Skip to main content

Novel Antineoplastics Targeting Genetic Changes in Colorectal Cancer

  • Chapter
  • First Online:
Impact of Genetic Targets on Cancer Therapy

Abstract

Cytotoxic chemotherapy remains the mainstay of the medical ­management of colorectal cancer (CRC). Research over the last two decades has led to a molecular understanding of the oncogenic mechanisms involved in CRC and has contributed to the rational development of antineoplastics that target these mechanisms. During carcinogenesis, genetic changes often occur in molecules that play key functional roles in cancer such as cell proliferation, angiogenesis, apoptosis, cell death and immune-mediated destruction of cancer cells. Here, we review novel antineoplastics that are approved or in development for CRC that target molecules associated with genetic aberrations in CRC. Some of these targeted antineoplastics have proven effective against other solid tumors and hold promise in treating CRC whereas others are now routinely used in combination with cytotoxic agents. This article reviews antineoplastics that target genetic changes in CRC, their antitumor mechanisms, and their stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desch CE, Benson AB, Somerfield MR, et al. Colorectal cancer surveillance: 2005 update of an American society of clinical oncology practice guideline. J Clin Oncol. 2005;23(33):8512–9.

    PubMed  Google Scholar 

  2. André T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51.

    PubMed  Google Scholar 

  3. O’Connor ES, Greenblatt DY, LoConte NK, Gangnon RE, Liou JI, Heise CP, et al. Adjuvant chemotherapy for stage II colon cancer with poor prognostic features. J Clin Oncol. 2011;29(25):3381.

    PubMed  Google Scholar 

  4. Benson A, O’Dwyer P, Hamilton S. Oxaliplatin, Leucovorin, and Fluorouracil With or Without Bevacizumab in Treating Patients Who Have Undergone Surgery for Stage II Colon Cancer. 2012; NCT00217737.

    Google Scholar 

  5. Kuebler JP, Wieand HS, O’Connell MJ, et al. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J Clin Oncol. 2007;25(16):2198.

    PubMed  CAS  Google Scholar 

  6. André T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27:3109–16.

    PubMed  Google Scholar 

  7. Allegra CJ, Yothers G, O’Connell MJ, et al. Initial safety report of NSABP C-08: a randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J Clin Oncol. 2009;27(20):3385.

    PubMed  CAS  Google Scholar 

  8. De Gramont A, van Cutsem E, Tabernero J, et al. AVANT: results from a randomized, three-arm multinational phase III study to investigate bevacizumab with either XELOX or FOLFOX4 versus FOLFOX4 alone as adjuvant treatment for colon cancer (abstract). Data presented at the 2011 ASCO GI Cancers Symposium; 2011 Jan 20–22; San Francisco, CA; 2011. Abstract available online at http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=103&abstractID=71344.

  9. Alberts SR, Sargent DJ, Smyrk TC, et al. Adjuvant mFOLFOX6 with and without cetuximab (Cmab) in KRAS wild-type (WT) patients with resected stage III colon cancer: results from NCCTG Intergroup Phase III Trial N0147 9abstract CRA3507). J Clin Oncol. 2010;28:959s. (Abstract available online at http://abstract.asco.org/AbstView_74_41265.html, accessed July 22, 2010.

    Google Scholar 

  10. Kabbinavar FF, Hurwitz HI, Yi J, Sarkar S, Rosen O. Addition of bevacizumab to fluorouracil-based first-line treatment of metastatic colorectal cancer: pooled analysis of cohorts of older patients from two randomized clinical trials. J Clin Oncol. 2009;27(2):199–205.

    PubMed  CAS  Google Scholar 

  11. Grothey A, Sugrue MM, Purdie DM, et al. Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: results from a large observational cohort study (BRiTE). J Clin Oncol. 2008;26(33):5326–34.

    PubMed  CAS  Google Scholar 

  12. Jimeno A, Messersmith WA, Hirsch FR, Franklin WA, Eckhardt SG. KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J Clin Oncol. 2009;27(7):1130–6.

    PubMed  CAS  Google Scholar 

  13. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25(13):1658.

    PubMed  Google Scholar 

  14. Hecht JR, Mitchell E, Chidiac T, Scroggin C, Hagenstad C, Spigel D, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol. 2009;27:672–80.

    PubMed  CAS  Google Scholar 

  15. Dunn EF, Iida M, Myers RA, Campbell DA, Hintz KA, Armstrong EA, et al. Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Oncogene. 2011;30(5):561–74.

    PubMed  CAS  Google Scholar 

  16. Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol. 2009;27(16):2622–9.

    PubMed  CAS  Google Scholar 

  17. Yen LC, Uen YH, Wu DC, Lu CY, Yu FJ, Wu IC, et al. Activating KRAS mutations and overexpression of epidermal growth factor receptor as independent predictors in metastatic colorectal cancer patients treated with cetuximab. Ann Surg. 2010;251(2):254–60.

    PubMed  Google Scholar 

  18. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.

    PubMed  CAS  Google Scholar 

  19. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    PubMed  Google Scholar 

  20. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59:366–78.

    PubMed  Google Scholar 

  21. Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol. 2011;2011:792362.

