Skip to main content

The Birational Geometry of the Hilbert Scheme of Points on Surfaces

  • Chapter
  • First Online:
Birational Geometry, Rational Curves, and Arithmetic

Abstract

In this paper, we study the birational geometry of the Hilbert scheme of points on a smooth, projective surface, with special emphasis on rational surfaces such as \({\mathbb{P}}^{2}, {\mathbb{P}}^{1} \times {\mathbb{P}}^{1}\) and \(\mathbb{F}_{1}\). We discuss constructions of ample divisors and determine the ample cone for Hirzebruch surfaces and del Pezzo surfaces with K 2≥2. As a corollary, we show that the Hilbert scheme of points on a Fano surface is a Mori dream space. We then discuss effective divisors on Hilbert schemes of points on surfaces and determine the stable base locus decomposition completely in a number of examples. Finally, we interpret certain birational models as moduli spaces of Bridgeland-stable objects. When the surface is \({\mathbb{P}}^{1} \times {\mathbb{P}}^{1}\) or \(\mathbb{F}_{1}\), we find a precise correspondence between the Mori walls and the Bridgeland walls, extending the results of Arcara et al. (The birational geometry of the Hilbert scheme of points on \({\mathbb{P}}^{2}\) and Bridgeland stability, arxiv:1203.0316, 2012) to these surfaces.

To Jim Simons, with gratitude

Mathematics Subject Classification codes (2000): 14E30, 14C05, 14D20, 14D23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramovich, D. and Polishchuk, A., Sheaves oft-structures and valuative criteria for stable complexes, J. Reine Angew. Math. 590, 89–130, (2006).

    Google Scholar 

  2. Arcara, D. and Bertram, A., Bridgeland-stable moduli spaces forK-trivial surfaces, with an appendix by Max Lieblich, J. Euro. Math. Soc. 15(1), 1–38, (2013).

    Google Scholar 

  3. Arcara, D., Bertram, A., Coskun, I., and Huizenga, J., The birational geometry of the Hilbert scheme of points on \({\mathbb{P}}^{2}\) and Bridgeland stability, arxiv:1203.0316, Adv. Math. 235, 580–626, (2013).

    Google Scholar 

  4. Bayer, A. and Macrì, E., The space of stability conditions on the local projective plane, Duke Math. J. 160, 263–322, (2011).

    Google Scholar 

  5. Bayer, A. and Macrì, E., Projectivity and birational geometry of Bridgeland moduli spaces, arxiv:1203.4613, (2012).

    Google Scholar 

  6. Bayer, A., Macrì, E., and Toda, Y., Bridgeland stability conditions on 3-folds I: Bogomolov-Gieseker type inequalities, arxiv:1103.5010, (2011).

    Google Scholar 

  7. Beltrametti, M., Francia, P., and Sommese, A., On Reider’s method and higher order embedding, Duke Math. J. 58, 425–439, (1989).

    Google Scholar 

  8. Beltrametti M. and Sommese, A., Onk-spannedness for projective surfaces, LNM 1417, 24–51, (1988).

    Google Scholar 

  9. Beltrametti M. and Sommese, A., Zero cycles andkth order embeddings of smooth projective surfaces, with an appendix by L. Göttsche. Sympos. Math., XXXII Problems in the theory of surfaces and their classification (Cortona 1988), 33–48, Academic Press, London, 1991.

    Google Scholar 

  10. Birkar, C., Cascini, P., Hacon, C.D., and McKernan, J., Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23, no. 2, 405–468, (2010).

    Google Scholar 

  11. Bridgeland, T., Stability conditions on triangulated categories. Ann. of Math. (2) 166, no. 2, 317–345, (2007).

    Google Scholar 

  12. Bridgeland, T., Stability conditions onK3surfaces. Duke Math. J. 141, no. 2, 241–291, (2008).

    Google Scholar 

  13. Catanese, F. and Göttsche, L., d-very-ample line bundles and embeddings of Hilbert schemes of 0-cycles. Manuscripta Math. 68, no.3, 337–341, (1990).

    Google Scholar 

  14. Chen, D. and Coskun, I., Stable base locus decompositions of the Kontsevich moduli spaces. Michigan Math. J., 59, no.2, 435–466, (2010).

    Google Scholar 

  15. Chen, D. and Coskun, I., Towards the Mori program for Kontsevich moduli spaces, with an appendix by Charley Crissman. Amer. J. Math. 133, no.5, 1389–1419, (2011).

    Google Scholar 

  16. di Rocco, S., k-very ample line bundles on del Pezzo surfaces, Math. Nachrichten 179, 47–56, (1996).

    Google Scholar 

  17. Eisenbud, D., The geometry of syzygies, Springer, 2005.

    Google Scholar 

  18. Fogarty, J., Algebraic families on an algebraic surface, Amer. J. Math. 90, 511–521, (1968).

    Google Scholar 

  19. Fogarty, J., Algebraic families on an algebraic surface II: The Picard scheme of the punctual Hilbert scheme. Amer. J. Math. 95, 660–687, (1973).

    Google Scholar 

  20. Happel, D., Reiten, I., and Smalo, S., Tilting in abelian categories and quasitilted algebras, Mem. of the Am. Math. Soc., 120, no. 575, (1996).

    Google Scholar 

  21. Hartshorne, R., Algebraic Geometry, Springer, 1977.

    Google Scholar 

  22. Hassett, B. and Hyeon, D., Log minimal model program for the moduli space of curves: The first divisorial contraction, Trans. Amer. Math. Soc., 361, 4471–4489, (2009).

    Google Scholar 

  23. Hassett, B. and Hyeon, D., Log minimal model program for the moduli space of curves: The first flip, Ann. Math. 177(3), 911–968, (2013).

    Google Scholar 

  24. Hu, Y. and Keel, S., Mori dream spaces and GIT, Michigan Math. J. 48, 331–348, (2000).

    Google Scholar 

  25. Huizenga, J., Restrictions of Steiner bundles and divisors on the Hilbert scheme of points in the plane, Harvard University, thesis, 2012.

    Google Scholar 

  26. King, A., Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford 45, no. 2, 515–530, (1994).

    Google Scholar 

  27. Lazarsfeld, R., Positivity in Algebraic Geometry I, Springer-Verlag, 2004.

    Google Scholar 

  28. Li, W.P., Qin, Z., and Zhang, Q., Curves in the Hilbert schemes of points on surfaces. Contemp. Math. 322, 89–96, (2003).

    Google Scholar 

  29. Maciocia, A., Computing the walls associated to Bridgeland stability conditions on projective surfaces, arxiv:1202.4587, (2012).

    Google Scholar 

  30. Szemberg, T. and Tutaj-Gasińska, H., General blow-ups of ruled surfaces, Abh. Math. Sem. Univ. Hamburg 70, 93–103, (2000).

    Google Scholar 

  31. Toda, Y., Moduli stacks and invariants of semi-stable objects on K3 surfaces, Adv. Math. 217 no. 6, 2736–2781, (2008).

    Google Scholar 

  32. Toda, Y., Stability conditions and extremal contractions, arxiv:1204.0602, (2012).

    Google Scholar 

Download references

Acknowledgements

During the preparation of this paper the first author was partially supported by the NSF grant DMS-0901128 and the second author was partially supported by the NSF CAREER grant DMS-0950951535 and an Alfred P. Sloan Foundation Fellowship. The second author would like to thank the Simons Foundation and the organizers of the Simons Symposium on Rational Points over Non-algebraically Closed Fields, Fyodor Bogomolov, Brendan Hassett, and Yuri Tschinkel, for a very productive and enlightening conference. It is a pleasure to thank Daniele Arcara, Arend Bayer, Jack Huizenga, and Emanuele Macrì for discussions about Bridgeland stability and the birational geometry of Hilbert schemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izzet Coskun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bertram, A., Coskun, I. (2013). The Birational Geometry of the Hilbert Scheme of Points on Surfaces. In: Bogomolov, F., Hassett, B., Tschinkel, Y. (eds) Birational Geometry, Rational Curves, and Arithmetic. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6482-2_2

Download citation

Publish with us

Policies and ethics