Skip to main content

Pathogen and Nutrient Transfer Through and Across Agricultural Soils

  • Chapter
  • First Online:
Environmental Toxicology

Abstract

Human activity can place heavy stress on agricultural soils across the world. Soil systems are continually manipulated in order to support the increase in crop yields and accommodate more intensive livestock production and thus provide the planet’s ever-growing population with a diverse array of ecosystem services, among which food production features highly. The recycling of livestock manures to land provides a sustainable solution to support the ecosystem services that soils provide and a host of benefits both in terms of improving soil structure and also soil fertility. However, livestock manures and feces may contain a high number of fecal microorganisms that pose a threat to human well-being and potentially large concentrations of nutrients harmful to the ecology of freshwater systems that the soils often buffer.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Hydrological connectivity:

The linkage of spatial locations through different hydrological flow paths (surface and subsurface) within the catchment drainage network.

Farmyard manure:

Feces and urine mixed with bedding material (such as straw) used for housed livestock, and recycled back to land as an organic fertilizer.

Fecal indicator bacteria (FIB):

Nonpathogenic microbial parameters that can be used as surrogate measures of infection risk to humans.

Leaching:

The movement and loss of soluble elements and colloids from soil via drainage water to both surface water and ground water environments.

Matrix flow:

The slow percolation of water through the soil pore system.

Mobilization:

Term used − in the context of this paper – to describe the initiation of contaminant transfer and the process by which those contaminants begin movement from soil.

Nonpoint source pollution:

Comprises contamination and pollution arising from many dispersed sources.

Pathogens:

Microorganisms capable of causing disease or illness in a host and used here to refer to bacteria and protozoa originating from fecal material.

Preferential flow:

Rapid movement of water and contaminants through the soil architecture. Much of the flow is focused in regions of enhanced flux, such as earthworm burrows or larger soil pores (macropore flow).

Slurry:

A liquid mix of feces and urine produced by housed livestock combined with water during management, and usually incorporating some bedding material to give dry matter content of 1–10%.

Surface runoff:

Flow generated from rainfall and other water sources that facilitates the transfer of contaminants across the soil surface due to saturation excess or infiltration excess conditions.

Transfer:

A term used here to describe the movement of pollutants through soil-water systems.

Bibliography

Primary Literature

  1. Haygarth PM, Ritz K (2009) The future of soils and land use in the UK: soil systems for the provision of land-based ecosystem services. Land Use Policy 26S:S187–S197

    Article  Google Scholar 

  2. Pepper IL, Gerba CP, Newby DT, Rice CW (2009) Soil: a public health threat or savior? Crit Rev Environ Sci Technol 39:416–432

    Article  Google Scholar 

  3. Bridge JW, Oliver DM, Chadwick D, Godfray C, Heathwaite AL, Kay D, Maheswaran R, McGonigle D, Nichols G, Pickup R, Porter J, Wastling J, Banwart SA (under review). Minimising the waterborne disease burden in affluent nations: a key role for environmental sciences. Bull World Health Organ

    Google Scholar 

  4. Kay D, Crowther J, Fewtrell L, Francis CA, Hopkins M, Kay C, McDonald AT, Stapleton CM, Watkins J, Wyer MD (2008) Quantification and control of microbial pollution from agriculture: a new policy challenge? Environ Sci Policy 11:171–184

    Article  Google Scholar 

  5. Kay D, Edwards AC, Ferrier RC, Francis C, Kay C, Rushby L, Watkins J, McDonald AT, Wyer M, Crowther J, Wilkinson J (2007) Catchment microbial dynamics: the emergence of a research agenda. Prog Phys Geogr 31:59–76

    Article  Google Scholar 

  6. USEPA (2010) National summary of impaired waters and TMDL information. U.S. Environmental Protection Agency, Washington. Available at: http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T. Accessed 4 Feb 2010

  7. Hunter PR (1992) Cyanobacteria and human health. J Med Microbiol 36:301–302

    Article  PubMed  CAS  Google Scholar 

  8. Pang L, Nowostawska U, Ryan JN, Williamson WM, Walshe G, Hunter KA (2009) Modifying the surface charge of pathogen-sized microspheres for studying pathogen transport in groundwater. J Environ Qual 38:2210–2217

    Article  PubMed  CAS  Google Scholar 

  9. Infascelli R, Pelorosso R, Boccia L (2009) Spatial assessment of animal manure spreading and groundwater nitrate pollution. Geospat Health 4:27–38

    PubMed  Google Scholar 

  10. Bartram J, Thyssen N, Gowers A, Pond K, Lack T (2002) Water and health in Europe. A joint report from the European Environment Agency and the WHO regional office foe Europe. WHO Regional Publications, Copenhagan

    Google Scholar 

  11. Stewart I, Webb PM, Schluter PJ, Shaw GR (2006) Recreational and occupational field exposure to freshwater cyanobacteria – a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment. Environ Health 5:6

    Article  PubMed  Google Scholar 

  12. Topp E, Scott A, Lapen DR, Lyautey AR, Duriez P (2009) Livestock waste treatment systems for reducing environmental exposure to hazardous enteric pathogens: some considerations. Bioresour Technol 100:5395–5398