    PubMed  Google Scholar 

  22. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    PubMed  CAS  Google Scholar 

  23. Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature. 1987;327:298–303.

    PubMed  CAS  Google Scholar 

  24. Bos JL, Fearon ER, Hamilton SR, et al. Nature. 1987;327:293–7.

    PubMed  CAS  Google Scholar 

  25. Vogelstein B, Fearon ER, Hamilton SR, et al. N Engl J Med. 1988;319:525–32.

    PubMed  CAS  Google Scholar 

  26. Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov. 2008;7:1001–12.

    PubMed  CAS  Google Scholar 

  27. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer. 2008;8:782–98.

    PubMed  CAS  Google Scholar 

  28. Ullenhag GJ, Mukherjee A, Watson NF, et al. Overexpression of FLIPL is an independent marker of poor prognosis in CRC patients. Clin Cancer Res. 2007;13:5070–5.

    PubMed  CAS  Google Scholar 

  29. Kaplan-Lefko PJ, Graves JD, Zoog SJ, et al. Conatumumab, a fully human agonist antibody to death receptor 5, induces apoptosis via caspase activation in multiple tumor types. Cancer Biol Ther. 2010;9:618–31.

    PubMed  CAS  Google Scholar 

  30. Baron AD, O’Bryant CL, Cho Y. Phase Ib study of drozitumab combined with cetuximab (CET) plus irinotecan (IRI) or with FOLFIRI with or without bevacizumab (BV) in previously treated patients (pts) with mCRC (mCRC). J Clin Oncol. 2011;29 Suppl 4: abstr 532.

    Google Scholar 

  31. Sikic BI, Wakelee H, Von Mehren M, et al. A phase Ib study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI. J Clin Oncol. 2007; 25: abstr 14006.

    Google Scholar 

  32. Hotte SJ, Hirte HW, Chen EX, et al. A phase 1 study of mapatumumab (fully human ­monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res. 2008;14:3450–5.

    PubMed  CAS  Google Scholar 

  33. Mita MM, Ochoa L, Rowinsky EK, et al. A phase I, pharmacokinetic and biologic correlative study of oblimersen sodium (GenasenseTM, G3139) and irinotecan in patients with mCRC. Ann Oncol. 2006;17:313–21.

    PubMed  CAS  Google Scholar 

  34. van de Donk N, Kamphuis M, van Dijk M, et al. Evaluation of bcl-2 antisense oligonucleotide drugs in multiple myeloma. Blood. 2000;96:757.

    Google Scholar 

  35. Jansen B, Wacheck V, Heere-Ress E, et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet. 2000;356:1728–33.

    PubMed  CAS  Google Scholar 

  36. Rudin CM, Kosloff M, Hoffman PC, Edelman MJ, Vokes EE. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small cell lung cancer. J Clin Oncol. 2004;22:1110–7.

    PubMed  CAS  Google Scholar 

  37. Combination Chemotherapy and Oblimersen in Treating Patients with Advanced CRC. NCT00055822.

    Google Scholar 

  38. Yarden Y, Sliwkovski MX. Untangling the ErB signaling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    PubMed  CAS  Google Scholar 

  39. Engelman JA, Janne PA. Mechanisms of acquired resistance to epidermal growth factor receptor kinase inhibitors in non small cell lung cancer. Clin Cancer Res. 2008;14:2895–9.

    PubMed  Google Scholar 

  40. Yuza Y, Glatt KA, Jiang J, et al. Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors. Cancer Biol Ther. 2007;6:661–7.

    PubMed  CAS  Google Scholar 

  41. Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27:4702–11.

    PubMed  CAS  Google Scholar 

  42. Janne PA, Boss DS, Camidge DR, et al. Phase I dose escalation study of the pan HER inhibitor PF299804 in patients with advanced malignant solid tumors. Clin Cancer Res. 2011;17:1131–9.

    PubMed  CAS  Google Scholar 

  43. Ewing GP, Goff LW. The insulin-like growth factor signaling pathway as a target for treatment of colorectal carcinoma. Clin Colorectal Cancer. 2010;9:219–23.

    PubMed  Google Scholar 

  44. Tricoli JV, Rall LB, Karakousis CP, et al. Enhanced levels of insulin-like growth factor messenger RNA in human colon carcinomas and liposarcomas. Cancer Res. 1986;46:6169–73.

    PubMed  CAS  Google Scholar 

  45. Tolcher AW, Sarantopoulos J, Patnaik A, et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol. 2009;27:5800–7.

    PubMed  CAS  Google Scholar 

  46. Reidy DL, Vakiani E, Fakih MG, et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol. 2010;28:4240–6.

    PubMed  CAS  Google Scholar 

  47. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 2007;15:2643–8.

    Google Scholar 

  48. Jiang WG, Lloyds D, Puntis MC, Nakamura T, Hallett MB. Regulation of spreading and growth of colon cancer cells by hepatocyte growth factor. Clin Exp Metastasis. 1993;11:235–42.

