Skip to main content

Biopolymers Synthesis and Application

  • Chapter
  • First Online:
Biotransformation of Waste Biomass into High Value Biochemicals

Abstract

Living organisms, namely, prokaryotes and eukaryotes, are able to synthesize a variety of polymers, such as nucleic acids, proteins, and other polyamides, polysaccharides, polyesters, polythioesters, polyanhydrides, polyisoprenoids, and lignin. Microorganisms provide a source of biopolymers and biopolysaccharides from renewable sources. Bacteria are capable of yielding biopolymers with properties comparable to plastics derived from petrochemicals, though more expensive. They have the additional advantage of being biodegradable. A wide range of microbial polysaccharides have been studied, and structure/function relationships for a number of these macromolecules have been determined. These biopolymers accomplish different essential and beneficial functions for the organisms. Among the biopolymers produced, many are used for various industrial applications. Currently, the biotechnological production of polymers has been mostly achieved by fermentation of microorganisms in stirred bioreactors. The biopolymers can be obtained as extracellular or intracellular compounds. Alternatively, biopolymers can also be produced by in vitro enzymatic processes. However, the largest amounts of biopolymers are still extracted from plant and animal sources. Biopolymers exhibit fascinating properties and play a major role in the food processing industry, e.g., modifying texture and other properties. Among the various biopolymers, polysaccharides and bioplastics are the most important in the food industry. This chapter will discuss the sources of polymers, their biosynthesis by different organisms, and their application in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahankari SS, Mohanty AK, Misra M, (2011) Mechanical behaviour of agro-residue reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate), (PHBV) green com- posites: comparison with traditional polypropylene composites. Compos Sci Technol 71:653–657

    CAS  Google Scholar 

  • Alias Z, Tan IKP (2005) Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique. Bioresour Technol 96:1229–1234

    CAS  Google Scholar 

  • Alves VD (2011) Characterization of biodegradable films of a new microbial polysaccharide produced using glycerol byproduct. Carbohydr Polym 83:1582–1590

    CAS  Google Scholar 

  • Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL et al (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123:132–137

    CAS  Google Scholar 

  • Ashby RD (2005) Synthesis of short-/medium-chain-length poly(hydroxyalkanoate) blends by mixed culture fermentation of glycerol. Biomacromolecules 6:2106–2112

    CAS  Google Scholar 

  • Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C Polym Rev 44:231–274

    Google Scholar 

  • Banik RM, Santhiagu A, Upadhyay SN et al (2007) Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresour Technol 98:792–797

    CAS  Google Scholar 

  • Barham PJ (1990) Physical properties of poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate). In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht

    Google Scholar 

  • Bartkowiak A, Hunkeler D (2001) Carrageenan-oligochitosan microcapsules: optimization of the formation process. Colloids Surf B Biointerfaces 21:285–298

    CAS  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W et al (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350

    CAS  Google Scholar 

  • BBC News (2011) World food prices at fresh high, says UN. BBC. www.bbc.co.uk/news/business-12119539

  • Bedau MA, Parke EC, Tangen U, Hantsche-Tangen B et al (2009) Social and ethical checkpoints for bottom-up synthetic biology, or protocells. Syst Synth Biol 3:65–75

    Google Scholar 

  • Ben Salah R, Chaari K, Besbes S et al (2010) Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodology. Food Chem 121:627–633

    CAS  Google Scholar 

  • Brown SH, Pummill PE (2008) Recombinant production of hyaluronic acid. Curr Pharm Biotechnol 9:239–241

    CAS  Google Scholar 

  • Byrom D (1992) Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiol Rev 103:247–250

    CAS  Google Scholar 

  • Canton B, Labno A, Endy D et al (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26:787–793

    CAS  Google Scholar 

  • Carlson R (2009) The changing economics of DNA synthesis. Nat Biotechnol 27:1091–1094

    CAS  Google Scholar 

  • Cascone MG, Barbani N, Cristallini C et al (2001) Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed 12:267–281

    CAS  Google Scholar 

  • Castro C, Zuluaga R, Álvarez C et al (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037

    CAS  Google Scholar 

  • Cescutti P (2009) Bacterial capsular polysaccharides and exopolysaccharides. In: Moran AP, Holst O, Brennan PJ, von Itzstein M (eds) Microbial glycobiology. Structures, relevance and applications. Elsevier, Amsterdam, pp 93–115

    Google Scholar 

  • Changa LL, Bruchb MD, Griskowitzc NJ, Dentel SK et al (2002) NMR spectroscopy for determination of cationic polymer concentrations. Water Res 36:2255–2264

    Google Scholar 

  • Chee JY, Tan Y, Samian MR, Sudesh K et al (2010) Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids and glycerols. J Polym Environ. doi:10.1007/s10924-010-0204-1

  • Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    CAS  Google Scholar 

  • Chua H, Yu PHF, Ho LY (1997) Coupling of waste water treatment with storage polymer production. Appl Biochem Biotechnol 63–65:627–635

    Google Scholar 

  • Chua H, Yu PHF, Ma CK (1999) Accumulation of biopolymers in activated sludge biomass. Appl Biochem Biotechnol 78:389–399

    Google Scholar 

  • Dionisi D, Caruccia G, Petrangeli Papinia M, Riccardi C, Majone M, Carrasco F et al (2005) Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res 39: 2076–2084

    CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC et al (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    CAS  Google Scholar 

  • Dunbar SA (2006) Applications of LuminexR xMAPi technology for rapid, high-through put multiplexed nucleic acid detection. Clin Chim Acta 363:71–82

    CAS  Google Scholar 

  • Eggink G, van der Wal H, Huijberts GNM, de Waard P et al (1992) Oleic acid as a substrate for poly-3-hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind Crop Prod 1:157–163

    CAS  Google Scholar 

  • Eng AH, Ong EL (2000) Hevea natural rubber. In: Bhowmick AK, Stephens HL (eds) Plastics engineering: handbook of elastomers. Marcel Dekker, New York

    Google Scholar 

  • Entcheva E, Bien H, Yin LH et al (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762

    CAS  Google Scholar 

  • Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681

    CAS  Google Scholar 

  • Freitas F (2011) Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydr Pol 1:159–165

    Google Scholar 

  • French CE (2009) Synthetic biology and biomass conversion: a match made in heaven? J R Soc Interface 6:S547–S558

    CAS  Google Scholar 

  • Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    CAS  Google Scholar 

  • Gaisser S, Reiss T, Lunkes A, Muller K, Bernauer H et al (2009) Making the most of synthetic biology. Strategies for synthetic biology development in Europe. EMBO Rep 10(Suppl 1):S5–S8

    CAS  Google Scholar 

  • Garnier C, Gorner T, Lartiges BS, Abdelouhab S, Donato P et al (2005) Characterization of activated sludge exopolymers from various origins: a combined size-exclusion chromatography and infrared microscopy study. Water Res 39:3044–3054

    CAS  Google Scholar 

  • Ghosh T (2009) Focus on antivirally active sulphated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology 19:2–15

    CAS  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    CAS  Google Scholar 

  • Gong R, Zhong K, Hu Y, Chen J, Zhu G (2008) Thermochemical esterifying citric acid onto lignocellulose for enhancing methylene blue sorption capacity of rice straw. J Environ Manage 88:875–880

    CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    CAS  Google Scholar 

  • Grothe E, Moo-Young M, Chisti Y (1999) Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. Enzyme Microb Technol 25:132–141

    CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P et al (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    CAS  Google Scholar 

  • Hames BR (2009) Biomass compositional analysis for energy applications. Methods Mol Biol 581:145–167

    CAS  Google Scholar 

  • Hermann BG, Patel MK (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology. Appl Biochem Biotechnol 136:361–388

    CAS  Google Scholar 

  • Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation: a review. J Food Sci 73:30–39

    Google Scholar 

  • Hofer P, Choi YJ, Osborne MJ, Miguez CB, Vermette P, Groleau D et al (2010) Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains. Microb Cell Fact 9:70

    Google Scholar 

  • Hopewell J, Dvorak R, Kosior E et al (2009) Plastics recycling: challenges and opportunities. Phil Trans R Soc Lond B Biol Sci 364:2115–2126

    CAS  Google Scholar 

  • Hvala N, Aller F, Miteva T et al (2011) Modelling, simulation and control of an industrial, semi-batch, emulsion-polymerization reactor. Comput Chem Eng 35:2066–2080

    CAS  Google Scholar 

  • Kahara P, Tsugea T, Taguchib K et al (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83:79–86