    Article  PubMed  CAS  Google Scholar 

  13. Monaghan RM, Carey PL, Wilcock RJ, Drewry JJ, Houlbrooke DJ, Quinn JM, Thorrold BS (2009) Linkages between land management activities and stream water quality in a border dyke-irrigated pastoral catchment. Agric Ecosyst Environ 129:201–211

    Article  Google Scholar 

  14. McKergow LA, Davies-Colley RJ (2009) Stormflow dynamics and loads of Escherichia coli in a large mixed land use catchment. Hydrol Process 24:276–289

    Google Scholar 

  15. Kay D, Anthony S, Crowther J, Chambers BJ, Nicholson FA, Chadwick D, Stapleton CM, Wyer MD (2010) Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment. Sci Total Environ (in press)

    Google Scholar 

  16. Arinaminpathy N, McLean AR, Godfray HCJ (2009) Future UK land use policy and the risk of infectious disease in humans, livestock and wild animals. Land use Policy s6S:S124–S133

    Article  Google Scholar 

  17. Oliver DM, Clegg CD, Haygarth PM, Heathwaite AL (2005a) Assessing the potential for pathogen transfer from grassland soils to surface waters. Adv Agron 85:125–180

    Article  Google Scholar 

  18. Sobsey MD, Pillai SD (2009) Where future emerging pathogens will come from and what approaches can be used to find them, besides VFARs. J Water Health 7:S75–S93

    Article  PubMed  Google Scholar 

  19. St.-Pierre K, Levesque S, Frost E, Carrier N, Arbeit RD, Michaud S (2009) Thermotolerant coliforms are not a good surrogate for Campylobacter spp. In environmental waters. Appl Environ Microbiol 75:6736–6744

    Article  PubMed  CAS  Google Scholar 

  20. Wilkes G, Edge T, Gannon V, Jokinen C, Lyautey E, Medeiros D, Neumann N, Ruecker N, Topp E, Lapen D (2009) Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts and hydrological indices for surface waters within an agricultural landscape. Water Res 43:2209–2223

    Article  PubMed  CAS  Google Scholar 

  21. Conley DJ, Paerl HW, Howarth HW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  PubMed  CAS  Google Scholar 

  22. Heathwaite AL (2010) Multiple stressors on water availability at global to catchment scales: understanding human impact on nutrient cycles to protect water quality and water availability in the long term. Freshw Biol 55:241–257

    Article  Google Scholar 

  23. Edmeades DC (2003) The long-term effects of manures and fertilizers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    Article  CAS  Google Scholar 

  24. Haygarth PM, Heathwaite AL, Jarvis SC, Harrod TR (2000) Hydrological factors for phosphorus transfer from agricultural soils. Adv Agron 69:153–178

    Article  Google Scholar 

  25. Muirhead RW (2009) Soil and fecal material reservoirs of Escherichia coli in a grazed pasture. NZ J Agric Res 52:1–8

    Article  Google Scholar 

  26. Oliver DM, Page T, Heathwaite AL, Haygarth PM (2010a) Reshaping models of E. coli population dynamics in livestock feces: increased bacterial risk to humans? Environ Int 36:1–7

    Article  PubMed  Google Scholar 

  27. Chadwick DR, Fish RD, Oliver DM, Heathwaite AL, Hodgson CJ, Winter M (2008) Management of livestock and their manure to reduce the risk of microbial transfers to water – the case for an interdisciplinary approach. Trends Food Sci Technol 19:240–247

    Article  CAS  Google Scholar 

  28. Oliver DM, Heathwaite AL, Fish RD, Chadwick DR, Hodgson CJ, Winter M, Butler AJ (2009) Scale appropriate modeling of diffuse microbial pollution from agriculture. Prog Phys Geogr 33:358–377

    Article  Google Scholar 

  29. Unc A, Goss MJ (2006) Culturable Escherichia coli in soil mixed with two types of manure. Soil Sci Soc Am J 70:763–769

    Article  CAS  Google Scholar 

  30. Oliver DM, Page T, Hodgson CJ, Heathwaite AL, Chadwick DR, Fish RD, Winter M (2010b) Development and testing of a risk indexing framework to determine fields-scale critical source areas of faecal bacteria on grassland. Environ Modell Softw 25:503–512

    Article  Google Scholar 

  31. Oliver DM, Haygarth PM, Clegg CD, Heathwaite AL (2006) Differential E. coli die off patterns associated with agricultural matrices. Environ Sci Technol 40:5710–5716

    Article  PubMed  CAS  Google Scholar 

  32. Hodgson CJ, Bulmer N, Chadwick DR, Oliver DM, Heathwaite AL, Fish RD, Winter M (2009) Establishing relative release kinetics of fecal indicator organisms from different fecal matrices. Lett Appl Microbiol 49:124–130

    Article  PubMed  CAS  Google Scholar 

  33. Brennan FP, O’Flaherty V, Kramers G, Grant J, Richards KG (2010) Long-term persistence and leaching of E. coli in temperate maritime soils. Appl Environ Microbiol 76(5):1449–1455