    PubMed  CAS  Google Scholar 

  49. Rasola A, Fassetta M, De Bacco F, et al. A positive feedback loop between hepatocyte growth factor receptor and beta-catenin sustains colorectal cancer cell invasive growth. Oncogene. 2007;26:1078–87.

    PubMed  CAS  Google Scholar 

  50. Rosen PJ, Sweeney CJ, Park DJ, et al. A Phase 1b study of AMG 102 in combination with bevacizumab or moteranib in patients with advanced solid tumors. Clin Cancer Res. 2010;16:2677–87.

    PubMed  CAS  Google Scholar 

  51. Kolinsky KD, Su F, Bollag G, Lee R, et al. Efficacy of PLX4032, a selective V600EB-Raf inhibitor, as monotherapy or in combination with capecitabine ± bevacizumab in a CRC xenograft model. Gastrointestinal Cancers Symposium; San Francisco, CA; 2009; Abstract No:362.

    Google Scholar 

  52. Kopetz S, Desai J, Chan E, Hecht JR, et al. PLX4032 in mCRC patients with mutant BRAF tumors. J Clin Oncol. 2010; 28: abstr 3534.

    Google Scholar 

  53. Scartozzi M, Galizia E, Freddari F, Berardi R, Cellerino R, Cascinu S. Molecular biology of sporadic gastric cancer: prognostic indicators and novel therapeutic approaches. Cancer Treat Rev. 2004;30:451–9.

    PubMed  CAS  Google Scholar 

  54. Yoon J, Koo KH, Choi KY. MEK1/2 inhibitors AS703026 and AZD6244 may be potential therapies for KRAS. Cancer Res. 2011 Jan 15;71(2):445–53.

    Google Scholar 

  55. Shannon AM, Telfer BA, Smith PD, et al. The mitogen-activated protein/extracellular signal-regulated kinase inase 1/2 inhibitor AZD6244 (ARRY-142886) enhances the radiation responsiveness of lung and colorectal tumor xenografts. Clin Cancer Res. 2009;15:6619–29.

    PubMed  CAS  Google Scholar 

  56. Rinehart J, Adjei AA, Lorusso PM, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22:4456–62.

    PubMed  CAS  Google Scholar 

  57. Delord J, Houede N, Awada A, et al. First-in-human phase I safety, pharmacokinetic (PK), and pharmacodynamic (PD) analysis of the oral MEK-inhibitor AS703026 (two regimens [R]) in patients (pts) with advanced solid tumors. J Clin Oncol. 2010;28:15s.

    Google Scholar 

  58. Ryan DP. Novel therapies in CRC. Curr Colorectal Cancer Rep. 2006;2:116–9.

    Google Scholar 

  59. Oudard S, Medioni J, Aylllon J, et al. Everolimus (RAD001): an mTOR inhibitor for the treatment of metastatic renal cell carcinoma. Expert Rev Anticancer Ther. 2009;9:705–17.

    PubMed  CAS  Google Scholar 

  60. Altomare I, Russell KB, Uronis HE, et al. Phase II trial of bevacizumab (B) plus everolimus (E) for refractory mCRC (mCRC). J Clin Oncol. 2010;28:15s (suppl; abstr 3535).

    Google Scholar 

  61. Shahda S, Yu M, Picus J, et al. Phase I study everolimus (RAD001) with irinotecan (Iri) and Cetuximab (C) in second-line mCRC. J Clin Oncol. 2011;29: (suppl; abstr 523).

    Google Scholar 

  62. Graff JR, McNulty AM, Hanna KR, et al. The protein kinase C beta-selective inhibitor, Enzastaurin (LY317615. HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res. 2005;65:7462–9.

    PubMed  CAS  Google Scholar 

  63. Chiappori A, Bepler G, Barlesi F, et al. Phase II, double-blinded, randomized study of enzastaurin plus pemetrexed as second-line therapy in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2010;5:369–75.

    PubMed  Google Scholar 

  64. Casey EM, Harb W, Bradford D, et al. Randomized, double blind, multicenter, phase II study of pemetrexed (PEM), carboplatin (CARBO), bevacizumab (BEV) with enzastaurin (ENZ) or placebo (PBO) in chemotherapy-naive patients with stage IIIB/IV non-small cell lung cancer (NSCLC). J Clin Oncol. 2009;27:15s (suppl; abstr 8035).

    Google Scholar 

  65. Kreisl TN, Kotliarova S, Butman JA, et al. A phase I/II trial of enzastaurin in patients with recurrent high-grade gliomas. Neuro Oncol. 2010;12:181–9.

    PubMed  CAS  Google Scholar 

  66. Clemons M, Joy AA, Abdulnabi R, et al. Phase II, double-blind, randomized trial of capecitabine plus enzastaurin versus capecitabine plus placebo in patients with metastatic or recurrent breast cancer after prior anthracycline and taxane therapy. Breast Cancer Res Treat. 2010;124:177–86.

    PubMed  CAS  Google Scholar 

  67. Wick W, Puduvalli VK, Chamberlain MC, et al. Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol. 2010;28:1168–74.

    PubMed  CAS  Google Scholar 

  68. Morschhauser F, Seymour JF, Kluin-Nelemans HC, et al. A phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Ann Oncol. 2008;19:247–53.

