Skip to main content

Protein-Enriched Enteral Nutrition in Childhood Critical Illness

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

In the healthy child nutrition has a critical role to enable development and growth. By contrast, critically ill children primarily use nutrients to defend from disease, and even if a high-caloric intake is given, he/she may not be able to use it to grow. Therefore, nutritional treatment should aim to provide the appropriate quality and proportion of substrates that are necessary to enable the maintenance of normal organ function and recovery from the disease. The rationale for the need of an increased protein intake is based on two main reasons: the incidence of protein malnutrition in critically ill children is high, and protein catabolism is increased in these patients, leading to a negative net protein balance and loss of body mass.

It is not known what protein intake a critically ill child should receive. A protein intake between 2 and 3 g/Kg/day is recommended, based on the observation that a minimum protein intake of 1.5 g/Kg/day and 57 kcal/Kg/day is necessary to achieve a positive nitrogen balance. Enteral nutrition is better tolerated than parenteral, and therefore it should be the initial approach in most critically ill children. Enteral diets for infants and children contain an insufficient protein concentration when a restricted caloric intake is given as it usually occurs in the critically ill patient (50–60 % of calories in relation to their age). For this reason it is necessary to use high-protein nutritional products or to add protein supplements to the existing ones.

Some studies have found that protein-enriched diets increase protein synthesis and related biochemical parameters, availability of essential and branched amino acids in plasma, and improve nitrogen balance. However, broader studies are needed to assess the impact of diets supplemented with proteins in anthropometric, biochemical, and clinical parameters in critically ill children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Amino acids

ASPEN:

American Society for Parenteral and Enteral Nutrition

EE:

Energy expenditure

IC:

Indirect calorimetry

NB:

Nitrogen balance

PICU:

Pediatric intensive care unit

RBP:

Retinol-binding protein

TEN:

Total enteral nutrition

TPN:

Total parenteral nutrition

References

  • Acosta JA. Valoración del Estado Nutricional en el Paciente Grave. In: Libro Electrónico Medicina Intensiva. Madrid; 2008. Available online: http://intensivos.uninet.edu/06/0601.html. Accessed 16 Nov 2011.

  • Agus MS, Javid PJ, Piper HG, Wypij D, Duggan CP, Ryan DP, et al. The effect of insulin infusion upon protein metabolism in neonates on extracorporeal life support. Ann Surg. 2006;244:536–44.

    PubMed Central  PubMed  Google Scholar 

  • Bechard LJ, Parrott JS, Mehta NM. Systematic review of the influence of energy and protein intake on protein balance in critically ill children. J Pediatr. 2012;161:333–9.

    Article  PubMed  Google Scholar 

  • Botran M, López-Herce J. Malnutrition in the critically ill child: the importance of enteral nutrition. Int J Environ Res Public Health. 2011;8:4353–66.

    Article  Google Scholar 

  • Botrán M, López-Herce J, Mencía S, Urbano J, Solana MJ, García A, Carrillo A. Relationship between energy expenditure, nutritional status and clinical severity before starting enteral nutrition in critically ill children. Br J Nutr. 2011a;105:731–7.

    Article  PubMed  Google Scholar 

  • Botrán M, López-Herce J, Mencía S, Urbano J, Solana MJ, García-Figueruelo A. Enteral nutrition in the critically ill child: comparison of standard and protein-enrich diets. J Pediatr. 2011b;159:27–32.

    Article  PubMed  Google Scholar 

  • Briassoulis G, Filippou O, Hatzi E, Papassotiriou I, Hatzis T. Early enteral administration of immunonutrition in critically ill children: Results of a blinded randomized controlled clinical trial. Nutrition. 2005;21:799–807.

    Article  PubMed  Google Scholar 

  • Butte NF. Energy requirements of infants. Public Health Nutr. 2005;8:953–67.

    PubMed  Google Scholar 

  • Calloway DH, Spector H. Nitrogen balance as related to caloric and protein intake in active young men. Am J Clin Nutr. 1954;2:405–12.