    Google Scholar 

  • Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, Kyriakidis DA, Skaracis GN et al (2003) Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem 39:249–256

    CAS  Google Scholar 

  • Koller M, Salerno A, de Sousa M, Dias M, Reiterer A, Braunegg G et al (2010) Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol 48:255–269

    CAS  Google Scholar 

  • Kumar AS, Mody K, Jha B et al (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117

    CAS  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B et al (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3- hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  Google Scholar 

  • Lazaridou A, Biliaderis CG, Kontogiorgos V (2003) Molecular weight effects on solution rheology of pullulan and mechanical properties of its films. Carbohydr Polym 52:151–166

    CAS  Google Scholar 

  • Lee SY, Park SJ, Lee Y, Lee SH et al (2003) Economic aspects of biopolymer production. Biopolymers 10:307–337

    CAS  Google Scholar 

  • Leech AJ, Sprinkle A, Wood L, Wozniak DJ, Ohman DE et al (2008) The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter. J Bacteriol 190:581–589

    CAS  Google Scholar 

  • Lemos PC, Serafim LS, Reis MAM et al (2006) Synthesis of Polyhydroxyalkanoates from Different Short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 122:226–238

    CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8

    CAS  Google Scholar 

  • López MJ, Moreno J, Ramos-Cormenzana A et al (2001) The effect of olive mill wastewaters variability on xanthan production. J Appl Microbiol 90:829–835

    Google Scholar 

  • Luisi PL (2007) Chemical aspects of synthetic biology. Chem Biodivers 4:603–621

    CAS  Google Scholar 

  • Lynd LR, Zhang Y (2002) Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol Bioeng 77:467–475

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CAS  Google Scholar 

  • Majumder A, Singh A, Goyal A (2009) Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydr Polym 75:150–156

    CAS  Google Scholar 

  • Malafaya PB, Silva GA, Reis RL (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    CAS  Google Scholar 

  • Manandhar S, Vidhate S, D’Souza N (2009) Water soluble levan polysaccharide biopolymer electrospun fibers. Carbohydr Polym 78:794–798

    CAS  Google Scholar 

  • Mangione MR, Giacomazza D, Bulone D et al (2005) K+ and Na+ effects on the gelation properties of k-carrageenan. Biophys Chem 113:129–135

    CAS  Google Scholar 

  • Marsano E, Vicini S, Skopinska J et al (2004) Chitosan and poly(vinyl pyrrolidone): compatibility and miscibility of blends. Macromol Symp 218:251–260

    CAS  Google Scholar 

  • Matou S, Colliec-Jouault S, Galy-Fauroux I, Ratiskol J, Sinquin C, Guezennec J, Fischer AM, Helley D et al (2005) Effect of an oversulfated exopolysaccharide on angiogenesis induced by fibroblast growth factor-2 or vascular endothelial growth factor in vitro. Biochem Pharmacol 69:751–759

    CAS  Google Scholar 

  • Matsumoto K, Murata T, Nagao R, Nomura CT, Arai S, Arai Y, Takase K, Nakashita H, Taguchi S, Shimada H et al (2009) Production of short-chainlength/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III. Biomacromolecules 10:686–690

    CAS  Google Scholar 

  • McCormick CL, Lichatowhich DK (1979) Homogeneous solution reactions of cellulose, chitin and other polysaccharides to produce controlled—activity pesticide systems. J Polm Sci Polym Lett Ed 17:479

    CAS  Google Scholar 

  • McIntyre D, Stephens HL, Schloman WW Jr et al (2001) Guayule rubber. In: Bhowmick AK, Stephens HL (eds) Plastics engineering: handbook of elastomers. Marcel Dekker, New York

    Google Scholar 

  • Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD et al (2009) The rosettazyme: a synthetic cellulosome. J Biotechnol 143:139–144

    CAS  Google Scholar 

  • Monsan P, Bozonnet S, Albenne C et al (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685

    CAS  Google Scholar 

  • Moralejo-Gárate H, Mar’atusalihat E, Kleerebezem R et al (2011) Microbial community engineering for biopolymer production from glycerol. Appl Microbiol Biotechnol 92:631–639

    Google Scholar 

  • Mu D, Seager T, Rao PS, Zhao F et al (2010) Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manage 46:565–578