    PubMed  CAS  Google Scholar 

  69. Robertson MJ, Kahl BS, Vose JM, et al. Phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2007;25:1741–6.

    PubMed  CAS  Google Scholar 

  70. Glimelius B, Lahn M, Gawande S, et al. A window of opportunity phase II study of enzastaurin in chemonaive patients with asymptomatic mCRC. Ann Oncol. 2010;21:1020–6.

    PubMed  CAS  Google Scholar 

  71. Wolff RA, Schepp W, DiBartolomeo M, et al. A double-blind, randomized placebo-controlled, phase II study of maintenance enzastaurin (ENZ) with 5-FU/leucovorin (LV) plus bevacizumab (BV) following first-line therapy for mCRC (mCRC). J Clin Oncol. 2011; 29: (suppl 4; abstr 501).

    Google Scholar 

  72. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6:389–95.

    PubMed  CAS  Google Scholar 

  73. Moroney JW, Sood AK, Coleman RL. Aflibercept in epithelial ovarian carcinoma. Future Oncol. 2009;5:591–600.

    PubMed  CAS  Google Scholar 

  74. Lockhart AC, Rothenberg ML, Dupont J, et al. Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol. 2010;28:207–14.

    PubMed  CAS  Google Scholar 

  75. William PT, Gordon M, Murren J, et al. Phase 1 study of aflibercept administered subcutaneously to patients with advanced solid tumors. Clin Cancer Res. 2010;16:358–66.

    Google Scholar 

  76. Rixe O, Verslype D, Khayat D, et al. A phase I dose escalation (DE) and pharmacokinetics (PK) study of intravenous aflibercept (VEGF Trap) plus irinotecan, 5-fluorouracil, and leucovorin (I-LV5FU2) in patients with advanced solid tumors (STs). J Clin Oncol 26: 2008 (May 20 suppl; abstr 3557).

    Google Scholar 

  77. Limentani S, Just R, Purdham A, et al. A phase I dose escalation and pharmacokinetic (PK) study of intravenous (iv) aflibercept (VEGF Trap) plus FOLFOX4 in patients (pts) with advanced solid tumors: Preliminary results. J Clin Oncol 26: 2008 (May 20 suppl; abstr 3556).

    Google Scholar 

  78. Tew WP, Colombo N, Ray-Coquard I, et al. VEGF-trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): preliminary results of a randomized, multicenter phase II study. J Clin Oncol. 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement), 2007: 5508.

    Google Scholar 

  79. Colombo N, Mangili G, Mammoliti S, et al. Aflibercept (VEGF trap) for advanced epithelial ovarian cancer (EOC) patients (pts) with symptomatic malignant ascites: preliminary results of a pilot study. J Clin Oncol 26: 2008 (May 20 suppl; abstr 14598.

    Google Scholar 

  80. Massarelli E, Miller VA, Leighl B, et al. Phase II study of the efficacy and safety of intravenous (IV) AVE0005 (VEGF trap) given every 2 weeks in patients (pts) with platinum- and erlotinib- resistant adenocarcinoma of the lung (NSCLA). J Clin Oncol. 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement), 2007:7627.

    Google Scholar 

  81. Townsley C, Hirte H, Hoskins R, et al. A phase II study of aflibercept (VEGF trap) in recurrent or metastatic gynecologic soft-tissue sarcomas: a study of the Princess Margaret Hospital Phase II consortium. J Clin Oncol. 2009 (suppl; abstr 5591).

    Google Scholar 

  82. Tarhini A, Christensen S, Frankel P, et al. Phase II study of aflibercept (VEGF trap) in recurrent inoperable stage III or stage IV melanoma of cutaneous or ocular origin. J Clin Oncol 27:15s, 2009 (suppl; abstr 9028).

    Google Scholar 

  83. De Groot JF, Wen PY, Lamborn K, et al. Phase II single arm trial of aflibercept in patients with recurrent temozolomide-resistant glioblastoma: NABTC 0601. J Clin Oncol 26: 2008 (May 20 suppl; abstr 2020).

    Google Scholar 

  84. Twardoski P, Sadler WM, Frankel P, et al. Phase II study of aflibercept (VEGF-trap) in patients with recurrent or metastatic urothelial cancer, a California cancer consortium trial. Urology. 2010;76:923–6.

    Google Scholar 

  85. Tang P, Cohen SJ, Bjarnason GA, et al. Phase II trial of aflibercept aflibercept (VEGF trap) in previously treated patients with mCRC (MCRC): a PMH phase II consortium trial. J Clin Oncol 26: 2008 (May 20 suppl; abstr 4027).

    Google Scholar 

  86. Yamazaki K, Yoshino K, Yamaguchi K, et al. Phase I dose escalation and pharmacokinetics study of intravenous aflibercept plus irinotecan, 5-fluorouracil, and folinic acid (FOLFIRI) in patients with mCRC. J Clin Oncol 29: 2011 (suppl 4; abstr 538).