    Article  PubMed  CAS  Google Scholar 

  34. Lyautey E, Zexun L, Lapen DR, Wilkes G, Scott A, Berkers T, Edge TA, Topp E (2010) Distribution and diversity of Escherichia coli populations in the South Nation River Drainage Basin, Eastern Ontario, Canada. Appl Environ Microbiol 76(5):1486–1496

    Article  PubMed  CAS  Google Scholar 

  35. Nautiyal CS, Rehman A, Chauhan PS (2010) Environmental Escherichia coli occur as natural plant growth promoting soil bacterium. Arch Microbiol 192:185–193

    Article  PubMed  CAS  Google Scholar 

  36. Meals DW, Dressing SA, Davenport TE (2009) Lag time in water quality response to best management practices: a review. J Environ Qual 39:85–96

    Article  PubMed  CAS  Google Scholar 

  37. Preedy N, McTiernan K, Matthews R, Heathwaite AL, Haygarth PM (2001) Rapid incidental phosphorus transfers from grassland. J Environ Qual 30:2105–2122

    Article  PubMed  CAS  Google Scholar 

  38. Hutchison ML, Walters LD, Moore A, Crookes KM, Avery SM (2004) Effect of length of time before incorporation on survival of pathogenic bacteria present in livestock wastes applied to agricultural soil. Appl Environ Microbiol 70:5111–5118

    Article  PubMed  CAS  Google Scholar 

  39. Oliver DM, Heathwaite AL, Hodgson CJ, Chadwick DR (2007a) Mitigation and current management attempts to limit pathogen survival and movement within farmed grasslands. Adv Agron 93:95–152

    Article  Google Scholar 

  40. McGechan MB, Topp CFE (2004) Modeling environmental impacts of deposition of excreted nitrogen by dairy cows. Agric Ecosyst Environ 103:149–164

    Article  CAS  Google Scholar 

  41. Aitken MN (2003) Impact of agricultural practices and river catchment characteristics on river and bathing water quality. Water Sci Technol 48:217–224

    PubMed  CAS  Google Scholar 

  42. Deasy C, Brazier RE, Heathwaite AL, Hodgkinson R (2009) Pathways of runoff and sediment transfer in small agricultural catchments. Hydrol Process 23:1349–1358

    Article  Google Scholar 

  43. Boxall ABA, Hardy A, Beulke S, Boucard T, Burgin L, Falloon PD, Haygarth PM, Hutchinson T, Kovats RS, Leonardi G, Levy LS, Nichols G, Parsons SA, Potts L, Stone D, Topp E, Turley DB, Walsh K, Wellington EMH, Williams RJ (2009) Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ Health Perspect 117:508–514

    PubMed  CAS  Google Scholar 

  44. Garbrecht K, Fox GA, Guzman JA, Alexander D (2009) E. coli transport through soil columns: implications for bioretention cell removal efficiency. Trans ASABE 52:481–486

    Google Scholar 

  45. Armstrong A, Quinton JN (2010) Variability of interrill erosion at low slopes. Earth Surf Process Landforms

    Google Scholar 

  46. Lane SN, Brookes CJ, Kirkby AJ, Holden J (2004) A network-indexbased version of TOPMODEL for use with high-resolution digital topographic data. Hydrol Process 18:191–201

    Article  Google Scholar 

  47. Reaney SM, Lane SN, Heathwaite AL, Dugdale LJ (2010) Risk-based modeling of diffuse land use impacts from rural landscapes upon salmonid fry abundance. Ecol Model (in press)

    Google Scholar 

  48. Yaron B, Dror I, Berkorwitz B (2010) Contaminant geochemistry – a new perspective. Naturwissenschaften 97:1–17

    Article  PubMed  CAS  Google Scholar 

  49. Bridge JW, Banwart SA, Heathwaite AL (2006) Noninvasive quantitative measurement of colloid transport in mesoscale porour media using time lapse fluorescence imaging. Environ Sci Technol 40:5930–5936

    Article  PubMed  CAS  Google Scholar 

  50. Zonia L, Bray D (2009) Swimming patterns and dynamics of simulated Escherichia coli bacteria. J R Soc Interface 6:1035–1046

    Article  PubMed  Google Scholar 

  51. Tu YH, Shimizu TS, Berg HC (2008) Modelling the chemotactic response of Escherichia coli to time-varying stimuli. Proc Natl Acad Sci USA 105:14855–14860

    Article  PubMed  CAS  Google Scholar 

  52. Sharpley AN, Kleinman PJA, Heathwaite AL, Bburek WJ, Folmar GJ, Schmidt JR (2008) Phosphorus loss from an agricultural watershed as a function of storm size. J Environ Qual 37:362–368

    Article  PubMed  CAS  Google Scholar 

  53. Granger SJ, Hawkins JMB, Bol R, White SM, nadan P, Old G, Bilotta GS, Brazier RE, Macleod CJA, Haygarth PM (2010) High temporal resolution monitoring of multiple pollutant responses in drainage from an intensively managed grassland catchment caused by a summer storm. Water Air Soil Pollut 205:377–393