    CAS  PubMed  Google Scholar 

  • Campos S, Sasbón JS. The Latin-American survey on nutrition in pediatric intensive care (ELAN-CIP). An Pediatr (Barc). 2009;71:5–12.

    Article  Google Scholar 

  • Church JM, Hill GL. Assessing the efficacy of intravenous nutrition in general surgical patients-dynamic nutritional assessment using plasma proteins. JPEN J Parenter Enteral Nutr. 1987;11:135–40.

    Article  CAS  PubMed  Google Scholar 

  • Chwals WJ, Lally KP, Woolley MM, Mahour GH. Measured energy expenditure in critically ill infants and young children. J Surg Res. 1988;44:467–72.

    Article  CAS  PubMed  Google Scholar 

  • Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. Am J Clin Nutr. 1998;67:74–80.

    CAS  PubMed  Google Scholar 

  • Coss-Bu JA, Klish WJ, Walding D, Stein F, Smith EO, Jefferson LS. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am J Clin Nutr. 2001;74:664–9.

    CAS  PubMed  Google Scholar 

  • De Betue CT, van Waardenburg DA, Deutz NE, van Eijk HM, van Goudoever JB, Luiking YC, Zimmermann LJ, Joosten KF. Increased protein-calorie intake promotes anabolism in critically ill infants with viral bronchiolitis: a double-blind randomised controlled trial. Arch Dis Child. 2011;96:817–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • De Klerk G, Hop WC, de Hoog M, Joosten KF. Serial measurements of energy expenditure in critically ill children: useful in optimizing nutritional therapy? Intensive Care Med. 2002;28:1781–5.

    Article  PubMed  Google Scholar 

  • De Neef M, Geukers VGM, Dral A, Lindeboom R, Sauerwein HP, Bos AP. Nutritional goals, prescription and delivery in a pediatric intensive care unit. Clin Nutr. 2008;27:65–71.

    Article  PubMed  Google Scholar 

  • Embleton NE, Pang N, Cooke RJ. Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics. 2001;107:270–3.

    Article  CAS  PubMed  Google Scholar 

  • Engelen MP, Rutten EP, De Castro CL, et al. Altered interorgan response to feeding in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2005;82:366–72.

    CAS  PubMed  Google Scholar 

  • Fenton TR, McMillan DD, Sauve RS. Nutrition and growth analysis of very low birth weight infants. Pediatrics. 1990;86:378–83.

    CAS  PubMed  Google Scholar 

  • Fitch CW, Neville J. Nutrient intake of infants hospitalized with lower respiratory tract infections. J Am Diet Assoc. 2001;101:690–2.

    Article  CAS  PubMed  Google Scholar 

  • Fleta J, Sarriá A, Bueno-Lozano M, Perez-Choliz V. Nutritional obesity. An Esp Pediatr. 1988;29:7–12.

    PubMed  Google Scholar 

  • Gurgueira GL, Leite HP, Taddei JA, de Carvalho WB. Outcomes in a pediatric intensive care unit before and after the implementation of nutrition support team. JPEN J Parenter Enteral Nutr. 2005;29:176–85.

    Article  PubMed  Google Scholar 

  • Hart DW, Wolf SE, Mlcak R, et al. Persistence of muscle catabolism after severe burn. Surgery. 2000;128:312–9.

    Article  CAS  PubMed  Google Scholar 

  • Hulst J, Joosten K, Zimmermann L, Hop W, van Buuren S, Büller H, Tibboel D, van Goudoever J. Malnutrition in critically ill children: from admission to 6 month after discharge. Clin Nutr. 2004a;23:223–32.

    Article  PubMed  Google Scholar 

  • Hulst JM, van Goudoever JB, Zimmermann LJ, Hop WC, Albers MJ, Tibboel D, Joosten KF. The effect of cumulative energy and protein deficiency on anthropometric parameters in a pediatric ICU population. Clin Nutr. 2004b;23:1381–9.