    Google Scholar 

  • Nampoothiri KM, Singhania RR, Sabarinath C et al (2003) Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochem 38:1513–1519

    CAS  Google Scholar 

  • Nguyen VT (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471–478

    CAS  Google Scholar 

  • Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface Sci 8:396–400

    CAS  Google Scholar 

  • Nyburg SC (1954) A statistical structure for crystalline rubber. Acta Crystallogr 7:385–392

    CAS  Google Scholar 

  • Otey FH, Mark AM (1976) Degradable starch based agricultural mulch film. US Patent 3,949,145

    Google Scholar 

  • Park YM, Shin BA, Oh IJ et al (2008) Poly(L-lactic acid)/polyethylenimine nanoparticles as plasmid DNA carriers. Arch Pharm Res 31:96–102

    CAS  Google Scholar 

  • Pingping Z (1997) A new criterion of polymer–polymer miscibility detected by viscometry. Eur Polym J 33:411–414

    CAS  Google Scholar 

  • Piza MA, Constantino CJL, Venancio EC et al (2003) Interaction mechanism of poly(o-ethoxyaniline) and collagen blends. Polymer 44:5663–5670

    CAS  Google Scholar 

  • Poli A, Kazak H, Gürleyendağ B et al (2009) High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr Polym 78:651–657

    CAS  Google Scholar 

  • Puskas JE, Gautriaud E, Deffieux A et al (2006) Natural rubber biosynthesis—a living carbocationic polymerization? Prog Polym Sci 31:533–548

    CAS  Google Scholar 

  • Quélénis A (2008) Les bioplastiques. CRCI Champagne-Ardenne http://www.veillestrategique-champagne-ardenne.fr/IMG/pdf/17bioplastiques.pdf. Accessed 10 Sept 2012

  • Raha T, Chattopadhyay A, Shaila MS (2004) Development of a reconstitution system for Rinderpest virus RNA synthesis in vitro. Virus Res 99:131–138

    CAS  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Rev Microbiol. doi:10.1038/nrmicro2354

  • Rodriguez-Cabello JC, Reguera J, Girotti A et al (2005) Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach. Prog Polym Sci 30:1119–1145

    Google Scholar 

  • Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Enzym Microbial Technol 39:197–207

    CAS  Google Scholar 

  • Ruffing A, Chen RR (2006) Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Fact 5:25

    Google Scholar 

  • Ryffel GU (2010) Making the most of GM potatoes. Nat Biotechnol 28:318

    CAS  Google Scholar 

  • Sandoval A, Arias-Barrau E, Arcos M, Naharro G, Olivera ER, Luengo JM et al (2007) Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environ Microbiol 9:737–751

    CAS  Google Scholar 

  • Schmidt M, Pei L (2011) Synthetic toxicology: where engineering meets biology and toxicology. Toxicol Sci 120:204–224

    Google Scholar 

  • Serafim LS, Lemos PC, Oliveira R,Reis MA et al (2004) Optimization of plyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Botechnol Bioeng 87:145–160

    CAS  Google Scholar 

  • Shamala TR, Prasad MS (1995) Preliminary studies on the production of high and low viscosity dextran by Leuconostoc spp. Process Biochem 30:237–241

    Google Scholar 

  • Shi F, Gross RA, Rutherford DR (1996) Microbial polyester synthesis: effects of poly(ethylene glycol) on product composition, repeat unit sequence, and end group structure. Macromolecules 29:10–17

    CAS  Google Scholar 

  • Shih IL, Chen LD, Wu JY (2010) Levan production using Bacillus subtilis natto cells immobilized on alginate. Carbohydr Polym 82:111–117

    CAS  Google Scholar 

  • Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276

    CAS  Google Scholar 

  • Siracusa V, Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    CAS  Google Scholar 

  • Soetaert W (2007) White biotechnology: a key technology for building the biobased economy, Proc. Illmac Basel

    Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    CAS  Google Scholar 

  • Steinbüchel A, Schmack A (1995) Large scale production of poly(3-hydroxyvaleric acid) by fermentation of Chromobacterium violaceum technical processing and characterization of the homopolyester. J Environ Polym Degrad 3:243–258

    Google Scholar 

  • Stredansky M, Conti E (1999) Xanthan production by solid state fermentation. Process Biochem 34:581–587

    CAS  Google Scholar 

  • Sudip S (2012) Production and characterization of extracellular polymeric substances of Rhizobium with different carbon sources. MSc thesis