    Article  CAS  Google Scholar 

  54. Artz RRE, Townend J, Brown K, Towers W, Killham K (2005) Soil macropores and compaction control the leaching potential of Escherichia coli O157:H7. Environ Microbiol 7:241–248

    Article  PubMed  Google Scholar 

  55. Mawdsley JL, Brooks AE, Merry RJ (1996) Movement of the protozoan pathogen Cryptosporidium parvum through three contrasting soil types. Biol Fertil Soils 21:30–36

    Article  Google Scholar 

  56. Matula J (2009) Possible phosphorus losses from the top layer of agricultural soils by rainfall simulations in relation to multi-nutrient soil tests. Plant Soil Environ 55:511–518

    CAS  Google Scholar 

  57. Entry JA, Sojka RE, Hicks BJ (2010) Matrix-based fertilizers reduce nutrient and bacterial leaching after manure application in a greenhouse column study. J Environ Qual 39:384–392

    Article  PubMed  CAS  Google Scholar 

  58. Donnison A, Ross C (2009) Survival and retention of Escherichia coli O157:H7 and Campylobacter in contrasting soils from the Toenepi catchment. NZ J Agric Res 52:133–144

    Article  CAS  Google Scholar 

  59. Boyer DG, Kuczynska E, Fayer R (2009) Transport, fate, and infectivity of Cryptosporidium parvum oocysts released from manure and leached through macroporous soil. Environ Geol 58:1011–1019

    Article  CAS  Google Scholar 

  60. Tarkalson DD, Leytem AB (2009) Phosphorus mobility in soil columns treated with dairy manures and commercial fertilizer. Soil Sci 174:73–80

    Article  CAS  Google Scholar 

  61. Miller JJ, Beasley BW, Chanasyk DS, Larney FJ, Olson BM (2008) Short-term nitrogen leaching potential of fresh and composted beef cattle manure applied to disturbed soil cores. Compost Sci Util 16:12–19

    Google Scholar 

  62. Harter T, Atwill ER, Hou L, Karle BM, Tate KW (2008) Developing risk models of Cryptosporidium transport in soils from vegetated, tilted, soilbox experiments. J Environ Qual 37:245–258

    Article  PubMed  CAS  Google Scholar 

  63. Brock EH, Ketterings QM, Kleinman PJA (2007) Measuring and predicting the phosphorus sorption capacity of manure-amended soils. Soil Sci 172:266–278

    Article  CAS  Google Scholar 

  64. Horswell J, Hewitt J, Prosser J, Van Schaik A, Croucher D, Macdonald C, Burford P, Susarla P, Bickers P, Speir T (2010) Mobility and survival of Salmonella Typhimurium and human adenovirus from spiked sewage sludge applied to soil columns. J Appl Microbiol 108:104–114

    Article  PubMed  CAS  Google Scholar 

  65. Rosa BA, Yim MI, Burdenuk L, Kjartanson B, Leung KT (2010) The transport of Escherichia coli through freeze-fractured clay soil. Water Air Soil Pollut 210:243–254

    Article  CAS  Google Scholar 

  66. Bech TB, Johnsen K, Dalsgaard A, Laegdsmand M, Jacobsen OH, Jacobsen CS (2010) Transport and distribution of Salmonella enterica serovar Typhimurium in loamy and sandy soil monoliths with applied liquid manure. Appl Environ Microbiol 76:710–714

    Article  PubMed  CAS  Google Scholar 

  67. Turner BL, Haygarth PM (2000) Phosphorus forms and concentrations in leachate under four grassland soil types. Soil Sci Soc Am J 64:1090–1099

    Article  CAS  Google Scholar 

  68. Di HJ, Cameron KC, Shen JP, He JZ, Winefield JS (2009) A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea. Soil Use Manage 25:454–451

    Article  Google Scholar 

  69. Guzman JA, Fox GA, Malone RW, Kanwar RS (2009) Escherichia coli transport from surface-applied manure to subsurface drains through artificial biopores. J Environ Qual 38:2412–2421

    Article  PubMed  CAS  Google Scholar 

  70. Muirhead RW, Collins RP, Bremer PJ (2006) Interaction of Escherichia coli and soil particles in runoff. Appl Environ Microbiol 72:3406–3411

    Article  PubMed  CAS  Google Scholar 

  71. Ferguson CM, Davies CM, Kaucner C, Krogh M, Rodehutskors J, Deere DA, Ashbolt NJ (2007) Field scale quantification of microbial transport from bovine feces under simulated rainfall events. J Water Health 5:83–95

    Article  PubMed  Google Scholar 

  72. Abu-Ashour J, Lee H (2000) Transport of bacteria on sloping soil surfaces by runoff. Environ Toxicol 15:149–153

    Article  CAS  Google Scholar 

  73. Tunney H, Kurz I, Bourke D, O’Reilly C (2007) RTDI programme 2000–2006 eutrophication from agricultural sources: the impact of the grazing animal on phosphorous loss from grazed pasture. Teagasc, Wexford

    Google Scholar 

  74. Quinton JN, Catt JA, Hess TM (2001) The selective removal of phosphorus from soil: is event size important? J Environ Qual 30:538–545

    Article  PubMed  CAS  Google Scholar 

  75. Soupir ML, Mostaghimi S, Yagow ER, Hagedorn C, Vaughan DH (2006) Transport of fecal bacteria from poultry litter and cattle manures applied to pastureland. Water Air Soil Pollut 169:125–136

    Article  CAS  Google Scholar 

  76. Withers PJA, Hodgkinson RA, Bates A, Withers CL (2007) Soil cultivation effects on sediment and phosphorus mobilization in surface runoff from three contrasting soil types in England. Soil Tillage Res 93:438–451

    Article  Google Scholar 

  77. Mishra A, Benham BL, Mostaghimi S (2008) Bacterial transport from agricultural lands fertilized with animal manure. Water Air Soil Pollut 189:127–134

    Article  CAS  Google Scholar 

  78. Heathwaite AL, Haygarth PM, Matthews R, Preedy N, Butler P (2005) Evaluating colloidal phosphorus delivery to surface waters from non-point agricultural sources. J Environ Qual 34:287–298

    PubMed  CAS  Google Scholar 

  79. Thiagarajan A, Gordon R, Madani A, Stratton GW (2007) Discharge of Escherichia coli from agricultural surface and subsurface drainage water: tillage effects. Water Air Soil Pollut 182:3–12

    Article  CAS  Google Scholar 

  80. Ramirez NE, Wang P, Lejeune J, Shipitalo MJ, Ward LA, Sreevatsan S, Dick WA (2009) Efffect of tillage and rainfall on transport of manure-applied Cryptosporidium parvum oocysts through soil. J Environ Qual 38:2394–2401

    Article  PubMed  CAS  Google Scholar 

  81. Haygarth PM, Hepworth L, Jarvis SC (1998) Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland. Eur J Soil Sci 49:65–72

    Article  Google Scholar 

  82. Oliver DM, Heathwaite AL, Haygarth PM, Clegg CD (2005) Transfer of Escherichia coli to water from drained and undrained grassland after grazing. J Environ Qual 34:918–925

    Article  PubMed  CAS  Google Scholar 

  83. Alfaro M, Salazar F, Iraira S, Teuber N, Villarroel D, Ramirez L (2008) Nitrogen, phosphorus and potassium losses in a grazing system with different stocking rates in a volcanic soil. Chil J Agric Res 68:146–155

    Google Scholar 

  84. Kouznetsov MY, Roodsari R, Pachepsky YA, Shelton DR, Sadeghi AM, Shirmohammadi A, Starr JL (2007) Modeling manure-borne bromide and fecal coliform transport with runoff and infiltration at a hillslope. J Environ Manage 84:336–346

    Article  PubMed  CAS  Google Scholar 

  85. Olson BM, Bennett DR, McKenzie RH, Ormann TD, Atkins RP (2009) Nitrate leaching in two irrigated soils with different rates of cattle manure. J Environ Qual 38:2218–2228

    Article  PubMed  CAS  Google Scholar 

  86. Collins R, Elliot S, Adams R (2005) Overland flow delivery of fecal bacteria to a headwater pastoral stream. J Appl Microbiol 99:126–132

    Article  PubMed  CAS  Google Scholar 

  87. Kay D, Aitken M, Crowther J, Dickinson I, Edwards AC, Francis C, Hopkins M, Jeffrey W, Kay C, McDonald AT, McDonald D, Stapleton CM, Watkins J, Wilkinson J, Wyer M (2007) Reducing fluxes of fecal indicator compliance parameters to bathing waters from non-point agricultural sources: the Brighouse Bay study. Scotland Environ Pollut 147:138–149

    CAS  Google Scholar 

  88. Deasy C, Heathwaite AL, brazier RE (2008) A field methodology for quantifying phosphorus transfer and delivery to streams in first order agricultural catchments. J Hydrol 350:329–338

    Article  CAS  Google Scholar 

  89. Botter G, Milan E, Bertuzzo E, Zanardo S, Marani M, Rinaldo A (2009) Inferences from catchment-scale tracer circulation experiments. J Hydrol 369:368–380

    Article  CAS  Google Scholar 

  90. Close M, Dann R, Ball A, Pirie R, Savill M, Smith Z (2008) Microbial groundwater quality and its health implications for a border-strip irrigated dairy farm catchment, South Island, New Zealand. J Water Health 6:83–98

    Article  PubMed  Google Scholar 

  91. Heathwaite AL, Johnes PJ (1996) Contribution of nitrogen species and phosphorus fractions to stream water quality in agricultural catchments. Hydrol Process 10:971–983

    Article  Google Scholar 

  92. Dougherty MC, Thevathasan NV, Gordon AM, Lee H, Kort J (2009) Nitrate and Escherichia coli NAR analysis in tile drain effluent from a mixed tree intercrop and monocrop system. Agric Ecosyst Environ 131:77–84

