Int 6: 767–775, 1983

    PubMed  CAS  Google Scholar 

  84. Banik NL, Chou C-H, Deiber GE, Krutzch HC, Hogan EL: Peptide bond specificity of calpain: proteolysis of human myelin basic protein. J Neuroscience Res 37: 489–496, 1994

    Article  CAS  Google Scholar 

  85. Zimmerman U-JP, Schlaepfer W: Kinase activities associated with calcium-activated neutral proteases. Biochem Biophys Res Commun 120: 161–11 A, 1984

    Article  Google Scholar 

  86. McClelland P, Adam LP, Hathaway DR: Identification of a latent Ca2+ /calmodulin dependent protein kinase II phosphorylation site in vascular calpain II. J Biochem 115: 41–46, 1994

    PubMed  CAS  Google Scholar 

  87. Litersky JM, Johnson GVW: Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J Biol Chem 267: 1563–1568, 1992

    PubMed  CAS  Google Scholar 

  88. Chen M, Stracher A: In site phosphorylation of platelet actin-binding protein by cAMP-dependent protein kinase stabilizes it against proteolysis by calpain. J Biol Chem 264: 14282–14289, 1989

    PubMed  CAS  Google Scholar 

  89. Pontremoli S, Melloni E, Michetti M, Sparatore B, Salamino F, Sacco O, Horecker BL: Phosphorylation by protein kinase C of a 20-kDa cytoskeletal polypeptide enhances its susceptibility to digestion by calpain. Proc Natl Acad Sci USA 84: 398–401, 1987

    Article  PubMed  CAS  Google Scholar 

  90. Smith LK, Bradshaw M, Croall DE, Garner CW: The insulin receptor substrate (IRS-1) is a PEST protein that is susceptible to calpain degradation in vitro. Biochem Biophys Res Commun 196: 767–772, 1993

    Article  PubMed  CAS  Google Scholar 

  91. Yaglom J, Linskens MH, Sadis S, Rubin DM, Futcher B, Finley D: p34cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol 15: 731–741, 1995

    PubMed  CAS  Google Scholar 

  92. Salama SR, Hendricks KB, Thorner J: G1 cyclin degradation: The PEST Motif of Yeast Cln2 is necessary, but not sufficient for rapid protein turnover. Mol Cell Biol 14: 7953–7966, 1994

    PubMed  CAS  Google Scholar 

  93. Kornitzer D, Raboy B, Kulka RG, Fink GR: Regulated degradation of the transcription factor Gcn4. EMBO J 13: 6021–6030, 1994

    CAS  Google Scholar 

  94. Davies N, Lindsey GG: Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution. Biochim Biophys Acta 1218: 187–193, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barnes, J.A., Gomes, A.V. (1995). PEST sequences in calmodulin-binding proteins. In: Barnes, J.A., Coore, H.G., Mohammed, A.H., Sharma, R.K. (eds) Signal Transduction Mechanisms. Developments in Molecular and Cellular Biochemistry, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2015-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2015-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5833-6

  • Online ISBN: 978-1-4615-2015-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics