Skip to main content

Monoclonal Antibodies: From Structure to Therapeutic Application

  • Chapter
  • First Online:
Pharmaceutical Biotechnology

Abstract

The exciting field of therapeutic monoclonal antibodies (MABs) had its origins as Milstein and Koehler presented their murine hybridoma technology in 1975 (Kohler and Milstein 1975). This technology provides a reproducible method for producing monoclonal antibodies with unique target selectivity in almost unlimited quantities. In 1984, both scientists received the Nobel Prize for their scientific breakthrough, and their work was viewed as a key milestone in the history of MABs as therapeutic modalities and their other applications. Although it took some time until the first therapeutic MAB got market authorization from the FDA in 1986 (Orthoclone OKT3, Chap. 17), monoclonal antibodies are now the standard of care in several disease areas. In particular, in the areas of oncology (Chap. 16), transplantation (Chap. 17), and inflammatory diseases (Chap. 18), patients now have novel life-changing treatment alternatives for diseases which had very limited or nonexistent medical treatment options before the emergence of MABs. To date more than 30 MABs and MAB derivatives including fusion proteins and MAB fragments are available for different therapies (Table 7.1). Eight MABs and three immunoconjugates in oncology; 11 MABs, one Fab conjugate, and four Fc fusion proteins in inflammation; and three MABs and one Fc fusion protein in transplantation comprise the majority of the approved therapies. Technological evolutions have subsequently allowed much wider application of MABs via the ability to generate mouse/human chimeric, humanized, and fully humanized MABs from the pure murine origin. In particular, the reduction of the xenogenic portion of the MAB structure decreased the immunogenic potential of the murine MABs thus allowing their wider application. MABs are generally very safe drugs because of their target selectivity, thus avoiding unnecessary exposure to and consequently activity in nontarget organs. This is particularly apparent in the field of oncology, where MABs like rituximab, trastuzumab, and bevacizumab can offer a more favorable level of efficacy/safety ratios compared to common chemotherapeutic treatment regimens for some hematologic and solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarons L, Karlsson MO et al (2001) Role of modelling and simulation in Phase I drug development. Eur J Pharm Sci 13(2):115–122

    Google Scholar 

  • Actemra® (Tocilizumab) (2010) Prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

  • Adcetris® (Brentuximab vedotin) (2011) Prescribing information. Seattle Genetics Inc., Bothell

    Google Scholar 

  • Agoram BM, Martin SW, van der Graaf PH (2007) The role of mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modelling in translational research of biologics. Drug Discov Today 12(23–24):1018–1024

    PubMed  CAS  Google Scholar 

  • Albrecht H, DeNardo SJ (2006) Recombinant antibodies: from the laboratory to the clinic. Cancer Biother Radiopharm 21(4):285–304

    PubMed  CAS  Google Scholar 

  • Amevive® (Alefacept) (2003) Amevive prescribing information. Biogen Inc., Cambridge

    Google Scholar 

  • Arzerra® (ofatumumab) (2009) Arzerra prescribing information. GlaxoSmithKline, Research Triangle Park

    Google Scholar 

  • Avastin® (2004) Avastin (Bevacizumab) prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

  • Baert F, Noman M et al (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348(7):601–608

    PubMed  CAS  Google Scholar 

  • Bauer RJ, Dedrick RL et al (1999) Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm 27(4):397–420

    PubMed  CAS  Google Scholar 

  • Baxter LT, Zhu H et al (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54(6):1517–1528

    PubMed  CAS  Google Scholar 

  • Baxter LT, Zhu H et al (1995) Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55(20):4611–4622

    PubMed  CAS  Google Scholar 

  • Bazin-Redureau MI, Renard CB et al (1997) Pharmacokinetics of heterologous and homologous immunoglobulin G, F(ab’)2 and Fab after intravenous administration in the rat. J Pharm Pharmacol 49(3):277–281

    PubMed  CAS  Google Scholar 

  • Benlysta® (belimumab) (2011) Benlysta prescribing information. Human Genome Sciences Inc., Rockville

    Google Scholar 

  • Berger MA, Masters GR et al (2005) Pharmacokinetics, biodistribution, and radioimmunotherapy with monoclonal antibody 776.1 in a murine model of human ovarian cancer. Cancer Biother Radiopharm 20(6):589–602

    PubMed  CAS  Google Scholar 

  • Bexxar (2003) Bexxar (Tositumomab) prescribing information. Corixa Corp/GlaxoSmithKline, Seattle/Philadelphia

    Google Scholar 

  • Boswell CA, Brechbiel MW (2007) Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol 34(7):757–778

    PubMed  CAS  Google Scholar 

  • Boxenbaum H, Battle M (1995) Effective half-life in clinical pharmacology. J Clin Pharmacol 35(8):763–766

    PubMed  CAS  Google Scholar 

  • Brambell F, Hemmings W et al (1964) A theoretical model of gamma-globulin catabolism. Nature 203:1352–1355

    PubMed  CAS  Google Scholar 

  • Bugelski PJ, Herzyk DJ et al (2000) Preclinical development of keliximab, a primatized anti-CD4 monoclonal antibody, in human CD4 transgenic mice: characterization of the model and safety studies. Hum Exp Toxicol 19(4):230–243

    PubMed  CAS  Google Scholar 

  • Bunescu A, Seideman P et al (2004) Enhanced Fcgamma receptor I, alphaMbeta2 integrin receptor expression by monocytes and neutrophils in rheumatoid arthritis: interaction with platelets. J Rheumatol 31(12):2347–2355

    PubMed  CAS  Google Scholar 

  • Campath® (Alemtuzumab) (2009) Campath prescribing information. Genzyme Inc., Cambridge

    Google Scholar 

  • Cartron G, Watier H et al (2004) From the bench to the bedside: ways to improve rituximab efficacy. Blood 104(9):2635–2642

    PubMed  CAS  Google Scholar 

  • Chien, JY, Friedrich S et al (2005) Pharmacokinetics/Pharmacodynamics and the stages of drug development: role of modeling and simulation. AAPS J. 7(3):E544–559

    Google Scholar 

  • Cimzia® (2011) Cimzia (Certolizumab pegol) prescribing information. UCB Inc., Smyrna

    Google Scholar 

  • Clarke J, Leach W et al (2004) Evaluation of a surrogate antibody for preclinical safety testing of an anti-CD11a monoclonal antibody. Regul Toxicol Pharmacol 40(3):219–226

    PubMed  CAS  Google Scholar 

  • Coffey GP, Fox JA et al (2005) Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice. Drug Metab Dispos 33(5):623–629

    PubMed  CAS  Google Scholar 

  • Cohenuram M, Saif MW (2007) Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anticancer Drugs 18(1):7–15

    PubMed  CAS  Google Scholar 

  • Cornillie F, Shealy D et al (2001) Infliximab induces potent anti-inflammatory and local immunomodulatory activity but no systemic immune suppression in patients with Crohn’s disease. Aliment Pharmacol Ther 15(4):463–473

    PubMed  CAS  Google Scholar 

  • Dall’Ozzo S, Tartas S et al (2004) Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 64(13):4664–4669

    PubMed  Google Scholar 

  • Danilov SM, Gavrilyuk VD et al (2001) Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting. Am J Physiol Lung Cell Mol Physiol 280(6):L1335–L1347

    PubMed  CAS  Google Scholar 

  • Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1(5):435–461

    PubMed  CAS  Google Scholar 

  • Dedrick RL, Walicke P et al (2002) Anti-adhesion antibodies efalizumab, a humanized anti-CD11a monoclonal antibody. Transpl Immunol 9(2–4):181–186

    PubMed  CAS  Google Scholar 

  • den Broeder A, van de Putte L et al (2002) A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol 29(11):2288–2298

    Google Scholar 

  • Deng R, Iyer S, Theil FP et al (2011) Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data. What have we learned? MAbs 3(1):61–66

    PubMed  Google Scholar 

  • Dong JQ, Salinger DH, Endres CJ et al (2011) Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet 50:131–142

    PubMed  CAS  Google Scholar 

  • Dickinson BL, Badizadegan K et al (1999) Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104(7):903–911

    PubMed  CAS  Google Scholar 

  • Dirks NL, Meibohm B (2010) Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(10):633–659

    PubMed  CAS  Google Scholar 

  • Dowell JA, Korth-Bradley J et al (2001) Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol 41(11):1206–1214

    PubMed  CAS  Google Scholar 

  • Druet P, Bariety J et al (1978) Distribution of heterologous antiperoxidase antibodies and their fragments in the superficial renal cortex of normal Wistar-Munich rat: an ultrastructural study. Lab Invest 39(6):623–631

    PubMed  CAS  Google Scholar 

  • Duconge J, Castillo R et al (2004) Integrated pharmacokinetic-pharmacodynamic modeling and allometric scaling for optimizing the dosage regimen of the monoclonal ior EGF/r3 antibody. Eur J Pharm Sci 21(2–3):261–270

    PubMed  CAS  Google Scholar 

  • Erbitux® (2004) Erbitux (Cetuximab) prescribing information. Imclone Systems Inc., Bristol-Myers Squibb Company, Branchburg/Princeton

    Google Scholar 

  • Ferl GZ, Wu AM et al (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33(11):1640–1652

    PubMed  Google Scholar 

  • Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R et al (2004) Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum 50(5):1412–1419

    PubMed  CAS  Google Scholar 

  • Ghetie V, Hubbard JG et al (1996) Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26(3):690–696

    PubMed  CAS  Google Scholar 

  • Gibiansky L, Gibiansky E (2009) Target-mediated drug disposition model: relationships with indirect response models and application to population PK–PD analysis. J Pharmacokinet Pharmacodyn 36(4):341–351

    PubMed  Google Scholar 

  • Gibiansky L, Frey N (2012) Linking interleukin-6 receptor blockade with tocilizumab and its hematological effects using a modeling approach. J Pharmacokinet Pharmacodyn 39(1):5–16

    PubMed  CAS  Google Scholar 

  • Gillies SD, Lo KM et al (2002) Improved circulating half-life and efficacy of an antibody-interleukin 2 immunocytokine based on reduced intracellular proteolysis. Clin Cancer Res 8(1):210–216

    PubMed  CAS  Google Scholar 

  • Gillies SD, Lan Y et al (1999) Improving the efficacy of antibody-interleukin 2 fusion proteins by reducing their interaction with Fc receptors. Cancer Res 59(9):2159–2166

    PubMed  CAS  Google Scholar 

  • Girish S, Martin SW, Peterson MC et al (2011) AAPS workshop report: strategies to address therapeutic protein–drug interactions during clinical development. AAPS J 13(3):405–416

    PubMed  CAS  Google Scholar 

  • Goldsby RA, Kindt TJ et al (1999) Immunoglobulins: structure and function. In: Kuby immunology, 4th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Gottlieb AB, Miller B et al (2003) Subcutaneously administered efalizumab (anti-CD11a) improves signs and symptoms of moderate to severe plaque psoriasis. J Cutan Med Surg 7(3):198–207

    PubMed  Google Scholar 

  • Hayashi N, Tsukamoto Y et al (2007) A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63(5):548–561

    PubMed  CAS  Google Scholar 

  • Herceptin® (2006) Herceptin (Trastuzumab) prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

  • Hervey PS, Keam SJ (2006) Abatacept. BioDrugs 20(1):53–61, discussion 62

    PubMed  CAS  Google Scholar 

  • Hinton PR, Xiong JM et al (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176(1):346–356

    PubMed  CAS  Google Scholar 

  • Holmes D (2011) Buy buy bispecific antibodies. Nat Rev Drug Discov 10:798–800

    PubMed  CAS  Google Scholar 

  • Hooks MA, Wade CS et al (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11(1):26–37

    PubMed  CAS  Google Scholar 

  • Huang L, Biolsi S et al (2006) Impact of variable domain glycosylation on antibody clearance: an LC/MS characterization. Anal Biochem 349(2):197–207

    PubMed  CAS  Google Scholar 

  • Huang S-M, Zhao H, Lee J-I et al (2010) Therapeutic protein–drug interactions and implications for drug development. Clin Pharmacol Ther 87(4):497–503

    PubMed  CAS  Google Scholar 

  • Humira® (2007) Humira (Adalimumab) prescribing information. Abbott Laboratories, Chicago

    Google Scholar 

  • ICH (1997a) ICH harmonized tripartite guideline M3: nonclinical safety studies for the conduct of human clinical trials for pharmaceuticals

    Google Scholar 

  • ICH (1997b) ICH harmonized tripartite guideline S6: preclinical safety evaluation of biotechnology-derived pharmaceuticals

    Google Scholar 

  • Ilaris® (canakimumab) (2011) Ilaris prescribing information. Novartis Corp, East Hanover

    Google Scholar 

  • Jolling K, Perez Ruixo JJ et al (2005) Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin. Eur J Pharm Sci 24(5):465–475

    PubMed  CAS  Google Scholar 

  • Joshi A, Bauer R et al (2006) An overview of the pharmacokinetics and pharmacodynamics of efalizumab: a monoclonal antibody approved for use in psoriasis. J Clin Pharmacol 46(1):10–20

    PubMed  CAS  Google Scholar 

  • Junghans RP (1997) Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res 16(1):29–57

    PubMed  CAS  Google Scholar 

  • Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A 93(11):5512–5516

    PubMed  CAS  Google Scholar 

  • Kadcyla® (ado-trastuzumab emtansine) (2013) Kadcyla prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

  • Kagan L, Abraham AK, Harrold JM et al (2010) Interspecies scaling of receptor-mediated pharmacokinetics and pharmacodynamics of type I interferons. Pharm Res 27:920–932

    PubMed  CAS  Google Scholar 

  • Kairemo KJ, Lappalainen AK et al (2001) In vivo detection of intervertebral disk injury using a radiolabeled monoclonal antibody against keratan sulfate. J Nucl Med 42(3):476–482

    PubMed  CAS  Google Scholar 

  • Kelley SK, Gelzleichter T et al (2006) Preclinical pharmacokinetics, pharmacodynamics, and activity of a humanized anti-CD40 antibody (SGN-40) in rodents and non-human primates. Br J Pharmacol 148(8):1116–1123

    PubMed  CAS  Google Scholar 

  • Kleiman NS, Raizner AE et al (1995) Differential inhibition of platelet aggregation induced by adenosine diphosphate or a thrombin receptor-activating peptide in patients treated with bolus chimeric 7E3 Fab: implications for inhibition of the internal pool of GPIIb/IIIa receptors. J Am Coll Cardiol 26(7):1665–1671

    PubMed  CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    PubMed  CAS  Google Scholar 

  • Kolar GR, Capra JD (2003) Immunoglobulins: structure and function. In: Paul WE (ed) Fundamental immunology, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Koon HB, Severy P et al (2006) Antileukemic effect of daclizumab in CD25 high-expressing leukemias and impact of tumor burden on antibody dosing. Leuk Res 30(2):190–203

    PubMed  CAS  Google Scholar 

  • Kovarik JM, Nashan B et al (2001) A population pharmacokinetic screen to identify demographic-clinical covariates of basiliximab in liver transplantation. Clin Pharmacol Ther 69(4):201–209

    PubMed  CAS  Google Scholar 

  • Krueger JG (2002) The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol 46(1):1–23, quiz 23–6

    PubMed  Google Scholar 

  • Kuus-Reichel K, Grauer LS et al (1994) Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol 1(4):365–372

    PubMed  CAS  Google Scholar 

  • Lee H, Kimko HC et al (2003) Population pharmacokinetic and pharmacodynamic modeling of etanercept using logistic regression analysis. Clin Pharmacol Ther 73(4):348–365

    PubMed  CAS  Google Scholar 

  • Lee JI, Zhang L, Men A et al (2010) CYP-mediated therapeutic protein-drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet 49(5):295–310

    PubMed  CAS  Google Scholar 

  • Lin YS, Nguyen C et al (1999) Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 288(1):371–378

    PubMed  CAS  Google Scholar 

  • Ling J, Zhou H, Jiao Q et al (2009) Interspecies scaling of therapeutic monoclonal antibodies: initial look. J Clin Pharmacol 49(12):1382–1402

    PubMed  CAS  Google Scholar 

  • Lobo ED, Hansen RJ et al (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93(11):2645–2668

    PubMed  CAS  Google Scholar 

  • Looney RJ, Anolik JH et al (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50(8):2580–2589

    PubMed  CAS  Google Scholar 

  • LoRusso PM, Weiss D, Guardino E et al (2011) Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res 17(20):6437–6447

    PubMed  CAS  Google Scholar 

  • Lu D, Modi S, Elias A et al (2011) Pharmacokinetics (PK) of Trastuzumab emtansine and paclitaxel or docetaxel in patients with HER2-positive MBS previously treated with trastuzumab-containing regimen. In: 34th annual San Antonio breast cancer symposium. San Antonio

    Google Scholar 

  • Lu D, Burris H, Wang B et al (2012) Drug interaction potential of trastuzumab emtansine in combination with pertuzumab in patients with HER2-positive metastatic breast cancer. Curr Drug Metab 13:911–922

    PubMed  CAS  Google Scholar 

  • Lucentis® (2006) Lucentis (Ranibizumab) prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

  • Ma P, Yang BB, Wang YM et al (2009) Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol 49(10):1142–1156

    PubMed  CAS  Google Scholar 

  • Mager DE, Mascelli MA, Kleiman NS, Fitzgerald DJ, Abernethy DR (2003) Simultaneous modeling of abciximab plasma concentrations and ex vivo pharmacodynamics in patients undergoing coronary angioplasty. J Pharmacol Exp Ther 307(3):969–976

    PubMed  CAS  Google Scholar 

  • Mager DE, Woo S, Jusko WJ (2009) Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet 24:16–24

    PubMed  CAS  Google Scholar 

  • Mahmood I (2005) Prediction of concentration-time profiles in humans. In: Interspecies pharmacokinetics scaling. Pine House Publishers, Rockville, pp 219–241

    Google Scholar 

  • Mahmood I, Green MD (2005) Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet 44(4):331–347

    PubMed  CAS  Google Scholar 

  • Mahmood I (2009) Pharmacokinetic allometric scaling of antibodies: application to the first-in-human dose estimation. J Pharm Sci 98:3850–3861

    PubMed  CAS  Google Scholar 

  • Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macrarlane JD et al (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor α monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41(9):1552–1563

    PubMed  CAS  Google Scholar 

  • Martin-Jimenez T, Riviere JE (2002) Mixed-effects modeling of the interspecies pharmacokinetic scaling of oxytetracycline. J Pharm Sci 91(2):331–341

    PubMed  CAS  Google Scholar 

  • McClurkan MB, Valentine JL et al (1993) Disposition of a monoclonal anti-phencyclidine Fab fragment of immunoglobulin G in rats. J Pharmacol Exp Ther 266(3):1439–1445

    PubMed  CAS  Google Scholar 

  • McLaughlin P, Grillo-Lopez AJ et al (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833

    PubMed  CAS  Google Scholar 

  • Medesan C, Matesoi D et al (1997) Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J Immunol 158(5):2211–2217

    PubMed  CAS  Google Scholar 

  • Meibohm B, Derendorf H (2002) Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci 91(1):18–31

    PubMed  CAS  Google Scholar 

  • Meijer RT, Koopmans RP et al (2002) Pharmacokinetics of murine anti-human CD3 antibodies in man are determined by the disappearance of target antigen. J Pharmacol Exp Ther 300(1):346–353

    PubMed  CAS  Google Scholar 

  • Meredith PA, Elliott HL et al (1991) Dose–response clarification in early drug development. J Hypertens Suppl 9(6):S356–S357

    PubMed  CAS  Google Scholar 

  • Morris EC, Rebello P et al (2003) Pharmacokinetics of alemtuzumab used for in vivo and in vitro T-cell depletion in allogeneic transplantations: relevance for early adoptive immunotherapy and infectious complications. Blood 102(1):404–406

    PubMed  CAS  Google Scholar 

  • Mortensen DL, Walicke PA et al (2005) Pharmacokinetics and pharmacodynamics of multiple weekly subcutaneous efalizumab doses in patients with plaque psoriasis. J Clin Pharmacol 45(3):286–298

    PubMed  CAS  Google Scholar 

  • Mould DR, Sweeney KR (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies–mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 10(1):84–96

    PubMed  CAS  Google Scholar 

  • Mould DR, Davis CB et al (1999) A population pharmacokinetic-pharmacodynamic analysis of single doses of clenoliximab in patients with rheumatoid arthritis. Clin Pharmacol Ther 66(3):246–257

    PubMed  CAS  Google Scholar 

  • Nakakura EK, McCabe SM et al (1993) Potent and effective prolongation by anti-LFA-1 monoclonal antibody monotherapy of non-primarily vascularized heart allograft survival in mice without T cell depletion. Transplantation 55(2):412–417

    PubMed  CAS  Google Scholar 

  • Nestorov I, Zitnik R et al (2004) Population pharmacokinetic modeling of subcutaneously administered etanercept in patients with psoriasis. J Pharmacokinet Pharmacodyn 31(6):463–490

    PubMed  CAS  Google Scholar 

  • Newkirk MM, Novick J et al (1996) Differential clearance of glycoforms of IgG in normal and autoimmune-prone mice. Clin Exp Immunol 106(2):259–264

    PubMed  CAS  Google Scholar 

  • Ng CM, Joshi A et al (2005) Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22(7):1088–1100

    PubMed  CAS  Google Scholar 

  • Ng CM, Stefanich E et al (2006) Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23(1):95–103

    PubMed  CAS  Google Scholar 

  • Norman DJ, Chatenoud L et al (1993) Consensus statement regarding OKT3-induced cytokine-release syndrome and human antimouse antibodies. Transplant Proc 25(2 Suppl 1):89–92

    PubMed  CAS  Google Scholar 

  • Nulojix® (belatacept) (2011) Nulojix prescribing information. Bristol Myers Squibb Inc, Princeton

    Google Scholar 

  • Ober RJ, Radu CG et al (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13(12):1551–1559

    PubMed  CAS  Google Scholar 

  • Oitate M, Masubuchi N, Ito T et al (2011) Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. Drug Metab Pharmacokinet 26:423–430

    PubMed  CAS  Google Scholar 

  • Oitate M, Nakayama S, Ito T et al (2012) Prediction of human plasma concentration-time profiles of monoclonal antibodies from monkey data by species-invariant time method. Drug Metab Pharmacokinet 27:354–359. Online advance publication at http://www.jstage.jst.go.jp/article/dmpk/advpub/0/advpub_1111290286/_article

    PubMed  CAS  Google Scholar 

  • Papp K, Bissonnette R et al (2001) The treatment of moderate to severe psoriasis with a new anti-CD11a monoclonal antibody. J Am Acad Dermatol 45(5):665–674

    PubMed  CAS  Google Scholar 

  • Petkova SB, Akilesh S et al (2006) Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18(12):1759–1769

    PubMed  CAS  Google Scholar 

  • Prabhu S, Boswell SC, Leipold D et al (2011) Antibody delivery of drugs and radionuclides: factors influencing clinical pharmacology. Ther Deliv 2(6):769–791

    PubMed  CAS  Google Scholar 

  • Presta LG (2002) Engineering antibodies for therapy. Curr Pharm Biotechnol 3(3):237–256

    PubMed  CAS  Google Scholar 

  • Presta LG, Shields RL et al (2002) Engineering therapeutic antibodies for improved function. Biochem Soc Trans 30(4):487–490

    PubMed  CAS  Google Scholar 

  • Prolia® (denosumab) (2010) Prolia prescribing information. Amgen Inc., Thousand Oaks

    Google Scholar 

  • Radin A, Marbury T, Osgood G, Belomestnov P (2010) Safety and pharmacokinetics of subcutaneously administered rilonacept in patients with well- controlled end-stage renal disease. J Clin Pharmacol 50:835–841

    PubMed  CAS  Google Scholar 

  • Raptiva® (2004) Raptiva (Efalizumab) prescribing information. Genentech Inc., South San Francisco

    Google Scholar 

  • Remicade® (2006) Remicade (Infliximab) prescribing information. Centocor Inc., Malvern

    Google Scholar 

  • Rituxan® (2006) Rituxan (Rituximab) prescribing information. Genentech Inc./Biogen Inc., South San Francisco/Cambridge

    Google Scholar 

  • Roopenian DC, Christianson GJ et al (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170(7):3528–3533

    PubMed  CAS  Google Scholar 

  • Roskos LK, Davis CG et al (2004) The clinical pharmacology of therapeutic monoclonal antibodies. Drug Dev Res 61(3):108–120

    CAS  Google Scholar 

  • Schror K, Weber AA (2003) Comparative pharmacology of GP IIb/IIIa antagonists. J Thromb Thrombolysis 15(2):71–80

    PubMed  Google Scholar 

  • Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67–86

    PubMed  CAS  Google Scholar 

  • Sheiner L, Wakefield J (1999) Population modelling in drug development. Stat Methods Med Res 8(3):183–193

    PubMed  CAS  Google Scholar 

  • Sheiner LB (1997) Learning versus confirming in clinical drug development. Clin Pharmacol Ther 61(3):275–291

    PubMed  CAS  Google Scholar 

  • Shields RL, Namenuk AK et al (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276(9):6591–6604

    PubMed  CAS  Google Scholar 

  • Sifontis NM, Benedetti E, Vasquez EM (2002) Clinically significant drug interaction between basiliximab and tacrolimus in renal transplant recipients. Transplant Proc 34:1730–1732

    PubMed  CAS  Google Scholar 

  • Simister NE, Mostov KE (1989a) An Fc receptor structurally related to MHC class I antigens. Nature 337(6203):184–187

    PubMed  CAS  Google Scholar 

  • Simister NE, Mostov KE (1989b) Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 54(Pt 1):571–580

    PubMed  CAS  Google Scholar 

  • Simulect® (2005) Simulect (Basiliximab) prescribing information. Novartis Pharmaceuticals, East Hanover

    Google Scholar 

  • Simponi® (2009) Simponi (golimumab) prescribing information. Janssen Biotech Inc., Horsham

    Google Scholar 

  • Soliris® (eculizumab) (2007) Soliris prescribing Information. Alexion Pharmaceuticals Inc, Cheshire

    Google Scholar 

  • Spiekermann GM, Finn PW et al (2002) Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196(3):303–310

    PubMed  CAS  Google Scholar 

  • Straughn AB (2006) Limitations of noncompartmental pharmacokinetic analysis of biotech drugs. In: Meibohm B (ed) Pharmacokinetics and pharmacodynamics of biotech drugs. Weinheim, Wiley, pp 181–188

    Google Scholar 

  • Subramanian GM, Cronin PW et al (2005) A phase 1 study of PAmab, a fully human monoclonal antibody against Bacillus anthracis protective antigen, in healthy volunteers. Clin Infect Dis 41(1):12–20

    PubMed  CAS  Google Scholar 

  • Sun YN, Lu JF et al (2005) Population pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) following long-term subcutaneous weekly dosing in psoriasis subjects. J Clin Pharmacol 45(4):468–476

    PubMed  CAS  Google Scholar 

  • Synagis (2004) Synagis (Palivizumab) prescribing information. MedImmune Inc./Abbott Laboratories Inc., Gaithersburg/Columbus

    Google Scholar 

  • Tabrizi MA, Tseng CM et al (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11(1–2):81–88

    PubMed  CAS  Google Scholar 

  • Tang H, Mayersohn M (2005) Accuracy of allometrically predicted pharmacokinetic parameters in humans: role of species selection. Drug Metab Dispos 33(9):1288–1293

    PubMed  CAS  Google Scholar 

  • Tang L, Persky AM, Hochhaus G, Meibohm B (2004) Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93(9):2184–2204

    PubMed  CAS  Google Scholar 

  • Ternant D, Paintaud G (2005) Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins. Expert Opin Biol Ther 5(Suppl 1):S37–S47

    PubMed  CAS  Google Scholar 

  • Thurber GM, Schmidt MM, Wittrup KD (2008) Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 60(12):1421–1434

    PubMed  CAS  Google Scholar 

  • Tokuda Y, Watanabe T et al (1999) Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br J Cancer 81(8):1419–1425

    PubMed  CAS  Google Scholar 

  • Tysabri® (2006) Tysabri (Natalizumab) prescribing information. Elan Pharmaceuticals Inc./Biogen Idec Inc., San Diego/Cambridge

    Google Scholar 

  • Umana P, Jean-Mairet J et al (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180

    PubMed  CAS  Google Scholar 

  • Vaccaro C, Bawdon R et al (2006) Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci U S A 103(49):18709–18714

    PubMed  CAS  Google Scholar 

  • Vaishnaw AK, TenHoor CN (2002) Pharmacokinetics, biologic activity, and tolerability of alefacept by intravenous and intramuscular administration. J Pharmacokinet Pharmacodyn 29(5–6):415–426

    PubMed  CAS  Google Scholar 

  • Vasquez EM, Pollak R (1997) OKT3 therapy increases cyclosporine blood levels. Clin Transplant 11(1):38–41

    PubMed  CAS  Google Scholar 

  • Vectibix® (2006) Vectibix (Panitumumab) prescribing information. Amgen Inc, Thousand Oaks

    Google Scholar 

  • Vincenti F, Mendez R, Pescovitz M, Rajagopalan PR, Wilkinson AH, Butt K et al (2007) A phase I/II randomized open-label multi-center trial of efalizumab, a humanized ani-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant 7:1770–1777

    PubMed  CAS  Google Scholar 

  • Wang W, Prueksaritanont T (2010) Prediction of human clearance of therapeutic proteins: simple allometric scaling method revisited. Biopharm Drug Dispos 31:253–263

    PubMed  Google Scholar 

  • Wang W, Singh S et al (2007) Antibody structure, instability, and formulation. J Pharm Sci 96(1):1–26

    PubMed  CAS  Google Scholar 

  • Watanabe N, Kuriyama H et al (1988) Continuous internalization of tumor necrosis factor receptors in a human myosarcoma cell line. J Biol Chem 263(21):10262–10266

    PubMed  CAS  Google Scholar 

  • Weiner LM (2006) Fully human therapeutic monoclonal antibodies. J Immunother 29(1):1–9

    PubMed  CAS  Google Scholar 

  • Weisman MH, Moreland LW et al (2003) Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther 25(6):1700–1721

    PubMed  CAS  Google Scholar 

  • Werther WA, Gonzalez TN et al (1996) Humanization of an anti-lymphocyte function-associated antigen (LFA)-1 monoclonal antibody and reengineering of the humanized antibody for binding to rhesus LFA-1. J Immunol 157(11):4986–4995

    PubMed  CAS  Google Scholar 

  • Wiseman GA, White CA, Sparks RB et al (2001) Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit Rev Oncol Hematol 39(1–2):181–194

    PubMed  CAS  Google Scholar 

  • Wurster U, Haas J (1994) Passage of intravenous immunoglobulin and interaction with the CNS. J Neurol Neurosurg Psychiatry 57(Suppl):21–25

    PubMed  Google Scholar 

  • Xolair® (2003) Xolair (Omalizumab) [prescribing information]. Genentech Inc/Novartis Pharmaceuticals Corp., South San Francisco/East Hanover

    Google Scholar 

  • Yervoy® (2011) Yervoy (ipilimumab) prescribing information. Bristol Myers Squibb Inc, Princeton

    Google Scholar 

  • Yim DS, Zhou H et al (2005) Population pharmacokinetic analysis and simulation of the time-concentration profile of etanercept in pediatric patients with juvenile rheumatoid arthritis. J Clin Pharmacol 45(3):246–256

    PubMed  CAS  Google Scholar 

  • Younes A, Bartlett NL, Leonard JP et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821

    PubMed  CAS  Google Scholar 

  • Zenapax® (2005) Zenapax (Daclizumab) prescribing information. Hoffman-La Roche Inc, Nutley

    Google Scholar 

  • Zevalin® (2002) Zevalin (ibritumomab tiuxetan) prescribing information. Spectrum Pharmaceuticals, Irvine

    Google Scholar 

  • Zheng Y, Scheerens H, Davis JC et al (2011) Translational pharmacokinetics and pharmacodynamics of an FcRn-variant anti-CD4 monoclonal antibody from preclinical model to phase I study. Clin Pharmacol Ther 89(2):283–290

    PubMed  CAS  Google Scholar 

  • Zhou H (2005) Clinical pharmacokinetics of etanercept: a fully humanized soluble recombinant tumor necrosis factor receptor fusion protein. J Clin Pharmacol 45(5):490–497

    PubMed  CAS  Google Scholar 

  • Zhou H, Mayer PR et al (2004) Unaltered etanercept pharmacokinetics with concurrent methotrexate in patients with rheumatoid arthritis. J Clin Pharmacol 44(11):1235–1243

    PubMed  CAS  Google Scholar 

  • Zhu Y, Hu C, Lu M et al (2009) Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 49(2):162–175

    PubMed  CAS  Google Scholar 

  • Zia-Amirhosseini P, Minthorn E et al (1999) Pharmacokinetics and pharmacodynamics of SB-240563, a humanized monoclonal antibody directed to human interleukin-5, in monkeys. J Pharmacol Exp Ther 291(3):1060–1067

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Davis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, J.D. et al. (2013). Monoclonal Antibodies: From Structure to Therapeutic Application. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6486-0_7

Download citation

Publish with us

Policies and ethics