Skip to main content

ESWL Principles

  • Chapter
  • First Online:
Surgical Management of Urolithiasis
  • 967 Accesses

Abstract

The treatment of kidney stone disease has changed dramatically over the past 30 years. This change is due in large part to the arrival of extracorporeal shock wave lithotripsy (ESWL). ESWL along with the advances in ureteroscopic and percutaneous techniques has led to the virtual extinction of open surgical treatments for kidney stone disease. Much research has gone into understanding how ESWL can be made more efficient and safe. This chapter discusses the parameters that can be used to optimize ESWL outcomes as well as the concepts that are affecting the efficacy and efficiency of ESWL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dretler SP. Stone fragility–a new therapeutic distinction. J Urol. 1988;139(5):1124–7.

    PubMed  CAS  Google Scholar 

  2. Klee LW, Brito CG, Lingeman JE. The clinical implications of brushite calculi. J Urol. 1991;145(4):715–8.

    PubMed  CAS  Google Scholar 

  3. Kim SC, Burns EK, Lingeman JE, Paterson RF, McAteer JA, Williams Jr JC. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res. 2007;35(6):319–24.

    Article  PubMed  Google Scholar 

  4. Lingeman J, Matlaga BR, Evan AP. Surgical management of upper urinary tract calculi. In: Wein AJ, Kavoussi LR, Novick AC, Partin AW, Peters CA, editors. Campbell-walsh urology. Philadelphia, PA: Saunders; 2007. p. 1431–507.

    Google Scholar 

  5. Kaude JV, Williams CM, Millner MR, Scott KN, Finlayson B. Renal morphology and function immediately after extracorporeal shock-wave lithotripsy. AJR Am J Roentgenol. 1985;145(2):305–13.

    Article  PubMed  CAS  Google Scholar 

  6. McAteer JA, Evan AP. The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol. 2008;28(2):200–13.

    Article  PubMed  Google Scholar 

  7. Neucks JS, Pishchalnikov YA, Zancanaro AJ, VonDerHaar JN, Williams Jr JC, McAteer JA. Improved acoustic coupling for shock wave lithotripsy. Urol Res. 2008;36(1):61–6.

    Article  PubMed  Google Scholar 

  8. Willis LR, Evan AP, Connors BA, et al. Shockwave lithotripsy: dose-related effects on renal structure, hemodynamics, and tubular function. J Endourol. 2005;19(1):90–101.

    Article  PubMed  CAS  Google Scholar 

  9. Connors BA, Evan AP, Blomgren PM, et al. Reducing shock number dramatically decreases lesion size in a juvenile kidney model. J Endourol. 2006;20(9):607–11.

    Article  PubMed  Google Scholar 

  10. Connors BA, Evan AP, Willis LR, Blomgren PM, Lingeman JE, Fineberg NS. The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. J Am Soc Nephrol. 2000;11(2):310–8.

    PubMed  CAS  Google Scholar 

  11. Kerbl K, Rehman J, Landman J, Lee D, Sundaram C, Clayman RV. Current management of urolithiasis: progress or regress? J Endourol. 2002;16(5):281–8.

    Article  PubMed  Google Scholar 

  12. Evan AP, McAteer JA, Connors BA, et al. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int. 2008;101(3):382–8.

    Article  PubMed  Google Scholar 

  13. Cleveland RO, McAteer JA. The physics of shock wave lithotripsy. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JE, Preminger GM, Segura JW, editors. Smith’s Textbook on endourology. Hamilton, ON: BC Decker, Inc; 2007. p. 317–32.

    Google Scholar 

  14. Cleveland RO, Anglade R, Babayan RK. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. J Endourol. 2004;18(7):629–33.

    Article  PubMed  Google Scholar 

  15. Köhrmann KU, Rassweiler JJ, Manning M, et al. The clinical introduction of a third generation lithotriptor: Modulith SL 20. J Urol. 1995;153(5):1379–83.

    Article  PubMed  Google Scholar 

  16. Ueda S, Matsuoka K, Yamashita T, Kunimi H, Noda S, Eto K. Perirenal hematomas caused by SWL with EDAP LT-01 lithotripter. J Endourol. 1993;7(1):11–5.

    Article  PubMed  CAS  Google Scholar 

  17. Pishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams Jr JC, McAteer JA. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol. 2006;176(6 Pt 1):2706–10.

    Article  PubMed  Google Scholar 

  18. Jain A, Shah TK. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol. 2007;51(6):1680–7. discussion 1686–7.

    Article  PubMed  Google Scholar 

  19. Bergsdorf T, Chaussy C, Türoff S. Energy coupling in extracorporeal shock wave lithotripsy-the impact of coupling quality on disintegration efficacy. J Endourol. 2008;22(Suppl):A161.

    Google Scholar 

  20. Bierkens AF, Hendrikx AJ, de Kort VJ, et al. Efficacy of second generation lithotriptors: a multicenter comparative study of 2,206 extracorporeal shock wave lithotripsy treatments with the Siemens Lithostar, Dornier HM4, Wolf Piezolith 2300, Direx Tripter X-1 and Breakstone lithotriptors. J Urol. 1992;148(3 Pt 2):1052–6. discussion 1056–7.

    PubMed  CAS  Google Scholar 

  21. Lingeman JE. Extracorporeal shock wave lithotripsy. Development, instrumentation, and current status. Urol Clin North Am. 1997;24(1):185–211.

    Article  PubMed  CAS  Google Scholar 

  22. Rassweiler JJ, Knoll T, Köhrmann KU, et al. Shock wave technology and application: an update. Eur Urol. 2011;59(5):784–96.

    Article  PubMed  Google Scholar 

  23. Pace KT, Ghiculete D, Harju M, Honey RJ. University of Toronto Lithotripsy Associates. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol. 2005;174(2):595–9.

    Article  PubMed  Google Scholar 

  24. Madbouly K, El-Tiraifi AM, Seida M, El-Faqih SR, Atassi R, Talic RF. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol. 2005;173(1):127–30.

    Article  PubMed  Google Scholar 

  25. Yilmaz E, Batislam E, Basar M, Tuglu D, Mert C, Basar H. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology. 2005;66(6):1160–4.

    Article  PubMed  Google Scholar 

  26. Chacko J, Moore M, Sankey N, Chandhoke PS. Does a slower treatment rate impact the efficacy of extracorporeal shock wave lithotripsy for solitary kidney or ureteral stones? J Urol. 2006;175(4):1370–3. discussion 1373–4.

    Article  PubMed  Google Scholar 

  27. Eisenmenger W, Du XX, Tang C, et al. The first clinical results of “wide-focus and low-pressure” ESWL. Ultrasound Med Biol. 2002;28(6):769–74.

    Article  PubMed  CAS  Google Scholar 

  28. Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol. 2008;179(1):194–7. discussion 197.

    Article  PubMed  Google Scholar 

  29. Pishchalnikov YA, McAteer JA, Williams Jr JC. Effect of firing rate on the performance of shock wave lithotriptors. BJU Int. 2008;102(11):1681–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeem Bhojani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lingeman, J., Bhojani, N. (2013). ESWL Principles. In: Nakada, S., Pearle, M. (eds) Surgical Management of Urolithiasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6937-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6937-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6936-0

  • Online ISBN: 978-1-4614-6937-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics