Skip to main content

Completeness Theorem for First-Order Logic

  • Chapter
  • First Online:
A Course on Mathematical Logic

Part of the book series: Universitext ((UTX))

  • 4002 Accesses

Abstract

In Chap. 1, we described what a first-order language is and what its terms and formulas are. We fixed a first-order language L. In Chap. 2, we described the semantics of first-order languages. In Chap. 3, we considered a simpler form of logic – propositional logic, defined what a proof is in that logic, and proved its completeness theorem. In this chapter we shall define proof in a first-order theory and prove the corresponding completeness theorem. The result for countable theories was first proved by Gödel in 1930. The result in its complete generality was first observed by Malcev in 1936. The proof given below is due to Leo Henkin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ax, J.: The elementary theory of finite fields. Ann. Math. 88, 103–115 (1968)

    Article  MathSciNet  Google Scholar 

  2. Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry, vol. 36, A Series of Modern Surveys in Mathematics. Springer, New York (1998)

    MATH  Google Scholar 

  3. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland, London (1990)

    MATH  Google Scholar 

  4. Flath, D., Wagon, S.: How to pick out integers in the rationals: An application of number theory to logic. Am. Math. Mon. 98, 812–823 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hinman, P.: Fundamentals of Mathematical Logic. A. K. Peters (2005)

    MATH  Google Scholar 

  6. Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Vintage Books, New York (1989)

    Google Scholar 

  7. Hrushovski, E.: The Mordell–Lang conjecture for function fields. J. Am. Math. Soc. 9(3), 667–690 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jech, T.: Set Theory, Springer Monographs in Mathematics, 3rd edn. Springer, New York (2002)

    Google Scholar 

  9. Kunen, K.: Set Theory: An Introduction to Independence Proofs. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  10. Lang, S.: Algebra, 3rd edn. Addison-Wesley (1999)

    Google Scholar 

  11. Marker, D.: Model Theory: An Introduction, GTM 217. Springer, New York (2002)

    Google Scholar 

  12. Rogers, H.J.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  13. Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1990)

    Google Scholar 

  14. Pila, J.: O-minimality and André-Oort conjecture for n. Ann. Math. (2) 172(3), 1779–1840 (2011)

    Google Scholar 

  15. Pila, J., Zannier, U.: Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei(9). Mat. Appl. 19(2), 149–162 (2008)

    Google Scholar 

  16. Shoenfield, J.R.: Mathematical Logic. A. K. Peters (2001)

    MATH  Google Scholar 

  17. Srivastava, S.M.: A Course on Borel Sets, GTM 180. Springer, New York (1998)

    Book  Google Scholar 

  18. Swan, R.G.: Tarski’s principle and the elimination of quantifiers (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Srivastava, S.M. (2013). Completeness Theorem for First-Order Logic. In: A Course on Mathematical Logic. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5746-6_4

Download citation

Publish with us

Policies and ethics