    Article  CAS  Google Scholar 

  93. Davies-Colley R, Lydiard E, Nagels J (2008) Stormflow-dominated loads of fecal pollution from an intensively dairy-farmed catchment. Water Sci Technol 57:1519–1523

    Article  PubMed  Google Scholar 

  94. Rothwell JJ, Dise NB, Taylor KG, Allott TEH, Scholefield P, Davies H, Neal C (2010) A spatial and seasonal assessment of river water chemistry across North West England. Sci Total Environ 408:841–855

    Article  PubMed  CAS  Google Scholar 

  95. Beven K, Heathwaite AL, Haygarth PM, Walling D, Brazier R, Withers P (2005) On the concept of delivery of sediment and nutrients to stream channels. Hydrol Process 19:551–556

    Article  CAS  Google Scholar 

  96. Haygarth PM, Condron LM, Heathwaite AL, Turner BL, Harris GP (2005) The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach. Sci Total Environ 344:5–14

    Article  PubMed  CAS  Google Scholar 

  97. Armstrong A, Quinton JN (2009) Pumped rainfall simulators: the impact of rain pulses on sediment concentration and size. Earth Surf Process Land 34:1310–1314

    Article  Google Scholar 

  98. Mankin KR, Wang L, Hutchinson SL, Marchin GL (2007) Escherichia coli sorption to sand and silt loam soil. Trans ASABE 50:1159–1165

    Google Scholar 

  99. Penn CJ, Mullins GL, Zelanzny LW (2005) Mineralogy in relation to phosphorus sorption and dissolved phorphorus losses in runoff. Soil Sci Soc Am J 69:1532–1540

    Article  CAS  Google Scholar 

  100. Drozd C, Schwartzbrod J (1996) Hydrophobic and electrostatic cell surface properties of Cryptosporidium parvum. Appl Environ Microbiol 62:1227–1232

    PubMed  CAS  Google Scholar 

  101. Kuczynska E, Shelton DR, Pachepsky Y (2005) Effect of bovine manure on Cryptosporidium parvum oocyst attachment to soil. Appl Environ Microbiol 71:6394–6397

    Article  PubMed  CAS  Google Scholar 

  102. Voice TC, Weber WJ (1985) Sorbent concentration effects in liquid/solid partitioning. Environ Sci Technol 19:789–796

    Article  PubMed  CAS  Google Scholar 

  103. Oliver DM (2005) Hydrological pathways and processes of Escherichia coli transfer from grassland soils to surface waters. Ph.D. thesis, University of Sheffield

    Google Scholar 

  104. Koopmans GF, McDowell RW, Chardon WJ, Oenema O, Dolfing J (2002) Soil phosphorus quantity-intensity relationships to predict increased soil phosphorus loss to overland and subsurface flow. Chemosphere 48:679–687

    Article  PubMed  CAS  Google Scholar 

  105. Ling TY, Achberger EC, Drapcho CM, Bengtson RL (2002) Quantifying adsorption of an indicator bacteria in a soil-water system. Trans ASAE 45:669–674

    Google Scholar 

  106. Kretzschmar R, Borkovec M, Grolimund D, Elimelech M (1999) Mobile subsurface colloids and their role in contaminant transport. Adv Agron 66:121–193

    Article  CAS  Google Scholar 

  107. Soupir ML, Mostaghimi S, Dillaha T (2010) Attachment of Escherichia coli and Enterococci to particles in runoff from bare soils. J Environ Qual (in press)

    Google Scholar 

  108. Oliver DM, Clegg CD, Heathwaite AL, Haygarth PM (2007b) Preferential attachment of Escherichia coli to different particle size fractions of an agricultural grassland soil. Water Air Soil Pollut 185:369–375

    Article  CAS  Google Scholar 

  109. Muirhead RW, Collins RP, Bremer PJ (2006) The association of E. coli and soil particles in overland flow. Water Sci Technol 54:153–159

    PubMed  CAS  Google Scholar 

  110. Pachepsky YA, Shelton DR (2011) Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Crit Rev Environ Sci Technol (in press)

    Google Scholar 

  111. Sinclair A, Hebb D, Jamieson R, Gordon R, Benedict K, Fuller K, Stratton GW, Madani A (2009) Growing season surface water loading of fecal indicator organisms within a rural watershed. Water Res 43:1199–1206

    Article  PubMed  CAS  Google Scholar 

  112. Haygarth PM, Wood FL, Heathwaite AL, Butler P (2005) Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study. Sci Total Environ 344:83–106

    Article  PubMed  CAS  Google Scholar 

  113. Jordan P, Arnscheidt J, McGrogan H, McCormick S (2007) Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser. Hydrol Earth Syst Sci 11:372–381

    Article  CAS  Google Scholar 

  114. Tyrrel SF, Quinton JN (2003) Overland flow transport of pathogens from agricultural land receiving fecal wastes. J Appl Microbiol 94:87S–93S

    Article  PubMed  Google Scholar 

  115. McDonald A, Kay D (1981) Enteric bacterial concentrations in reservoir feeder streams – baseflow characteristics and response to hydrograph events. Water Res 15:961–968

    Article  Google Scholar 

  116. Heathwaite AL, Burt TP, Trudgill ST (1990) The effect of land use on nitrogen, phosphorus and suspended sediment delivery to streams in a small catchment in southwest England. In: Boardman J, Foster LDL, Dearing JA (eds) Soil erosion on agricultural land. Wiley, Chichester/New York/Brisbane/Toronto/Singapore, pp 161–177

    Google Scholar 

  117. Page T (2008) Uncertainty assessment of phosphorus risk to surface waters. Environment Agency Science Report – SC050035

    Google Scholar 

  118. Kirchner JW, Feng XH, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403:524–527

    Article  PubMed  CAS  Google Scholar 

  119. Beven K, Germann P (1982) Macropores and water-flow in soils. Water Resour Res 18:1311–1325

    Article  Google Scholar 

  120. Abu-Ashour J, Joy DM, Lee H, Whiteley HR, Zelin S (1998) Movement of bacteria in unsaturated soil columns with macropores. Trans ASAE 41:1043–1050

    Google Scholar 

  121. Geohring LD, McHugh OV, Walter MT, Steenhuis TS, Akhtar MS (2001) Phosphorus transport into subsurface drains by macrpores after manure applications: implications for best manure management practices. Soil Sci 166:896–909

    Article  CAS  Google Scholar 

  122. Allaire SE, Roulier S, Cessna AJ (2009) Quantifying preferential flow in soils: a review of different techniques. J Hydrol 378:179–204

    Article  Google Scholar 

  123. Guber AK, Pachepsky YA, Shelton DR, Yu O (2009) Association of fecal coliforms with soil aggregates: effect of water content and bovine manure application. Soil Sci 174:543–548

    Article  CAS  Google Scholar 

  124. Lutterodt G, Basnet M, Foppen JWA, Uhlenbrook S (2009) The effect of surface characteristics on the transport of multiple Escherichia coli isolates in large scale columns of quartz sand. Water Res 43:595–604

    Article  PubMed  CAS  Google Scholar 

  125. McLeod M, Aislabie J, Ryburn J, McGill A (2008) Regionalizing potential for microbial bypass flow through New Zealand soils. J Environ Qual 37:1959–1967

    Article  PubMed  CAS  Google Scholar 

  126. Aislabie J, Smith JJ, Fraser R, McLeod M (2001) Leaching of bacterial indicators of faecal contamination through four New Zealand soils. Aust J Soil Res 39:1397–1406

    Article  Google Scholar 

  127. Paterson E, Kemp JS, Gammack SM, Fitzpatrick EA, Cresser MS, Mullins CE, Killham K (1993) Leaching of genetically-modified pseudomonas fluorescens through intact soil microcosms – influence of soil type. Biol Fertil Soils 15:308–314

    Article  Google Scholar 

  128. McLeod M, Aislabie J, Ryburn J, McGilla A, taylor M (2003) Microbial and chemical tracer movement through two southland soils, New Zealand. Aust J Soil Res 41:1163–1169

    Article  CAS  Google Scholar 

  129. Heathwaite AL, Burke SP, Bolton L (2006) Field drains as a route of rapid nutrient export from agricultural land receiving biosolids. Sci Total Environ 365:33–46

    Article  PubMed  CAS  Google Scholar 

  130. Mosaddeghi MR, Mahboubi AA, Zandsalimi S, Unc A (2009) Influence of organic waste type and soil structure on the bacterial filtration rates in unsaturated intact soil columns. J Environ Manage 90:730–739

    Article  PubMed  CAS  Google Scholar 

  131. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  132. Gagliardi JV, Karns JS (2000) Leaching of Escherichia coli O157:H7 in diverse soils under various agricultural management practices. Appl Environ Microbiol 66:877–883

    Article  PubMed  CAS  Google Scholar 

  133. Semenov AV, van Overbeek L, van Brugger AHC (2009) Percolation and survival of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in soil amended with contaminated dairy or slurry. Appl Environ Microbiol 75:3206–3215

    Article  PubMed  CAS  Google Scholar 

  134. Jiao Y, Whalen JK, Hendershot WH (2007) Phosphate sorption and release in a sandy-loam soil as influenced by fertilizer sources. Soil Sci Soc Am J 71:118–124

    Article  CAS  Google Scholar 

  135. Lerner D, Harris B (2009) The relationship between land use and groundwater resources and quality. Land Use Policy 26S:S265–S273

    Article  Google Scholar 

  136. Pachepsky YA, Sadeghi AM, Bradford SA, Shelton DR, Guber AK, Dao T (2006) Transport and fate of manure-borne pathogens: modeling perspective. Agric Water Manage 86:81–92

    Article  Google Scholar 

  137. Valenzuela M, Lagos B, Claret M, Mondaca MA, Perez C, Parra O (2009) Fecal contamination of groundwater in a small rural dryland watershed in rural Chile. Chil J Agric Res 69:235–243

    Google Scholar 

  138. Cam PD, Lan NTP, Smith GD, Verma N (2008) Nitrate and bacterial contamination in well waters in Vinh Phuc province, Vietnam. J Water Health 6:275–279

    Article  PubMed  Google Scholar 

  139. Holman IP, Whelan MJ, Howden NJK, Bellamy PH, Willby NJ, Rivas-Casado M, McConvey P (2008) Phosphorus in groundwater-an overlooked contributor to eutrophication? Hydrol Process 22:5121–5126

    Article  Google Scholar 

  140. Krause S, Heathwaite L, Binley A, Keenan P (2009) Nitrate concentration changes at the groundwater-surface water interface of a small Cumbrian river. Hydrol Process 23:2195–2211

    Article  CAS  Google Scholar 

  141. Rehmann CR, Soupir ML (2009) Importance of interactions between the water column and the sediment for microbial concentrations in streams. Water Res 43:4579–4589

    Article  PubMed  CAS  Google Scholar 

  142. Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B Biol Sci 363:447–465

    Article  Google Scholar 

  143. Haygarth PM, ApSimon H, Betson M, Harris D, Hodgkinson R, Withers PJA (2009) Mitigating non-point phosphorus transfer from agriculture according to cost and efficiency. J Environ Qual 38:2012–2022

    Article  PubMed  CAS  Google Scholar 

  144. Hewett CJM, Quinn PF, Whitehead PG, Heathwaite AL, Flynn NJ (2004) Towards a nutrient export risk matrix approach to managing agricultural pollution at source. Hydrol Earth Syst Sci 8:834–845

    Article  CAS  Google Scholar 

  145. Gale P, Drew T, Phipps LP, David G, Wooldridge M (2009) The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. J Appl Microbiol 106:1409–1423

    Article  PubMed  CAS  Google Scholar 

  146. Semenza JC, Menne B (2009) Climate change and infectious diseases in Europe. Lancet Infect Dis 9:365–375

    Article  PubMed  Google Scholar 

  147. Nagels JW, Davies-Colley RJ, Donnison AM, Muirhead RW (2002) Faecal contamination over flood events in a pastoral agricultural stream in New Zealand. Water Sci Technol 12:45–52

    Google Scholar 

  148. Wheater H, Evans E (2009) Land use, water management and future flood risk. Land Use Policy 26S:S251–S264

    Article  Google Scholar 

  149. Stevens CJ, Quinton JN (2009a) Policy implications of pollution swapping. Phys Chem Earth 34:589–594

    Article  Google Scholar 

  150. Stevens CJ, Quinton JN (2009b) Non-point pollution swapping in arable agricultural systems. Crit Rev Environ Sci Technol 39:478–520

    Article  CAS  Google Scholar 

  151. Cuttle SP, Macleod CJA, Chadwick DR, Scholefield D, Haygarth PM, Newell-Price P, Harris D, Shepherd MA, Chambers BJ, Humphrey R (2007) An inventory of methods to control non-point water pollution from agriculture (DWPA) user manual. Defra, London, Defra project code ES0203, 113p

    Google Scholar 

  152. Fish RD, Ioris AAR, Watson NM (2010) Integrating water and agricultural management: collaborative governance for a complex policy problem. Sci Total Environ (in press)

    Google Scholar 

  153. Macleod CJA, Scholefield D, Haygarth PM (2007) Integration for sustainable catchment management. Sci Total Environ 373:591–602

    Article  PubMed  CAS  Google Scholar 

  154. Fremaux B, Gritzfeld J, Boa T, Yost CK (2009) Evaluation of host specific bacteriodales 16S rRNA gene markers as complementary tool for detecting fecal pollution in a prairie watershed. Water Res 43:4838–4849

    Article  PubMed  CAS  Google Scholar 

  155. Naden PS, Old GH, Eliot-Laize C, Granger SJ, Hawkins JMB, Bol R, Haygarth P (2010) Assessment of natural fluorescence as a tracer of non-point agricultural pollution from slurry spreading on intensely-farmed grasslands. Water Res 44(6):1701–1712

    Article  PubMed  CAS  Google Scholar 

Books and Reviews

  • Burton CH, Turner C (2003) Manure management: treatment strategies for sustainable agriculture, 2nd edn. Silsoe Research Institute, Bedford

    Google Scholar 

  • Ferguson C, Husman AMD, Altavilla N, Deere DA, Ashbolt N (2003) Fate and transport of surface water pathogens in watersheds. Crit Rev Environ Sci Technol 33:299–361

    Article  Google Scholar 

  • Haygarth PM, Jarvis SC (2002) Agriculture, hydrology and water quality. CABI, Wallingford

    Book  Google Scholar 

  • McDowell RW, Houlbrooke DJ, Muirhead RW, Mueller K, Shepherd M, Cuttle SP (2008) Grazed pastures and surface water quality. Nova Science Publishers, Hauppauge, p 238

    Google Scholar 

  • Unc A, Goss MJ (2004) Transport of bacteria from manure and protection of water resources. Appl Soil Ecol 25:1–18

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Batterbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54:101–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oliver, D.M., Heathwaite, L.A. (2013). Pathogen and Nutrient Transfer Through and Across Agricultural Soils. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_15

Download citation

Publish with us

Policies and ethics