    Article  PubMed  Google Scholar 

  • Kelleher DK, Laussen P, Teixeira-Pinto A, et al. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition. 2006;22:237–44.

    Article  CAS  PubMed  Google Scholar 

  • Keshen TH, Miller RG, Jahoor F, Jaksic T. Stable isotopic quantitation of protein metabolism and energy expenditure in neonates on- and post-extracorporeal life support. J Pediatr Surg. 1997;32:958–63.

    Article  CAS  PubMed  Google Scholar 

  • Kondrup J, Allison SP, Elia M, Vellas B, Plauth M. ESPEN guidelines for nutrition screening 2002. Clin Nutr. 2003;22:415–21.

    Article  CAS  PubMed  Google Scholar 

  • Kyle UG, Arriaza A, Esposito M, Coss-Bu JA. Is indirect calorimetry a necessity or a luxury in the pediatric intensive care unit? JPEN J Parenter Enteral Nutr. 2012;36:177–82.

    Article  PubMed  Google Scholar 

  • López-Herce J, Sánchez C, Mencía S, Santiago MJ, Carrillo A, Bellón JM. Energy expenditure in critically ill children: correlation with clinical characteristics, caloric intake, and predictive equations. An Pediatr (Barc). 2007;66:229–33.

    Article  Google Scholar 

  • Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients. A systemic review. Crit Care Med. 2001;29:2264–70.

    Article  CAS  PubMed  Google Scholar 

  • Meert KL, Daphtary KM, Metheny NA. Gastric vs. small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest. 2004;126:872–8.

    Article  PubMed  Google Scholar 

  • Mehta NM, Duggan CP. Nutritional deficiencies during critical illness. Pediatr Clin North Am. 2009;56:1143–60.

    Article  PubMed  Google Scholar 

  • Mehta NM, Compher C, ASPEN Board of directors. ASPEN clinical guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 2009;33:260–76.

    Article  PubMed  Google Scholar 

  • Mehta NM, Bechard LJ, Cahill N, Wang M, Day A, Duggan CP, Heyland DK. Nutritional practices and their relationship to clinical outcomes in critically ill children–an international multicenter cohort study. Crit Care Med. 2012;40:2204–11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller TL, Neri D, Extein J, Somarriba G, Strickman-Stein N. Nutrition in pediatric cardiomyopathy. Prog Pediatr Cardiol. 2007;24:59–71.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oosterveld MJ, Van Der Kuip M, De Meer K, De Greef HJ, Gemke RJ. Energy expenditure and balance following pediatric intensive care unit admission: a longitudinal study of critically ill children. Pediatr Crit Care Med. 2006;7:147–53.

    Article  PubMed  Google Scholar 

  • Pérez-Navero JL, Dorao P, López-Herce Cid J, de la Rosa I, Pujol M, Hermana MT. Nutrition working group of the Spanish Society for Pediatric Critical Care Medicine. Artificial nutrition in the pediatric intensive care units. An Pediatr (Barc). 2005;62:105–12.

    Article  Google Scholar 

  • Phillips R, Ott L, Young B, Walsh J. Nutritional support and measured energy expenditure of the child and adolescent with head injury. J Neurosurg. 1987;67:846–51.

    Article  CAS  PubMed  Google Scholar 

  • Pollack MM, Ruttimann UE, Wiley JS. Nutritional depletion in critically ill children: association with physiologic instability and increase quantity of care. JPEN J Parenter Enteral Nutr. 1985;9:309–13.

    Article  CAS  PubMed  Google Scholar 

  • Premji SS, Fenton TR, Sauve RS. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst Rev. 2006;25, CD003959.

    Google Scholar 

  • Prentice AM, Paul AA. Fat and energy needs of children in developing countries. Am J Clin Nutr. 2000;72(5 Suppl):1253S–65.