    Google Scholar 

  87. De Luca A, Normanno N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. Drugs. 2010;13:636–45.

    Google Scholar 

  88. Bhargava P, Esteves B, Al-Adhami M, et al. Activity of tivozanib (AV-951) in patients (pts) with different histologic subtypes of renal cell carcinoma (RCC). J Clin Oncol. 2011; (suppl 7; abstr 327).

    Google Scholar 

  89. Bhargava P, Esteves B, Al-Adhami M, et al. Activity of tivozanib (AV-951) in patients with renal cell carcinoma (RCC): subgroup analysis from a phase II randomized discontinuation trial (RDT). J Clin Oncol. 2010 (suppl; abstr 4599).

    Google Scholar 

  90. Kabbinavar FF, Srinivas S, Kauke RJ, et al. A phase I trial of combined tivozanib (AV-951) and temsirolimus therapy in patients (pts) with renal cell carcinoma (RCC). J Clin Oncol. 2011; (suppl 7; abstr 330).

    Google Scholar 

  91. Mayer EL, Scheulen ME, Beckman J, et al. Combination of tivozanib, an oral inhibitor of vascular endothelial growth factor receptors (VEGFRs), with weekly paclitaxel for ­metastatic breast cancer: preliminary results of an ongoing phase 1 study. 33rd Annual San Antonio Breast Cancer Symposium; San Francisco, CA; 2010.

    Google Scholar 

  92. Motzer RJ, Bhargava P, Esteves B, et al. A phase III, randomized, controlled study to compare tivozanib with sorafenib in patients (pts) with advanced renal cell carcinoma (RCC). J Clin Oncol. 2011; (suppl 7; abstr 310).

    Google Scholar 

  93. Eskens F, Oldenhuis CN, Bhargava P, et al. A phase Ib, open-label, dose-escalation study of tivozanib and FOLFOX6 in patients (pts) with advanced gastrointestinal (GI) tumors. J Clin Oncol. 2011; (suppl 4; abstr 549).

    Google Scholar 

  94. A trial of tivozanib (AV-951) in combination with capecitabine (Xeloda®) in subjects with advanced solid tumors. 2010; http://clinicaltrials.gov/ct2/show/NCT01306630.

  95. Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14:7272–83.

    PubMed  CAS  Google Scholar 

  96. Cohen EE, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26:4708–13.

    PubMed  CAS  Google Scholar 

  97. Rugo HS, Herbst RS, Liu G, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetics and clinical results. J Clin Oncol. 2005;23:5474–83.

    PubMed  CAS  Google Scholar 

  98. Fruehauf JP, Lutzky J, McDermott DF, et al. Axitinib (AG-013736) in patients with metastatic melanoma: a phase II study. J Clin Oncol. 2008;26:484s.

    Google Scholar 

  99. Schiller JH, Larson T, Ignatius Ou SH, et al. Efficacy and safety of axitinib in patients with advanced non-small-cell lung cancer: results from a phase II study. J Clin Oncol. 2009;25:7507.

    Google Scholar 

  100. Rixe O, Bukowski R, Michaelson MD, et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol. 2007;8:975–84.

    PubMed  Google Scholar 

  101. Spano J-P, Chodkiewicz C, Maurel J, et al. Efficacy of gemcitabine plus axitinib compared with gemcitabine alone in patients with advanced pancreatic cancer: an open-label randomised phase II study. Lancet. 2008;371:2101–8.

    PubMed  CAS  Google Scholar 

  102. Wilmes L, Pallavicini MG, Fleming LM, et al. AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 2007;25:319–27.

    PubMed  CAS  Google Scholar 

  103. Bendell JC, Tournigand C, Bednarzyk M, et al. Axitinib or bevacizumab (bev) plus FOLFOX or FOLFIRI as second-line therapy in patients (pts) with mCRC (mCRC). J Clin Oncol. 2011;29:478s.

    Google Scholar 

  104. Fernando NT, Kock M, Rothrock C, et al. Tumor escape from endogenous extracellular matrix associated angiogenesis inhibitors by up regulation of multiple proangiogenic factors. Clin Cancer Res. 2008;14:1529–39.

    PubMed  CAS  Google Scholar 

  105. Mross K, Stefanic M, Gmehling D, et al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res. 2010;16:311–9.

    PubMed  CAS  Google Scholar 

  106. Prenen H, D’Haens G, Capdevila A, et al. A phase I dose escalation study of BIBF 1120 combined with FOLFOX in MCRC patients. J Clin Oncol. 2010;28:14054.

    Google Scholar 

  107. Okamoto I, Kaneda H, Satoh T, et al. Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol Cancer Ther. 2010;9:2825–33.

    PubMed  CAS  Google Scholar 

  108. Bouche O, Ducreux M, Lledo G, et al. A phase II trial of weekly alternating sequential administration of BIBF1120 and BIBW2992 in patients with advanced CRC. J Clin Oncol. 2008;26:15001.

    Google Scholar 

  109. Carlomagno F, Anaganti S, Guida T, et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst. 2006;98:326–34.

    PubMed  CAS  Google Scholar 

  110. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    PubMed  CAS  Google Scholar 

  111. Escudier B, Eisen T, Stadler WM. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:123–34.

    Google Scholar 

  112. Galal KM, Khaled Z, Mourad AM. Role of cetuximab and sorafenib in treatment of mCRC. Indian J Cancer. 2011;48:47–54.

    PubMed  CAS  Google Scholar 

  113. Suen AW, Galoforo S, Marples B, et al. Sorafenib and radiation: a promising combination in CRC. Int J Radiat Oncol Biol Phys. 2010;78:213–20.

    PubMed  CAS  Google Scholar 

  114. External-beam radiation therapy, capecitabine, and sorafenib in treating patients with locally advanced rectal cancer. 2011; http://clinicaltrials.gov/ct2/show/NCT00869570.

  115. Grothey A, Lafky JM, Morlan BW, et al. Dual VEGF inhibition with sorafenib and Bevacizumab (BEV) as salvage therapy in mCRC (mCRC): results of the phase II north central cancer treatment group study N054C. J Clin Oncol. 2010;28:15s.

    Google Scholar 

  116. Sorafenib and bevacizumab in treating patients with MCRC. 2011; NCT00826540.

    Google Scholar 

  117. Dasari A, Rudek MA, Arcaroli J, et al. Tolerance of full-dose sorafenib(S) combined with irinotecan (I; weekly, two on, on off) and cetuximab (C) in previously treated patients with advanced CRC. J Clin Oncol 29: 2011 (suppl 4; abstr 522).

    Google Scholar 

  118. Sorafenib and FOLFIRI Regimen in 2nd CRC (CRC) after failure of oxaliplatin treatment. 2010; http://clinicaltrials.gov/ct2/show/NCT00839111.

  119. Ychou M, François E, Thézenas S, et al. Sorafenib (S) in combination with Irinotecan (I) as a treatment in mCRC (mCRC) patients (pts) with KRAS mutation (mt) as second-line or later: interim analysis results of multicenter phase II part trial (NEXIRI). J Clin Oncol. 2010;28:14022.

    Google Scholar 

  120. Sorafenib with irinotecan in MCRC (mCRC) and K-RAS mutation (NEXIRI). 2010; NCT00989469.

    Google Scholar 

  121. Sorafenib plus capecitabine efficacy assessment in patients with advanced pre-treated CRC (SoMore). 2011; NCT01290926.

    Google Scholar 

  122. Study to evaluate the effects of sorafenib if combined with chemotherapy (FOLFOX6 or FOLFIRI) in the second-line treatment of CRC (FOSCO). 2011; NCT0088934.

    Google Scholar 

  123. Study of modified FOLFOX6 plus or minus sorafenib in stage IV metastatic colorectal carcinoma (mCRC) subjects. 2011; NCT00865709.

    Google Scholar 

  124. Faivre S, Demetri G, Sargent W, Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. 2007;6:734–45.

    PubMed  CAS  Google Scholar 

  125. Ding W, Cai T, Zhu H, et al. Synergistic antitumor effect of TRAIL in combination with sunitinib in vitro and in vivo. Cancer Lett. 2010;293:158–66.

    PubMed  CAS  Google Scholar 

  126. Starling N, Vázquez F, Cunningham D, et al. Phase I study to evaluate the safety and efficacy of sunitinib in combination with FOLFIRI in treatment-naïve mCRC (mCRC). J Clin Oncol 26: 2008 (May 20 suppl; abstr 3563).

    Google Scholar 

  127. Study of sunitinib in combination with Folfox in patients with CRC. 2011; NCT00631410.

    Google Scholar 

  128. Randomized study of sunitinib plus FOLFOX versus bevacizumab plus FOLFOX in MCRC. 2011; NCT00609622.

    Google Scholar 

  129. Samson B, Latreille J, Nguyen NT, et al. SUNCAP, a phase II study with sunitinib and capecitabine in patients with mCRC (MCRC) refractory to previous treatment with 5FU/irinotecan/oxaliplatin. J Clin Oncol 29: 2011 (suppl 4; abstr 545).

    Google Scholar 

  130. Johnson FM, Saigal B, Talpaz M, Donato NJ. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non -small cell lung cancer cells. Clin Cancer Res. 2005;11:6924–32.

    PubMed  CAS  Google Scholar 

  131. Starodub A, Cohn AL, Arrowood C, et al. Phase I study of dasatinib in combination with capecitabine, oxaliplatin, and bevacizumab followed by an expanded cohort in previously untreated mCRC. J Clin Oncol 29: 2011 (suppl 4; abstr 513).

    Google Scholar 

  132. Sharma M, Wroblewski K, Kozloff M, et al. Dasatinib (D) in previously treated mCRC (mCRC) patients: a pahse II trial of the Univrsity of Chicago phase II consortium. J Clin Oncol 29: 2011 (suppl 4; abstr 506).

    Google Scholar 

  133. Dunn EF, Iida M, Myers RA, et al. Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Oncogene. 2011;30:561–74.

    PubMed  CAS  Google Scholar 

  134. Cetuximab and/or dasatinib in treating patients with CRC and liver metastases that can be removed by surgery. 2010; NCT00835679.

    Google Scholar 

  135. Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127:2209–21.

    PubMed  CAS  Google Scholar 

  136. Ruf P, Lindhofer H. Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood. 2001;98:2526–34.

    PubMed  CAS  Google Scholar 

  137. Zeidler R, Mysliwietz J, Csánady M, et al. The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br J Cancer. 2000;83:261–6.

    PubMed  CAS  Google Scholar 

  138. Heiss MM, Ströhlein MA, Jäger M, et al. Immunotherapy of malignant ascites with trifunctional antibodies. Int J Cancer. 2005;117:435–43.

    PubMed  CAS  Google Scholar 

  139. Burges A, Wimberger P, Kümper C, et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin Cancer Res. 2007;13:3899–905.

    PubMed  CAS  Google Scholar 

  140. Strohlein MA, Heiss MM. Catumaxomab therapy in peritoneal carcinomatosis from colon cancer: clinical benefit in comparison to systemic chemotherapy alone and cytoreductive surgery/hyperthermic chemoperfusion J Clin Oncol 29: 2011 (suppl 4; abstr 488).

    Google Scholar 

  141. Ströhlein MA, Essing MM, Hennig M, et al. Effect of catumaxomab treatment in patients with peritoneal carcinomatosis and malignant ascites due to gastrointestinal cancers on survival. J Clin Oncol 29: 2011 (suppl 4; abstr 490).

    Google Scholar 

  142. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.

    PubMed  CAS  Google Scholar 

  143. Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.

    PubMed  CAS  Google Scholar 

  144. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–15.

    PubMed  CAS  Google Scholar 

  145. Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006;124:849–63.

    PubMed  CAS  Google Scholar 

  146. Rayburn ER, Wang W, Zhang R, Wang H. Experimental therapy for colon cancer: anti-cancer effects of TLR9 agonism, combination with other therapeutic modalities, and dependence upon p53. Int J Oncol. 2007;30:1511–9.

    PubMed  CAS  Google Scholar 

  147. Damiano V, Caputo R, Bianco R, et al. Novel toll-like receptor 9 agonist induces epidermal growth factor receptor (EGFR) inhibition and synergistic antitumor activity with EGFR inhibitors. Clin Cancer Res. 2006;12:577–83.

    PubMed  CAS  Google Scholar 

  148. Garin-Chesa P, Sakamoto J, Welt S, et al. Organ specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. Int J Oncol. 1996;9:465–71.

    CAS  Google Scholar 

  149. Daghighian F, Barenswaard E, Welt S, et al. Enhancement of radiation dose to the nucleus by vesicular internalization of iodine 125 labeled A33. J Nucl Med. 1996;37:1052–7.

    PubMed  CAS  Google Scholar 

  150. King DJ, Antoniw P, Owens R, et al. Preparation and preclinical evaluation of humanised A33 immunoconjugates for radioimmunotherapy. Br J Cancer. 1995;72:1364–72.

    PubMed  CAS  Google Scholar 

  151. Welt S, Ritter G, Williams Jr C, et al. Phase I study of anticolon cancer humanized antibody A33. Clin Cancer Res. 2003;9:1338–46.

    PubMed  CAS  Google Scholar 

  152. Taipale J, Beachy PA. The hedgehog and Wnt signaling pathways in cancer. Nature. 2001;411:349–54.

    PubMed  CAS  Google Scholar 

  153. Qualtrough D, Buda A, Gaffield W, Williams AC, Paraskeva C. Hedgehog signaling in colorectal tumor cells: induction of apoptosis with cyclopamine treatment. Int J Cancer. 2004;110:831–7.

    PubMed  CAS  Google Scholar 

  154. NCT 00636610. A study of GDC-0449 (Hedgehog pathway inhibitor) with concurrent chemotherapy and bevacizumab as first-line therapy for mCRC. 2008; NCT00636610.

    Google Scholar 

  155. Sade A, Tunçay S, Cimen I, Severcan F, Banerjee S. Celecoxib reduces fluidity and decreases metastatic potential of colon cancer cell lines irrespective of COX-2 expression. Biosci Rep. 2012;32:35–44.

    PubMed  CAS  Google Scholar 

  156. Galamb O, Spisák S, Sipos F, et al. Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor. Br J Cancer. 2010;102:765–73.

    PubMed  CAS  Google Scholar 

  157. Carothers AM, Davids JS, Damas BC, Bertagnolli MM. Persistent cyclooxygenase-2 ­inhibition downregulates NF-κB, resulting in chronic intestinal inflammation in the Min/+ mouse model of colon tumorigenesis. Cancer Res. 2010;70:4433–42.

    PubMed  CAS  Google Scholar 

  158. Clarke PA, Hostein I, Banerji U, et al. Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17 demethoxygeldnamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene. 2000;19:4125–33.

    PubMed  CAS  Google Scholar 

  159. Vasilevskaya IA, O’Dwyer PJ. 17-allylamino-17-demethoxygeldnamycin overcomes TRAIL resistance in colon cancer cell lines. Biochem Pharmacol. 2005;70:580–9.

    PubMed  CAS  Google Scholar 

  160. Hwang M, Moretti L, Lu B. HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr Med Chem. 2009;16:3081–92.

    PubMed  CAS  Google Scholar 

  161. Li Q-X, Liu G, Wong-Staal F. Oncolytic virotherapy as a personalised cancer vaccine. Int J Cancer. 2008;123:493–9.

    PubMed  CAS  Google Scholar 

  162. Park BH, Hwang T, Liu TC, et al. Use of a targeted oncolytic poxvirus, JX-594 in patients with a refractory primary or metastatic cancer, a phase 1 trial. Lancet Oncol. 2008;9:533–42.

    PubMed  CAS  Google Scholar 

  163. Breitbach CJ, Burke J, Jonker D, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477:99–102.

    PubMed  CAS  Google Scholar 

  164. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.

    PubMed  CAS  Google Scholar 

  165. Shipitsin M, Polyak K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest. 2008;88(5):459–63.

    PubMed  CAS  Google Scholar 

  166. Abdul Khalek FJ, Gallicano GI, Mishra L. Colon cancer stem cells. Gastrointest Cancer Res, 2010; Supplement 1:S16–23.

    Google Scholar 

  167. Thenappan A, Li Y, Shetty K, et al. New therapeutics targeting colon cancer stem cells. Curr Colorectal Cancer Rep. 2009;5(4):209.

    PubMed  Google Scholar 

  168. Todaro M, Alea MP, Di Stefano AB, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1(4):389–402.

    PubMed  CAS  Google Scholar 

  169. Yu XF, Zou J, Bao ZJ, Dong J, et al. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol. 2011;17(42):4711–7.

    PubMed  CAS  Google Scholar 

  170. Kemper K, Rodermond H, Colak S, Grandela C, Medema JP, et al. Targeting colorectal cancer stem cells with inducible caspase-9. Apoptosis. 2012;17(5):528–37.

    PubMed  CAS  Google Scholar 

  171. Gallant JN, Allen JE, Smith CD, Dicker DT, Wang W, Dolloff NG, et al. Quinacrine synergizes with 5-fluorouracil and other therapies in colorectal cancer. Cancer Biol Ther. 2011;12(3):239–51.

    PubMed  CAS  Google Scholar 

  172. Huang C, Zhang XM, Tavaluc RT, Hart LS, Dicker DT, Wang W, et al. The combination of 5-fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells. Cancer Biol Ther. 2009;8(22):2186–93.

    PubMed  Google Scholar 

  173. Lin L, Liu Y, Li H, Li PK, Fuchs J, Shibata H, et al. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer. 2011;105(2):212–20.

    PubMed  CAS  Google Scholar 

  174. Saif MW, Chu E. Biology of colorectal cancer. Cancer J. 2010;16(3):196–201.

    PubMed  CAS  Google Scholar 

  175. Katoh Y, Katoh M. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review). Int J Mol Med. 2006;18(6):1019–23.

    PubMed  CAS  Google Scholar 

  176. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60.

    PubMed  CAS  Google Scholar 

  177. Spike BT, Wahl GM. p53, stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer. 2011;2(4):404–19.

    PubMed  CAS  Google Scholar 

  178. Allen JE, Hart LS, Dicker DT, Wang W, El-Deiry WS. Visualization and enrichment of live putative cancer stem cell populations following p53 inactivation or Bax deletion using non-toxic fluorescent dyes. Cancer Biol Ther. 2009;8(22):2194–205.

    PubMed  Google Scholar 

  179. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8(2):97–106.

    PubMed  CAS  Google Scholar 

  180. Garber K. Companies waver in efforts to target transforming growth factor beta in cancer. J Natl Cancer Inst. 2009;101(24):1664–7.

    PubMed  Google Scholar 

  181. Garber K. Drugging the Wnt pathway: problems and progress. J Natl Cancer Inst. 2009;101(8):548–50.

    PubMed  Google Scholar 

  182. Low JA, de Sauvage FJ. Clinical experience with Hedgehog pathway inhibitors. J Clin Oncol. 2010;28(36):5321–6.

    PubMed  CAS  Google Scholar 

  183. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, et al. Targeting Notch to target cancer stem cells. Clin Cancer Res. 2010;16(12):3141–52.

    PubMed  CAS  Google Scholar 

  184. Essmann F, Schulze-Osthoff K. Translational approaches targeting the p53 pathway for anti-cancer therapy. Br J Pharmacol. 2012;165(2):328–44.

    PubMed  CAS  Google Scholar 

  185. Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011;474(7351):318–26.

    PubMed  CAS  Google Scholar 

  186. Shaker A, Rubin DC. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl Res. 2010;156(3):180–7.

    PubMed  CAS  Google Scholar 

  187. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    PubMed  Google Scholar 

  188. Vermeulen L, De Sousa E, Melo F, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

W.S.E-D. is an American Cancer Society Research Professor

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafik S. El-Deiry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joudeh, J. et al. (2013). Novel Antineoplastics Targeting Genetic Changes in Colorectal Cancer. In: El-Deiry, W. (eds) Impact of Genetic Targets on Cancer Therapy. Advances in Experimental Medicine and Biology, vol 779. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6176-0_1

Download citation

Publish with us

Policies and ethics