    Google Scholar 

  • Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    CAS  Google Scholar 

  • Survase SA, Saudagar PS, Singhal RS (2007) Use of complex media for the production of scleroglucan by Sclerotium rolfsii MTCC 2156. Bioresource Technol 98:1509–1512

    CAS  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    CAS  Google Scholar 

  • Synowiecki J, Al-Khateeb NA (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43:145–171

    CAS  Google Scholar 

  • Takeuchi A (2009) Oral administration of xanthan gum enhances antitumor activity through Toll-like receptor 4. Int Immunopharmacol 9:1562–1567

    CAS  Google Scholar 

  • Tanaka Y (1989) Structure and biosynthesis mechanism of natural polyisoprene. Prog Polym Sci 14:339–371

    CAS  Google Scholar 

  • Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16

    CAS  Google Scholar 

  • Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36:455–567

    CAS  Google Scholar 

  • Thakor N, Trivedi U, Patel KC et al (2005) Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils. Bioresource Technol 96:1843–1850

    CAS  Google Scholar 

  • Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94:579–584

    CAS  Google Scholar 

  • Tyagi RD, Sikati-Foko V, Barnabe S, Vidyarthi AS, Valéro JR, Surampalli RY et al (2002) Simultaneous production of biopesticide and alkaline proteases by Bacillus thuringiensis using sewage sludge as a raw material. Water Sci Technol 46:247–254

    CAS  Google Scholar 

  • Urbain V, Block JC, Manem J et al (1993) Bioflocculation in activated sludge: an analytical approach. Water Res 27:829–838

    CAS  Google Scholar 

  • Vedyashkina TA, Revin VV, Gogotov IN (2005) Optimizing the conditions of dextran synthesis by the bacterium Leuconostoc mesenteroides grown in a molasses-containing medium. Appl Biochem Microbiol 41:361–364

    CAS  Google Scholar 

  • Wang X, Sang L, Luo D et al (2011) From collagen–chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property. Colloids Surf B Biointerfaces 82:233–240

    CAS  Google Scholar 

  • Werk D, Wengel J, Wengel SL et al (2010) Application of small interfering RNAs modified by unlocked nucleic acid (UNA)to inhibit the heart-pathogenic coxsackievirus B3. FEBS Lett 584:591–598

    CAS  Google Scholar 

  • Williams DL, Sherwood ER, Browder LW, McNamee RB, Jones EL, Di Luzio NR et al (1988) The role of complement in glucan-induced protection against septic. Circ Shock 25:53–60

    CAS  Google Scholar 

  • Yamane T (1993) Yield of poly-D(−)-3-hydroxybutyrate from various carbon sources: a theoretical study. Biotechnol Bioeng 41:165–170

    CAS  Google Scholar 

  • Yasuhiro M, Yoshimitsu K (2010) Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor. J Biomat Sci Polym Ed 21:715–726

    Google Scholar 

  • Ye Y, Dan W, Zeng R et al (2007) Miscibility studies on the blends of collagen/chitosan by dilute solution viscometry. Eur Polym J 43:2066–2071

    CAS  Google Scholar 

  • Yezza A, Tyagi RD, Valero JR, Surampalli RY, Smith JC et al (2004) Scale-up of biopesticides production process using wastewater sludge as a raw material. J Ind Microbiol Biotechnol 31:545–552

    CAS  Google Scholar 

  • Youssef F, Roukas T, Biliaderis CG (1999) Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem 34:355–366

    CAS  Google Scholar 

  • Yu J (2001) Production of PHA from starchy wastewater via organic acids. J Biotechnol 86:105–112

    CAS  Google Scholar 

  • Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85:506–513

    CAS  Google Scholar 

  • Zhang X, Luo R, Wang Z, Deng Y, Chen GQ et al (2009) Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules 10:707–711

    CAS  Google Scholar 

  • Zhang X, Wub X, Gaoa D et al (2012) Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydr Polym 87:2470–2476

    CAS  Google Scholar 

  • Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP et al (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:424–430

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Discovery Grants 355254) and INRS-ETE for financial support. The views or opinions expressed in this article are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaabouni, E., Gassara, F., Brar, S.K. (2014). Biopolymers Synthesis and Application. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_17

Download citation

Publish with us

Policies and ethics