    CAS  PubMed  Google Scholar 

  • Reynolds RM, Bass KD, Thureen PJ. Achieving positive protein balance in the immediate postoperative period in neonates undergoing abdominal surgery. J Pediatr. 2008;152:63–7.

    Article  CAS  PubMed  Google Scholar 

  • Rivera Jr A, Bell EF, Bier DM. Effect of intravenous amino acids on protein metabolism of preterm infants during the first three days of life. Pediatr Res. 1993;33:106–11.

    Article  PubMed  Google Scholar 

  • Rutan RL, Herndon DN. Growth delay in postburn pediatric patients. Arch Surg. 1990;125:392–5.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez C, López-Herce J, Moreno De Guerra M. The use of transpyloric enteral nutrition in the critically ill child. J Intensive Care Med. 2000;15:247–54.

    Article  Google Scholar 

  • Sánchez C, López-Herce J, Carrillo A, Bustinza A, Sancho ZL, Vigil D. Transpyloric enteral nutrition in critically ill children (I) technics and indications. An Pediatr (Barc). 2003;59:19–24.

    Article  Google Scholar 

  • Sánchez C, López-Herce J, García C, Rupérez M, García E. The effect of enteral nutrition on nutritional status in the critically ill child. Clin Intensive Care. 2005;16:75–8.

    Article  Google Scholar 

  • Sánchez C, López-Herce J, Carrillo A, Mencía S, Vigil D. Early transpyloric enteral nutrition in critically ill children. Nutrition. 2007;23:16–22.

    Article  PubMed  Google Scholar 

  • Shew SB, Keshen TH, Jahoor F, Jaksic T. The determinants of protein catabolism in neonates on extracorporeal membrane oxygenation. J Pediatr Surg. 1999;34:1086–90.

    Article  CAS  PubMed  Google Scholar 

  • Skillman HE, Wischmeyer PE. Nutrition therapy in critically ill infants and children. JPEN J Parenter Enteral Nutr. 2008;32:520–34.

    Article  PubMed  Google Scholar 

  • Tilden SJ, Watkins S, Tong TK, Jeevanandam M. Measured energy expenditure in pediatric intensive care patients. Am J Dis Child. 1989;143:490–2.

    CAS  PubMed  Google Scholar 

  • van den Akker CH, te Braake FW, Wattimena DJ, et al. Effects of early amino-acid administration on leucine and glucose kinetics in premature infants. Pediatr Res. 2006;59:732–5.

    Article  PubMed  Google Scholar 

  • Van Waardenburg DA, de Betue CT, Goudoever JB, Zimmermann LJ, Joosten KF. Critically ill infants benefit from early administration of protein and energy-enriched formula: a randomized controlled trial. Clin Nutr. 2009;28:249–55.

    Article  PubMed  Google Scholar 

  • Venugopalan P, Akinbami FO, Al-Hinai KM, Agarwal AK. Malnutrition in children with congenital heart defects. Saudi Med J. 2001;22:964–7.

    CAS  PubMed  Google Scholar 

  • Wagenmakers AJ. Tracers to investigate protein and amino acid metabolism in human subjects. Proc Nutr Soc. 1999;58:987–1000.

    Article  CAS  PubMed  Google Scholar 

  • Yoder MC, Anderson DC, Gopalakrishna GS, Douglas SD, Polin RA. Comparison of serum fibronectin, prealbumin and albumin concentrations during nutritional repletion in protein-calorie malnourish infants. J Pediatr Gastroenterol Nutr. 1987;6:84–8.

    Article  CAS  PubMed  Google Scholar 

  • Zamberlan P, Delgado AF, Leone C, Feferbaum R, Okay TS. Nutrition therapy in a pediatric intensive care unit: indications, monitoring and complications. JPEN J Parenter Enteral Nutr. 2011;35:523–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús López-Herce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Urbano, J., Fernández, S.N., López-Herce, J. (2014). Protein-Enriched Enteral Nutrition in Childhood Critical Illness. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics