Skip to main content

Development of Notch Pathway Inhibitors for Cancer Therapy

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance
  • 2611 Accesses

Abstract

Notch signaling is an evolutionarily conserved cell-signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. A series of pre-clinical studies using primarily small molecule inhibitors of γ-secretase have demonstrated anti-tumor effects. Phase I trials have identified a reasonable safety profile for these agents, especially with intermittent administration. Mechanism-based combinations specific for individual indications are being investigated. Several other classes of Notch inhibitors are being developed. In this review, we describe the basics of Notch signaling, the role of Notch in normal and cancer stem cells; finally we describe opportunity and challenges in the development of Notch inhibitors as novel targeted agents for cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NIC :

Notch intracellular domain

NEC :

Notch extracellular domain

NTM :

Notch transmembrane domain

EGF:

Epidermal growth factor

NEDD4:

Neural precursor cell expressed developmentally down-regulated 4

HES1-5:

Hairy/enhancer of split family 1-5

GSK3b:

Glycogen synthase kinase 3 beta

T-ALL:

T cell acute lymphoblastic leukemia

GSI:

Gamma secretase inhibitors

DLL 1, 3, 4:

Delta-like 1, 3, 4

OFUT1:

O-Fucosyltransferase 1

MAML1:

Mastermind-like 1

PS1:

Presenilin 1

CSC:

Cancer stem cells

References

  1. Suzuki T, Chiba S (2005) Notch signaling in hematopoietic stem cells. Int J Hematol 82(4):285–294

    PubMed  CAS  Google Scholar 

  2. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8(6):709–715

    PubMed  CAS  Google Scholar 

  3. Mohr OL (1919) Character changes caused by mutation of an entire region of a chromosome in drosophila. Genetics 4(3):275–282

    PubMed  CAS  Google Scholar 

  4. Greenwald I (1998) LIN-12/Notch signaling: lessons from worms and flies. Genes Dev 12(12):1751–1762

    PubMed  CAS  Google Scholar 

  5. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    PubMed  CAS  Google Scholar 

  6. Wharton KA, Yedvobnick B, Finnerty VG, Artavanis-Tsakonas S (1985) OPA: a novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D melanogaster. Cell 40(1):55–62

    PubMed  CAS  Google Scholar 

  7. Kidd S, Kelley MR, Young MW (1986) Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol 6(9):3094–3108

    PubMed  CAS  Google Scholar 

  8. Weinmaster G (1997) The ins and outs of notch signaling. Mol Cell Neurosci 9(2):91–102

    PubMed  CAS  Google Scholar 

  9. Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J et al (2000) Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol 20(5):1825–1835

    PubMed  CAS  Google Scholar 

  10. Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S (1991) Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67(4):687–699

    PubMed  CAS  Google Scholar 

  11. Aster JC, Simms WB, Zavala-Ruiz Z, Patriub V, North CL, Blacklow SC (1999) The folding and structural integrity of the first LIN-12 module of human Notch1 are calcium-dependent. Biochemistry 38(15):4736–4742

    PubMed  CAS  Google Scholar 

  12. Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC (2007) Structural basis for autoinhibition of Notch Nat Struct. Mol Biol 14(4):295–300

    CAS  Google Scholar 

  13. Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC (2004) Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 24(21):9265–9273

    PubMed  CAS  Google Scholar 

  14. Lieber T, Kidd S, Alcamo E, Corbin V, Young MW (1993) Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev 7(10):1949–1965

    PubMed  CAS  Google Scholar 

  15. Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ et al (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5(2):197–206

    PubMed  CAS  Google Scholar 

  16. Weinmaster G, Roberts VJ, Lemke G (1992) Notch2: a second mammalian Notch gene. Development 116(4):931–941

    PubMed  CAS  Google Scholar 

  17. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T et al (1995) Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 5(12):1416–1423

    PubMed  CAS  Google Scholar 

  18. Lubman OY, Korolev SV, Kopan R (2004) Anchoring notch genetics and biochemistry: Structural analysis of the ankyrin domain sheds light on existing data. Mol Cell 13(5):619–626

    PubMed  CAS  Google Scholar 

  19. Nam Y, Sliz P, Song L, Aster JC, Blacklow SC (2006) Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124(5):973–983

    PubMed  CAS  Google Scholar 

  20. Kurooka H, Kuroda K, Honjo T (1998) Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Res 26(23):5448–5455

    PubMed  CAS  Google Scholar 

  21. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43(3):567–581

    PubMed  CAS  Google Scholar 

  22. Rechsteiner M (1988) Regulation of enzyme levels by proteolysis: the role of pest regions. Adv Enzyme Regul 27:135–151

    PubMed  CAS  Google Scholar 

  23. Lardelli M, Williams R, Lendahl U (1995) Notch-related genes in animal development. Int J Dev Biol 39(5):769–780

    PubMed  CAS  Google Scholar 

  24. Callahan R, Raafat A (2001) Notch signaling in mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia 6(1):23–36

    PubMed  CAS  Google Scholar 

  25. del Amo FF, Gendron-Maguire M, Swiatek PJ, Jenkins NA, Copeland NG, Gridley T (1993) Cloning, analysis, and chromosomal localization of Notch-1, a mouse homolog of Drosophila Notch. Genomics 15(2):259–264

    PubMed  Google Scholar 

  26. Lardelli M, Dahlstrand J, Lendahl U (1994) The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech Dev 46(2):123–136

    PubMed  CAS  Google Scholar 

  27. Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J (1996) Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122(7):2251–2259

    PubMed  CAS  Google Scholar 

  28. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    PubMed  CAS  Google Scholar 

  29. Ong CT, Cheng HT, Chang LW, Ohtsuka T, Kageyama R, Stormo GD et al (2006) Target selectivity of vertebrate notch proteins collaboration between discrete domains and CSL-binding site architecture determines activation probability. J Biol Chem 281(8):5106–5119

    PubMed  CAS  Google Scholar 

  30. Bettenhausen B, Hrabe de Angelis M, Simon D, Guenet JL, Gossler A (1995) Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121(8):2407–2418

    PubMed  CAS  Google Scholar 

  31. Lindsell CE, Shawber CJ, Boulter J, Weinmaster G (1995) Jagged: a mammalian ligand that activates Notch1. Cell 80(6):909–917

    PubMed  CAS  Google Scholar 

  32. Shawber C, Boulter J, Lindsell CE, Weinmaster G (1996) Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev Biol 180(1):370–376

    PubMed  CAS  Google Scholar 

  33. Dunwoodie SL, Henrique D, Harrison SM, Beddington RS (1997) Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124(16):3065–3076

    PubMed  CAS  Google Scholar 

  34. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA et al (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14(11):1313–1318

    PubMed  CAS  Google Scholar 

  35. Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y et al (1999) Mouse jagged1 physically interacts with notch2 and other notch receptors assessment by quantitative methods. J Biol Chem 274(46):32961–32969

    PubMed  CAS  Google Scholar 

  36. Parks AL, Stout JR, Shepard SB, Klueg KM, Dos Santos AA, Parody TR et al (2006) Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics 174(4):1947–1961

    PubMed  CAS  Google Scholar 

  37. Pintar A, De Biasio A, Popovic M, Ivanova N, Pongor S (2007) The intracellular region of Notch ligands: does the tail make the difference? Biol Direct 2:19

    PubMed  Google Scholar 

  38. Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T et al (2003) F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115(2):163–175

    PubMed  CAS  Google Scholar 

  39. Schmidt MH, Bicker F, Nikolic I, Meister J, Babuke T, Picuric S et al (2009) Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat Cell Biol 11(7):873–880

    PubMed  CAS  Google Scholar 

  40. D’Souza B, Meloty-Kapella L, Weinmaster G (2010) Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92:73–129

    PubMed  Google Scholar 

  41. Okajima T, Xu A, Lei L, Irvine KD (2005) Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science 307(5715):1599–1603

    PubMed  CAS  Google Scholar 

  42. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90(2):281–291

    PubMed  CAS  Google Scholar 

  43. Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG et al (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA 95(14):8108–8112

    PubMed  CAS  Google Scholar 

  44. Okajima T, Irvine KD (2002) Regulation of notch signaling by o-linked fucose. Cell 111(6):893–904

    PubMed  CAS  Google Scholar 

  45. Sasamura T, Sasaki N, Miyashita F, Nakao S, Ishikawa HO, Ito M et al (2003) Neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development 130(20):4785–4795

    PubMed  CAS  Google Scholar 

  46. Shi S, Stanley P (2003) Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA 100(9):5234–5239

    PubMed  CAS  Google Scholar 

  47. Haines N, Irvine KD (2003) Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 4(10):786–797

    PubMed  CAS  Google Scholar 

  48. de Celis JF, Bray S (1997) Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124(17):3241–3251

    PubMed  Google Scholar 

  49. Klein T, Brennan K, Arias AM (1997) An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev Biol 189(1):123–134

    PubMed  CAS  Google Scholar 

  50. Li Y, Baker NE (2004) The roles of cis-inactivation by Notch ligands and of neuralized during eye and bristle patterning in Drosophila. Dev Biol 4:5

    CAS  Google Scholar 

  51. Miller AC, Lyons EL, Herman TG (2009) Cis-inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr Biol 19(16):1378–1383

    PubMed  CAS  Google Scholar 

  52. Matsuda M, Chitnis AB (2009) Interaction with Notch determines endocytosis of specific Delta ligands in zebrafish neural tissue. Development 136(2):197–206

    PubMed  CAS  Google Scholar 

  53. Becam I, Fiuza UM, Arias AM, Milan M (2010) A role of receptor Notch in ligand cis-inhibition in Drosophila. Curr Biol 20(6):554–560

    PubMed  CAS  Google Scholar 

  54. Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA et al (2010) Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465(7294):86–90

    PubMed  CAS  Google Scholar 

  55. Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D et al (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 4(1):67–82

    PubMed  CAS  Google Scholar 

  56. Deblandre GA, Lai EC, Kintner C (2001) Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev Cell 1(6):795–806

    PubMed  CAS  Google Scholar 

  57. Lai EC, Deblandre GA, Kintner C, Rubin GM (2001) Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell 1(6):783–794

    PubMed  CAS  Google Scholar 

  58. Lai EC, Rubin GM (2001) Neuralized is essential for a subset of Notch pathway-dependent cell fate decisions during Drosophila eye development. Proc Natl Acad Sci USA 98(10):5637–5642

    PubMed  CAS  Google Scholar 

  59. Pavlopoulos E, Pitsouli C, Klueg KM, Muskavitch MA, Moschonas NK, Delidakis C (2001) Neuralized Encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev Cell 1(6):807–816

    PubMed  CAS  Google Scholar 

  60. Hansson EM, Lanner F, Das D, Mutvei A, Marklund U, Ericson J et al (2010) Control of Notch-ligand endocytosis by ligand-receptor interaction. J Cell Sci 123(17):2931–2942

    PubMed  CAS  Google Scholar 

  61. Sorensen EB, Conner SD (2010) Gamma-secretase-dependent cleavage initiates notch signaling from the plasma membrane. Traffic 11(9):1234–1245

    PubMed  CAS  Google Scholar 

  62. Windler SL, Bilder D (2010) Endocytic internalization routes required for delta/notch signaling. Curr Biol 20(6):538–543

    PubMed  CAS  Google Scholar 

  63. Parks AL, Klueg KM, Stout JR, Muskavitch MA (2000) Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127(7):1373–1385

    PubMed  CAS  Google Scholar 

  64. Tiyanont K, Wales TE, Aste-Amezaga M, Aster JC, Engen JR, Blacklow SC (2011) Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure 19(4):546–554

    PubMed  CAS  Google Scholar 

  65. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR et al (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5(2):207–216

    PubMed  CAS  Google Scholar 

  66. Bozkulak EC, Weinmaster G (2009) Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol 29(21):5679–5695

    PubMed  CAS  Google Scholar 

  67. Saxena MT, Schroeter EH, Mumm JS, Kopan R (2001) Murine notch homologs (N1–4) undergo presenilin-dependent proteolysis. J Biol Chem 276(43):40268–40273

    PubMed  CAS  Google Scholar 

  68. Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393(6683):382–386

    PubMed  CAS  Google Scholar 

  69. Chen F, Hasegawa H, Schmitt-Ulms G, Kawarai T, Bohm C, Katayama T et al (2006) TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature 440(7088):1208–1212

    PubMed  CAS  Google Scholar 

  70. Zhang YW, Luo WJ, Wang H, Lin P, Vetrivel KS, Liao F et al (2005) Nicastrin is critical for stability and trafficking but not association of other presenilin/gamma-secretase components. J Biol Chem 280(17):17020–17026

    PubMed  CAS  Google Scholar 

  71. Lee SF, Shah S, Yu C, Wigley WC, Li H, Lim M et al (2004) A conserved GXXXG motif in APH-1 is critical for assembly and activity of the gamma-secretase complex. J Biol Chem 279(6):4144–4152

    PubMed  CAS  Google Scholar 

  72. Fortini ME (2002) Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 3(9):673–684

    PubMed  CAS  Google Scholar 

  73. Prokop S, Shirotani K, Edbauer D, Haass C, Steiner H (2004) Requirement of PEN-2 for stabilization of the presenilin N-/C-terminal fragment heterodimer within the gamma-secretase complex. J Biol Chem 279(22):23255–23261

    PubMed  CAS  Google Scholar 

  74. Okochi M, Steiner H, Fukumori A, Tanii H, Tomita T, Tanaka T et al (2002) Presenilins mediate a dual intramembranous gamma-secretase cleavage of Notch-1. EMBO J 21(20):5408–5416

    PubMed  CAS  Google Scholar 

  75. Tagami S, Okochi M, Yanagida K, Ikuta A, Fukumori A, Matsumoto N et al (2008) Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol 28(1):165–176

    PubMed  CAS  Google Scholar 

  76. Gupta-Rossi N, Six E, LeBail O, Logeat F, Chastagner P, Olry A et al (2004) Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J Cell Biol 166(1):73–83

    PubMed  CAS  Google Scholar 

  77. Kanwar R, Fortini ME (2008) The big brain aquaporin is required for endosome maturation and notch receptor trafficking. Cell 133(5):852–863

    PubMed  CAS  Google Scholar 

  78. Fortini ME, Artavanis-Tsakonas S (1994) The suppressor of hairless protein participates in notch receptor signaling. Cell 79(2):273–282

    PubMed  CAS  Google Scholar 

  79. Morel V, Lecourtois M, Massiani O, Maier D, Preiss A, Schweisguth F (2001) Transcriptional repression by suppressor of hairless involves the binding of a hairless-dCtBP complex in Drosophila. Curr Biol 11(10):789–792

    PubMed  CAS  Google Scholar 

  80. Lai EC (2002) Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 3(9):840–845

    PubMed  CAS  Google Scholar 

  81. Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR et al (1998) A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12(15):2269–2277

    PubMed  CAS  Google Scholar 

  82. Hsieh JJ, Zhou S, Chen L, Young DB, Hayward SD (1999) CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex Proc Natl Acad Sci USA 96(1):23–28

    Google Scholar 

  83. Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U et al (2002) SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J 21(20):5417–5426

    PubMed  CAS  Google Scholar 

  84. Oswald F, Winkler M, Cao Y, Astrahantseff K, Bourteele S, Knochel W et al (2005) RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol Cell Biol 25(23):10379–10390

    PubMed  CAS  Google Scholar 

  85. Petcherski AG, Kimble J (2000) Mastermind is a putative activator for Notch. Curr Biol 10(13):R471–R473

    PubMed  CAS  Google Scholar 

  86. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD (2000) MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26(4):484–489

    PubMed  CAS  Google Scholar 

  87. Oswald F, Tauber B, Dobner T, Bourteele S, Kostezka U, Adler G et al (2001) p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol Cell Biol 21(22):7761–7774

    PubMed  CAS  Google Scholar 

  88. Wallberg AE, Pedersen K, Lendahl U, Roeder RG (2002) p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 22(22):7812–7819

    PubMed  CAS  Google Scholar 

  89. Kurooka H, Honjo T (2000) Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem 275(22):17211–17220

    PubMed  CAS  Google Scholar 

  90. Nam Y, Sliz P, Pear WS, Aster JC, Blacklow SC (2007) Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proc Natl Acad Sci USA 104(7):2103–2108

    PubMed  CAS  Google Scholar 

  91. Cho S, Lu M, He X, Ee PL, Bhat U, Schneider E et al (2011) Notch1 regulates the expression of the multidrug resistance gene ABCC1/MRP1 in cultured cancer cells. Proc Natl Acad Sci USA 108(51):20778–20783

    PubMed  CAS  Google Scholar 

  92. Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H et al (2011) Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci USA 108(36):14908–14913

    PubMed  CAS  Google Scholar 

  93. Zhao B, Zou J, Wang H, Johannsen E, Peng CW, Quackenbush J et al (2011) Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci USA 108(36):14902–14907

    PubMed  CAS  Google Scholar 

  94. Bailey AM, Posakony JW (1995) Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev 9(21):2609–2622

    PubMed  CAS  Google Scholar 

  95. Lecourtois M, Schweisguth F (1995) The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev 9(21):2598–2608

    PubMed  CAS  Google Scholar 

  96. Nakagawa O, McFadden DG, Nakagawa M, Yanagisawa H, Hu T, Srivastava D et al (2000) Members of the HRT family of basic helix-loop-helix proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci USA 97(25):13655–13660

    PubMed  CAS  Google Scholar 

  97. Maier MM, Gessler M (2000) Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem Biophys Res Commun 275(2):652–660

    PubMed  CAS  Google Scholar 

  98. Choi JW, Pampeno C, Vukmanovic S, Meruelo D (2002) Characterization of the transcriptional expression of Notch-1 signaling pathway members, Deltex and HES-1, in developing mouse thymocytes. Dev Comp Immunol 26(6):575–588

    PubMed  CAS  Google Scholar 

  99. Oswald F, Liptay S, Adler G, Schmid RM (1998) NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol 18(4):2077–2088

    PubMed  CAS  Google Scholar 

  100. Cheng P, Zlobin A, Volgina V, Gottipati S, Osborne B, Simel EJ et al (2001) Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol 167(8):4458–4467

    PubMed  CAS  Google Scholar 

  101. Garces C, Ruiz-Hidalgo MJ, Font de Mora J, Park C, Miele L, Goldstein J et al (1997) Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J Biol Chem 272(47):29729–29734

    PubMed  CAS  Google Scholar 

  102. Nickoloff BJ, Qin JZ, Chaturvedi V, Denning MF, Bonish B, Miele L (2002) Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ 9(8):842–855

    PubMed  CAS  Google Scholar 

  103. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H et al (2001) Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 20(13):3427–3436

    PubMed  CAS  Google Scholar 

  104. Ronchini C, Capobianco AJ (2001) Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21(17):5925–5934

    PubMed  CAS  Google Scholar 

  105. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20(15):2096–2109

    PubMed  CAS  Google Scholar 

  106. Sanalkumar R, Dhanesh SB, James J (2010) Non-canonical activation of Notch signaling/target genes in vertebrates. Cell Mol Life Sci 67(17):2957–2968

    PubMed  CAS  Google Scholar 

  107. Ersvaer E, Hatfield KJ, Reikvam H, Bruserud O (2011) Future perspectives: therapeutic targeting of notch signalling may become a strategy in patients receiving stem cell transplantation for hematologic malignancies. Bone Marrow Res 13(10):1259–1268

    Google Scholar 

  108. Hayward P, Brennan K, Sanders P, Balayo T, DasGupta R, Perrimon N et al (2005) Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development 132(8):1819–1830

    PubMed  CAS  Google Scholar 

  109. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628

    PubMed  CAS  Google Scholar 

  110. Hao L, Rizzo P, Osipo C, Pannuti A, Wyatt D, Cheung LW et al (2010) Notch-1 activates estrogen receptor-alpha-dependent transcription via IKKalpha in breast cancer cells. Oncogene 29(2):201–213

    PubMed  CAS  Google Scholar 

  111. Nair P, Somasundaram K, Krishna S (2003) Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3 K-PKB/Akt-dependent pathway. J Virol 77(12):7106–7112

    PubMed  CAS  Google Scholar 

  112. Liu ZJ, Xiao M, Balint K, Soma A, Pinnix CC, Capobianco AJ et al (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3 K/Akt pathways and requires MAML1. FASEB J 20(7):1009–1011

    PubMed  CAS  Google Scholar 

  113. McKenzie G, Ward G, Stallwood Y, Briend E, Papadia S, Lennard A et al (2006) Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biol 7:10

    PubMed  Google Scholar 

  114. Mungamuri SK, Yang X, Thor AD, Somasundaram K (2006) Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 66(9):4715–4724

    PubMed  CAS  Google Scholar 

  115. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210

    PubMed  CAS  Google Scholar 

  116. Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB (2008) Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest 118(11):3660–3670

    PubMed  CAS  Google Scholar 

  117. Calzavara E, Chiaramonte R, Cesana D, Basile A, Sherbet GV, Comi P (2008) Reciprocal regulation of Notch and PI3 K/Akt signalling in T-ALL cells in vitro. J Cell Biochem 103(5):1405–1412

    PubMed  CAS  Google Scholar 

  118. Graziani I, Eliasz S, De Marco MA, Chen Y, Pass HI, De May RM et al (2008) Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res 68(23):9678–9685

    PubMed  CAS  Google Scholar 

  119. Katoh Y, Katoh M (2009) Integrative genomic analyses on GLI1: positive regulation of GLI1 by Hedgehog-GLI, TGFbeta-Smads, and RTK-PI3 K-AKT signals, and negative regulation of GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int J Oncol 35(1):187–192

    PubMed  CAS  Google Scholar 

  120. Ma J, Meng Y, Kwiatkowski DJ, Chen X, Peng H, Sun Q et al (2010) Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J Clin Invest 120(1):103–114

    PubMed  CAS  Google Scholar 

  121. Yao J, Qian C (2010) Inhibition of Notch3 enhances sensitivity to gemcitabine in pancreatic cancer through an inactivation of PI3 K/Akt-dependent pathway. Med Oncol 27(3):1017–1022

    PubMed  CAS  Google Scholar 

  122. Cornejo MG, Mabialah V, Sykes SM, Khandan T, Lo Celso C, Lopez CK et al (2011) Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification. Blood 118(5):1264–1273

    PubMed  CAS  Google Scholar 

  123. Guo D, Teng Q, Ji C (2011) NOTCH and phosphatidylinositide 3-kinase/phosphatase and tensin homolog deleted on chromosome ten/AKT/mammalian target of rapamycin (mTOR) signaling in T-cell development and T-cell acute lymphoblastic leukemia. Leuk Lymphoma 52(7):1200–1210

    PubMed  CAS  Google Scholar 

  124. Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O et al (2011) High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. J Exp Med 208(9):1809–1822

    PubMed  CAS  Google Scholar 

  125. Choi B, Chun E, Kim SY, Kim M, Lee KY, Kim SJ (2012) Notch-induced hIL-6 production facilitates the maintenance of self-renewal of hCD34 + cord blood cells through the activation of Jak-PI3 K-STAT3 pathway. Am J Pathol 180(1):351–364

    PubMed  CAS  Google Scholar 

  126. Jo HS, Kang KH, Joe CO, Kim JW (2012) Pten coordinates retinal neurogenesis by regulating Notch signalling. EMBO J 31(4):817–828

    CAS  Google Scholar 

  127. Wei Y, Zhang Z, Liao H, Wu L, Wu X, Zhou D et al (2012) Nuclear estrogen receptor-mediated Notch signaling and GPR30-mediated PI3 K/AKT signaling in the regulation of endometrial cancer cell proliferation. Oncol Rep 27(2):504–510

    PubMed  CAS  Google Scholar 

  128. Zhang X, Chen T, Zhang J, Mao Q, Li S, Xiong W et al (2012) Notch1 promotes glioma cell migration and invasion by stimulating beta-catenin and NF-kappaB signaling via AKT activation. Cancer Sci 103(2):181–190

    PubMed  CAS  Google Scholar 

  129. Bheeshmachar G, Purushotaman D, Sade H, Gunasekharan V, Rangarajan A, Sarin A (2006) Evidence for a role for notch signaling in the cytokine-dependent survival of activated T cells. J Immunol 177(8):5041–5050

    PubMed  CAS  Google Scholar 

  130. Aguilera C, Hoya-Arias R, Haegeman G, Espinosa L, Bigas A (2004) Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci USA 101(47):16537–16542

    PubMed  CAS  Google Scholar 

  131. Fernandez-Majada V, Aguilera C, Villanueva A, Vilardell F, Robert-Moreno A, Aytes A et al (2007) Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer Proc Natl Acad Sci USA 104(1):276–281

    CAS  Google Scholar 

  132. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F et al (2007) Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 13(1):70–77

    PubMed  CAS  Google Scholar 

  133. Song LL, Peng Y, Yun J, Rizzo P, Chaturvedi V, Weijzen S et al (2008) Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene 27(44):5833–5844

    PubMed  CAS  Google Scholar 

  134. Espinosa L, Cathelin S, D’Altri T, Trimarchi T, Statnikov A, Guiu J et al (2010) The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell 18(3):268–281

    PubMed  CAS  Google Scholar 

  135. Barbarulo A, Grazioli P, Campese AF, Bellavia D, Di Mario G, Pelullo M et al (2011) Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. J Immunol 186(11):6199–6206

    PubMed  CAS  Google Scholar 

  136. Okajima T, Xu A, Irvine KD (2003) Modulation of notch-ligand binding by protein O-fucosyltransferase 1 and fringe. J Biol Chem 278(43):42340–42345

    PubMed  CAS  Google Scholar 

  137. Bruckner K, Perez L, Clausen H, Cohen S (2000) Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406(6794):411–415

    PubMed  CAS  Google Scholar 

  138. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R et al (2000) Fringe is a glycosyltransferase that modifies Notch. Nature 406(6794):369–375

    PubMed  CAS  Google Scholar 

  139. Moloney DJ, Shair LH, Lu FM, Xia J, Locke R, Matta KL et al (2000) Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem 275(13):9604–9611

    PubMed  CAS  Google Scholar 

  140. Panin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) Fringe modulates Notch-ligand interactions. Nature 387(6636):908–912

    PubMed  CAS  Google Scholar 

  141. Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA et al (2008) Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132(2):247–258

    PubMed  CAS  Google Scholar 

  142. Cohen B, Bashirullah A, Dagnino L, Campbell C, Fisher WW, Leow CC et al (1997) Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nat Genet 16(3):283–288

    PubMed  CAS  Google Scholar 

  143. Xu K, Usary J, Kousis PC, Prat A, Wang DY, Adams JR et al (2012) Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like Breast Cancer. Cancer Cell 21(5):626–641

    PubMed  CAS  Google Scholar 

  144. Mukherjee A, Veraksa A, Bauer A, Rosse C, Camonis J, Artavanis-Tsakonas S (2005) Regulation of Notch signalling by non-visual beta-arrestin. Nat Cell Biol 7(12):1191–1201

    PubMed  Google Scholar 

  145. Qiu L, Joazeiro C, Fang N, Wang HY, Elly C, Altman Y et al (2000) Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J Biol Chem 275(46):35734–35737

    PubMed  CAS  Google Scholar 

  146. Chastagner P, Israel A, Brou C (2008) AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS ONE 3(7):e2735

    PubMed  Google Scholar 

  147. Sakata T, Sakaguchi H, Tsuda L, Higashitani A, Aigaki T, Matsuno K et al (2004) Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr Biol 14(24):2228–2236

    PubMed  CAS  Google Scholar 

  148. Jehn BM, Dittert I, Beyer S, von der Mark K, Bielke W (2002) c-Cbl binding and ubiquitin-dependent lysosomal degradation of membrane-associated Notch1. J Biol Chem 277(10):8033–8040

    PubMed  CAS  Google Scholar 

  149. Nichols JT, Miyamoto A, Weinmaster G (2007) Notch signaling–constantly on the move. Traffic 8(8):959–969

    PubMed  CAS  Google Scholar 

  150. Santolini E, Puri C, Salcini AE, Gagliani MC, Pelicci PG, Tacchetti C et al (2000) Numb is an endocytic protein. J Cell Biol 151(6):1345–1352

    PubMed  CAS  Google Scholar 

  151. Berdnik D, Torok T, Gonzalez-Gaitan M, Knoblich JA (2002) The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 3(2):221–231

    PubMed  CAS  Google Scholar 

  152. McGill MA, McGlade CJ (2003) Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 278(25):23196–23203

    PubMed  CAS  Google Scholar 

  153. Rustighi A, Tiberi L, Soldano A, Napoli M, Nuciforo P, Rosato A et al (2009) The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol 11(2):133–142

    PubMed  CAS  Google Scholar 

  154. Rangasamy V, Mishra R, Sondarva G, Das S, Lee TH, Bakowska JC et al (2012) Mixed-lineage kinase 3 phosphorylates prolyl-isomerase Pin1 to regulate its nuclear translocation and cellular function. Proc Natl Acad Sci USA 109(21):8149–8154

    PubMed  CAS  Google Scholar 

  155. Foltz DR, Santiago MC, Berechid BE, Nye JS (2002) Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr Biol 12(12):1006–1011

    PubMed  CAS  Google Scholar 

  156. Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC: CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16(4):509–520

    PubMed  CAS  Google Scholar 

  157. Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U (2001) The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 276(38):35847–35853

    PubMed  CAS  Google Scholar 

  158. Palermo R, Checquolo S, Giovenco A, Grazioli P, Kumar V, Campese AF et al. (2011) Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene

    Google Scholar 

  159. Popko-Scibor AE, Lindberg MJ, Hansson ML, Holmlund T, Wallberg AE (2011) Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1. Biochem Biophys Res Commun 416(3–4):300–306

    PubMed  CAS  Google Scholar 

  160. Guarani V, Deflorian G, Franco CA, Kruger M, Phng LK, Bentley K et al (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473(7346):234–238

    PubMed  CAS  Google Scholar 

  161. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A et al (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8(9):979–986

    PubMed  CAS  Google Scholar 

  162. Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA et al (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3(6):565–576

    PubMed  CAS  Google Scholar 

  163. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP et al (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: Implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23(1):14–25

    PubMed  Google Scholar 

  164. Fitzgerald K, Harrington A, Leder P (2000) Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 19(37):4191–4198

    PubMed  CAS  Google Scholar 

  165. Rizzo P, Miao H, D’Souza G, Osipo C, Song LL, Yun J et al (2008) Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res 68(13):5226–5235

    PubMed  CAS  Google Scholar 

  166. Osipo C, Patel P, Rizzo P, Clementz AG, Hao L, Golde TE et al (2008) ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 27(37):5019–5032

    PubMed  CAS  Google Scholar 

  167. Clementz AG, Rogowski A, Pandya K, Miele L, Osipo C (2011) NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: novel therapeutic implications. Breast Cancer Res 13(3):R63

    PubMed  CAS  Google Scholar 

  168. Trimble MS, Xin JH, Guy CT, Muller WJ, Hassell JA (1993) PEA3 is overexpressed in mouse metastatic mammary adenocarcinomas. Oncogene 8(11):3037–3042

    PubMed  CAS  Google Scholar 

  169. Shepherd TG, Kockeritz L, Szrajber MR, Muller WJ, Hassell JA (2001) The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis. Curr Biol 11(22):1739–1748

    PubMed  CAS  Google Scholar 

  170. Benz CC, O’Hagan RC, Richter B, Scott GK, Chang CH, Xiong X et al (1997) HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer. Oncogene 15(13):1513–1525

    PubMed  CAS  Google Scholar 

  171. Kinoshita J, Kitamura K, Tanaka S, Sugimachi K, Ishida M, Saeki H (2002) Clinical significance of PEA3 in human breast cancer. Surgery 131(1):S222–S225

    PubMed  Google Scholar 

  172. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661

    PubMed  CAS  Google Scholar 

  173. Greenwald I (1994) Structure/function studies of lin-12/Notch proteins. Curr Opin Genet Dev 4(4):556–562

    PubMed  CAS  Google Scholar 

  174. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271

    PubMed  CAS  Google Scholar 

  175. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al (2007) The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204(8):1825–1835

    PubMed  CAS  Google Scholar 

  176. Capobianco AJ, Zagouras P, Blaumueller CM, Artavanis-Tsakonas S, Bishop JM (1997) Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol Cell Biol 17(11):6265–6273

    PubMed  CAS  Google Scholar 

  177. Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al (2000) Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 19(13):3337–3348

    PubMed  CAS  Google Scholar 

  178. Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A et al (2004) Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol 165(2):695–705

    PubMed  CAS  Google Scholar 

  179. Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S (1995) Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA 92(14):6414–6418

    PubMed  CAS  Google Scholar 

  180. Leethanakul C, Patel V, Gillespie J, Pallente M, Ensley JF, Koontongkaew S et al (2000) Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 19(28):3220–3224

    PubMed  CAS  Google Scholar 

  181. Suzuki T, Aoki D, Susumu N, Udagawa Y, Nozawa S (2000) Imbalanced expression of TAN-1 and human Notch4 in endometrial cancers. Int J Oncol 17(6):1131–1139

    PubMed  CAS  Google Scholar 

  182. Rae FK, Stephenson SA, Nicol DL, Clements JA (2000) Novel association of a diverse range of genes with renal cell carcinoma as identified by differential display. Int J Cancer 88(5):726–732

    PubMed  CAS  Google Scholar 

  183. Dang TP, Gazdar AF, Virmani AK, Sepetavec T, Hande KR, Minna JD et al (2000) Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J Natl Cancer Inst 92(16):1355–1357

    PubMed  CAS  Google Scholar 

  184. Hopfer O, Zwahlen D, Fey MF, Aebi S (2005) The Notch pathway in ovarian carcinomas and adenomas. Br J Cancer 93(6):709–718

    PubMed  CAS  Google Scholar 

  185. Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL et al (2004) JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 64(19):6854–6857

    PubMed  CAS  Google Scholar 

  186. Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S et al (2012) Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS ONE 7(2):e30590

    PubMed  CAS  Google Scholar 

  187. Liao S, Xia J, Chen Z, Zhang S, Ahmad A, Miele L et al (2011) Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-kappaB signaling pathways. J Cell Biochem 112(4):1055–1065

    PubMed  CAS  Google Scholar 

  188. Wang M, Xue L, Cao Q, Lin Y, Ding Y, Yang P et al (2009) Expression of Notch1, Jagged1 and beta-catenin and their clinicopathological significance in hepatocellular carcinoma. Neoplasma 56(6):533–541

    PubMed  CAS  Google Scholar 

  189. Yeh TS, Wu CW, Hsu KW, Liao WJ, Yang MC, Li AF et al (2009) The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2. Cancer Res 69(12):5039–5048

    PubMed  CAS  Google Scholar 

  190. Bocchetta M, Miele L, Pass HI, Carbone M (2003) Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene 22(1):81–89

    PubMed  CAS  Google Scholar 

  191. Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I et al (2005) Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 115(11):3166–3176

    PubMed  CAS  Google Scholar 

  192. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J et al (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65(6):2353–2363

    PubMed  CAS  Google Scholar 

  193. Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D et al (2004) Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 64(21):7787–7793

    PubMed  CAS  Google Scholar 

  194. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B (2002) Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99(9):3398–3403

    PubMed  CAS  Google Scholar 

  195. Tohda S, Nara N (2001) Expression of Notch1 and Jagged1 proteins in acute myeloid leukemia cells. Leuk Lymphoma 42(3):467–472

    PubMed  CAS  Google Scholar 

  196. Hubmann R, Schwarzmeier JD, Shehata M, Hilgarth M, Duechler M, Dettke M et al (2002) Notch2 is involved in the overexpression of CD23 in B-cell chronic lymphocytic leukemia. Blood 99(10):3742–3747

    PubMed  CAS  Google Scholar 

  197. Houde C, Li Y, Song L, Barton K, Zhang Q, Godwin J et al (2004) Overexpression of the NOTCH ligand JAG2 in malignant plasma cells from multiple myeloma patients and cell lines. Blood 104(12):3697–3704

    PubMed  CAS  Google Scholar 

  198. Jundt F, Probsting KS, Anagnostopoulos I, Muehlinghaus G, Chatterjee M, Mathas S et al (2004) Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood 103(9):3511–3515

    PubMed  CAS  Google Scholar 

  199. Pancewicz J, Nicot C (2011) Current views on the role of Notch signaling and the pathogenesis of human leukemia. BMC Cancer 11:502

    PubMed  CAS  Google Scholar 

  200. Gallahan D, Callahan R (1987) Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 61(1):66–74

    PubMed  CAS  Google Scholar 

  201. Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino G et al (1992) Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 6(3):345–355

    PubMed  CAS  Google Scholar 

  202. Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E et al (1996) Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 56(8):1775–1785

    PubMed  CAS  Google Scholar 

  203. Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P (2006) Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 168(3):973–990

    PubMed  CAS  Google Scholar 

  204. Yamaguchi N, Oyama T, Ito E, Satoh H, Azuma S, Hayashi M et al (2008) NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res 68(6):1881–1888

    PubMed  CAS  Google Scholar 

  205. Dievart A, Beaulieu N, Jolicoeur P (1999) Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 18(44):5973–5981

    PubMed  CAS  Google Scholar 

  206. Klinakis A, Szabolcs M, Politi K, Kiaris H, Artavanis-Tsakonas S, Efstratiadis A (2006) Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA 103(24):9262–9267

    PubMed  CAS  Google Scholar 

  207. Parr C, Watkins G, Jiang WG (2004) The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med 14(5):779–786

    PubMed  CAS  Google Scholar 

  208. O’Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ, Leon R et al (2007) Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am J Pathol 171(3):1023–1036

    PubMed  Google Scholar 

  209. Shimizu K, Chiba S, Saito T, Kumano K, Hamada Y, Hirai H (2002) Functional diversity among Notch1, Notch2, and Notch3 receptors. Biochem Biophys Res Commun 291(4):775–779

    PubMed  CAS  Google Scholar 

  210. Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V et al (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167(2):215–221

    PubMed  CAS  Google Scholar 

  211. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR et al (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537

    PubMed  CAS  Google Scholar 

  212. Dickson BC, Mulligan AM, Zhang H, Lockwood G, O’Malley FP, Egan SE et al (2007) High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 20(6):685–693

    PubMed  CAS  Google Scholar 

  213. Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66(3):1517–1525

    PubMed  CAS  Google Scholar 

  214. Yao K, Rizzo P, Rajan P, Albain K, Rychlik K, Shah S et al (2011) Notch-1 and notch-4 receptors as prognostic markers in breast cancer. Int J Surg Pathol 19(5):607–613

    PubMed  CAS  Google Scholar 

  215. Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B et al (2011) Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 17(12):1646–1651

    PubMed  CAS  Google Scholar 

  216. Cohen B, Shimizu M, Izrailit J, Ng NF, Buchman Y, Pan JG et al (2010) Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res Treat 123(1):113–124

    PubMed  CAS  Google Scholar 

  217. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC et al (2009) Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 113(8):1689–1698

    PubMed  CAS  Google Scholar 

  218. Qi R, An H, Yu Y, Zhang M, Liu S, Xu H et al (2003) Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 63(23):8323–8329

    PubMed  CAS  Google Scholar 

  219. Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ et al (2005) Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 202(1):157–168

    PubMed  CAS  Google Scholar 

  220. Liao WR, Hsieh RH, Hsu KW, Wu MZ, Tseng MJ, Mai RT et al (2007) The CBF1-independent Notch1 signal pathway activates human c-myc expression partially via transcription factor YY1. Carcinogenesis 28(9):1867–1876

    PubMed  CAS  Google Scholar 

  221. Hsu KW, Hsieh RH, Lee YH, Chao CH, Wu KJ, Tseng MJ et al (2008) The activated Notch1 receptor cooperates with alpha-enolase and MBP-1 in modulating c-myc activity. Mol Cell Biol 28(15):4829–4842

    PubMed  CAS  Google Scholar 

  222. Allen TD, Rodriguez EM, Jones KD, Bishop JM (2011) Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Res 71(18):6010–6018

    PubMed  CAS  Google Scholar 

  223. Bash J, Zong WX, Banga S, Rivera A, Ballard DW, Ron Y et al (1999) Rel/NF-kappaB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors. EMBO J 18(10):2803–2811

    PubMed  CAS  Google Scholar 

  224. Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE et al (2006) Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J 25(1):129–138

    PubMed  CAS  Google Scholar 

  225. Cao Q, Kaur C, Wu CY, Lu J, Ling EA (2011) Nuclear factor-kappa beta regulates Notch signaling in production of proinflammatory cytokines and nitric oxide in murine BV-2 microglial cells. Neuroscience 192:140–154

    PubMed  CAS  Google Scholar 

  226. Fujita K, Yasui S, Shinohara T, Ito K (2011) Interaction between NF-kappaB signaling and Notch signaling in gliogenesis of mouse mesencephalic neural crest cells. Mech Dev 128(7–10):496–509

    PubMed  CAS  Google Scholar 

  227. Qin X, Zhang Z, Xu H, Wu Y (2011) Notch signaling protects retina from nuclear factor-kappaB- and poly-ADP-ribose-polymerase-mediated apoptosis under high-glucose stimulation. Acta Biochim Biophys Sin (Shanghai) 43(9):703–711

    Google Scholar 

  228. Nakazawa M, Ishii H, Nakamura H, Yoshino SI, Fukamizu A, Nishioka K et al (2001) NFkappaB2 (p52) promoter activation via Notch signaling pathway in rheumatoid synoviocytes. Int J Mol Med 7(1):31–35

    PubMed  CAS  Google Scholar 

  229. Pannequin J, Bonnans C, Delaunay N, Ryan J, Bourgaux JF, Joubert D et al (2009) The wnt target jagged-1 mediates the activation of notch signaling by progastrin in human colorectal cancer cells. Cancer Res 69(15):6065–6073

    PubMed  CAS  Google Scholar 

  230. Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM et al (2010) The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 18(6):938–949

    PubMed  CAS  Google Scholar 

  231. Yamamizu K, Matsunaga T, Uosaki H, Fukushima H, Katayama S, Hiraoka-Kanie M et al (2010) Convergence of Notch and beta-catenin signaling induces arterial fate in vascular progenitors. J Cell Biol 189(2):325–338

    PubMed  CAS  Google Scholar 

  232. Peignon G, Durand A, Cacheux W, Ayrault O, Terris B, Laurent-Puig P et al (2011) Complex interplay between beta-catenin signalling and Notch effectors in intestinal tumorigenesis. Gut 60(2):166–176

    PubMed  CAS  Google Scholar 

  233. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 6(6):547–554

    PubMed  CAS  Google Scholar 

  234. Doucas H, Mann CD, Sutton CD, Garcea G, Neal CP, Berry DP et al (2008) Expression of nuclear Notch3 in pancreatic adenocarcinomas is associated with adverse clinical features, and correlates with the expression of STAT3 and phosphorylated Akt. J Surg Oncol 97(1):63–68

    PubMed  Google Scholar 

  235. Lee JH, Suk J, Park J, Kim SB, Kwak SS, Kim JW et al (2009) Notch signal activates hypoxia pathway through HES1-dependent SRC/signal transducers and activators of transcription 3 pathway. Mol Cancer Res 7(10):1663–1671

    PubMed  CAS  Google Scholar 

  236. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A (2003) Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 278(34):32227–32235

    PubMed  CAS  Google Scholar 

  237. Fre S, Pallavi SK, Huyghe M, Lae M, Janssen KP, Robine S et al (2009) Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci USA 106(15):6309–6314

    PubMed  CAS  Google Scholar 

  238. Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernandez-Majada V, Grilli A et al (2009) Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 106(15):6315–6320

    PubMed  CAS  Google Scholar 

  239. D’Angelo RC, Wicha MS (2010) Stem cells in normal development and cancer. Prog Mol Biol Transl Sci 95:113–158

    PubMed  Google Scholar 

  240. Gu JW, Rizzo P, Pannuti A, Golde T, Osborne B, Miele L (2012) Notch signals in the endothelium and cancer “stem-like” cells: opportunities for cancer therapy. Vasc Cell 4:7

    PubMed  CAS  Google Scholar 

  241. Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H et al (2005) Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8(1):13–23

    PubMed  CAS  Google Scholar 

  242. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M et al (2003) Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33(3):416–421

    PubMed  CAS  Google Scholar 

  243. Mammucari C, Tommasi di Vignano A, Sharov AA, Neilson J, Havrda MC, Roop DR et al (2005) Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev Cell 8(5):665–676

    PubMed  CAS  Google Scholar 

  244. Restivo G, Nguyen BC, Dziunycz P, Ristorcelli E, Ryan RJ, Ozuysal OY et al (2011) IRF6 is a mediator of Notch pro-differentiation and tumour suppressive function in keratinocytes. EMBO J 30(22):4571–4585

    PubMed  CAS  Google Scholar 

  245. Dumortier A, Durham AD, Di Piazza M, Vauclair S, Koch U, Ferrand G et al (2010) Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS ONE 5(2):e9258

    PubMed  Google Scholar 

  246. Demehri S, Liu Z, Lee J, Lin MH, Crosby SD, Roberts CJ et al (2008) Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol 6(5):e123

    PubMed  Google Scholar 

  247. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ et al (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333(6046):1154–1157

    PubMed  CAS  Google Scholar 

  248. Elango KJ, Suresh A, Erode EM, Subhadradevi L, Ravindran HK, Iyer SK et al (2011) Role of human papilloma virus in oral tongue squamous cell carcinoma. Asian Pac J Cancer Prev 12(4):889–896

    PubMed  Google Scholar 

  249. Zhang ZP, Sun YL, Fu L, Gu F, Zhang L, Hao XS (2009) Correlation of Notch1 expression and activation to cisplatin-sensitivity of head and neck squamous cell carcinoma. Ai Zheng 28(2):100–103

    PubMed  CAS  Google Scholar 

  250. Gu F, Ma Y, Zhang Z, Zhao J, Kobayashi H, Zhang L et al (2010) Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep 23(3):671–676

    PubMed  CAS  Google Scholar 

  251. Lin JT, Chen MK, Yeh KT, Chang CS, Chang TH, Lin CY et al (2010) Association of high levels of Jagged-1 and Notch-1 expression with poor prognosis in head and neck cancer. Ann Surg Oncol 17(11):2976–2983

    PubMed  Google Scholar 

  252. Yu B, Wei J, Qian X, Lei D, Ma Q, Liu Y (2012) Notch1 signaling pathway participates in cancer invasion by regulating MMPs in lingual squamous cell carcinoma. Oncol Rep 27(2):547–552

    PubMed  CAS  Google Scholar 

  253. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B et al (2010) Targeting Notch to target cancer stem cells. Clin Cancer Res 16(12):3141–3152

    PubMed  CAS  Google Scholar 

  254. Farnie G, Clarke RB (2007) Mammary stem cells and breast cancer–role of Notch signalling. Stem Cell Rev 3(2):169–175

    PubMed  CAS  Google Scholar 

  255. Kakarala M, Wicha MS (2007) Cancer stem cells: implications for cancer treatment and prevention. Cancer J 13(5):271–275

    PubMed  CAS  Google Scholar 

  256. Korkaya H, Wicha MS (2007) Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21(5):299–310

    PubMed  CAS  Google Scholar 

  257. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117(12):3988–4002

    PubMed  CAS  Google Scholar 

  258. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR et al (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70(2):709–718

    PubMed  CAS  Google Scholar 

  259. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66(15):7445–7452

    PubMed  CAS  Google Scholar 

  260. Shih AH, Holland EC (2006) Notch signaling enhances nestin expression in gliomas. Neoplasia 8(12):1072–1082

    PubMed  CAS  Google Scholar 

  261. Fan L, Liu Y, Ying H, Xue Y, Zhang Z, Wang P et al (2011) Increasing of blood-tumor barrier permeability through paracellular pathway by low-frequency ultrasound irradiation in vitro. J Mol Neurosci 43(3):541–548

    PubMed  CAS  Google Scholar 

  262. Yao Z, Mishra L (2009) Cancer stem cells and hepatocellular carcinoma. Cancer Biol Ther 8(18):1691–1698

    PubMed  CAS  Google Scholar 

  263. Wang Z, Azmi AS, Ahmad A, Banerjee S, Wang S, Sarkar FH et al (2009) TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and induces apoptosis in pancreatic cancer: involvement of Notch-1 signaling pathway. Cancer Res 69(7):2757–2765

    PubMed  CAS  Google Scholar 

  264. Jang JY, Kim MK, Jeon YK, Joung YK, Park KD, Kim CW (2012) Adenovirus adenine nucleotide translocator-2 shRNA effectively induces apoptosis and enhances chemosensitivity by the down-regulation of ABCG2 in breast cancer stem-like cells. Exp Mol Med 44(4):251–259

    PubMed  CAS  Google Scholar 

  265. Grudzien P, Lo S, Albain KS, Robinson P, Rajan P, Strack PR et al (2010) Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res 30(10):3853–3867

    PubMed  CAS  Google Scholar 

  266. Aste-Amezaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M et al (2010) Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS ONE 5(2):e9094

    PubMed  Google Scholar 

  267. Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M et al (2008) Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem 283(12):8046–8054

    PubMed  CAS  Google Scholar 

  268. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y et al (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464(7291):1052–1057

    PubMed  CAS  Google Scholar 

  269. Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087

    PubMed  CAS  Google Scholar 

  270. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444(7122):1032–1037

    PubMed  CAS  Google Scholar 

  271. Scehnet JS, Jiang W, Kumar SR, Krasnoperov V, Trindade A, Benedito R et al (2007) Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 109(11):4753–4760

    PubMed  CAS  Google Scholar 

  272. Thurston G, Noguera-Troise I, Yancopoulos GD (2007) The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 7(5):327–331

    PubMed  CAS  Google Scholar 

  273. Yan M, Plowman GD (2007) Delta-like 4/Notch signaling and its therapeutic implications. Clin Cancer Res 13(24):7243–7246

    PubMed  CAS  Google Scholar 

  274. Reynolds ND, Lukacs NW, Long N, Karpus WJ (2011) Delta-like ligand 4 regulates central nervous system T cell accumulation during experimental autoimmune encephalomyelitis. J Immunol 187(5):2803–2813

    PubMed  CAS  Google Scholar 

  275. Hayashi I, Takatori S, Urano Y, Miyake Y, Takagi J, Sakata-Yanagimoto M et al (2012) Neutralization of the gamma-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene 31(6):787–798

    PubMed  CAS  Google Scholar 

  276. Funahashi Y, Hernandez SL, Das I, Ahn A, Huang J, Vorontchikhina M et al (2008) A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res 68(12):4727–4735

    PubMed  CAS  Google Scholar 

  277. Varnum-Finney B, Wu L, Yu M, Brashem-Stein C, Staats S, Flowers D et al (2000) Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J Cell Sci 113(23):4313–4318

    PubMed  CAS  Google Scholar 

  278. Small D, Kovalenko D, Kacer D, Liaw L, Landriscina M, Di Serio C et al (2001) Soluble Jagged 1 represses the function of its transmembrane form to induce the formation of the Src-dependent chord-like phenotype. J Biol Chem 276(34):32022–32030

    PubMed  CAS  Google Scholar 

  279. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A et al (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16(3):235–242

    PubMed  CAS  Google Scholar 

  280. LaVoie MJ, Fraering PC, Ostaszewski BL, Ye W, Kimberly WT, Wolfe MS et al (2003) Assembly of the gamma-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin. J Biol Chem 278(39):37213–37222

    PubMed  CAS  Google Scholar 

  281. Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A et al (2003) The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci USA 100(13):7638–7643

    PubMed  CAS  Google Scholar 

  282. Smas CM, Chen L, Sul HS (1997) Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol 17(2):977–988

    PubMed  CAS  Google Scholar 

  283. Nichol D, Shawber C, Fitch MJ, Bambino K, Sharma A, Kitajewski J et al (2010) Impaired angiogenesis and altered Notch signaling in mice overexpressing endothelial Egfl7. Blood 116(26):6133–6143

    PubMed  CAS  Google Scholar 

  284. Aster JC, Pear WS, Blacklow SC (2008) Notch signaling in leukemia. Annu Rev Pathol 3:587–613

    PubMed  CAS  Google Scholar 

  285. Shih Ie M, Wang TL (2007) Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 67(5):1879–1882

    PubMed  Google Scholar 

  286. Tammam J, Ware C, Efferson C, O’Neil J, Rao S, Qu X et al (2009) Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumour effects in mouse models of T-cell leukaemia. Br J Pharmacol 158(5):1183–1195

    PubMed  CAS  Google Scholar 

  287. Wei P, Walls M, Qiu M, Ding R, Denlinger RH, Wong A et al (2010) Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther 9(6):1618–1628

    PubMed  CAS  Google Scholar 

  288. Fouladi M, Stewart CF, Olson J, Wagner LM, Onar-Thomas A, Kocak M et al (2011) Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol 29(26):3529–3534

    PubMed  CAS  Google Scholar 

  289. Pandya K, Meeke K, Clementz AG, Rogowski A, Roberts J, Miele L et al (2011) Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer 105(6):796–806

    PubMed  CAS  Google Scholar 

  290. Qin H, Wang J, Liang Y, Taniguchi Y, Tanigaki K, Han H (2004) RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Res 32(4):1492–1501

    PubMed  CAS  Google Scholar 

  291. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al (2003) Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 23(2):655–664

    PubMed  CAS  Google Scholar 

  292. Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T et al (2004) Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279(13):12876–12882

    PubMed  CAS  Google Scholar 

  293. Hyde LA, McHugh NA, Chen J, Zhang Q, Manfra D, Nomeir AA et al (2006) Studies to investigate the in vivo therapeutic window of the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-di hydro-5H-dibenzo[b, d]azepin-7-yl]-L-alaninamide (LY411,575) in the CRND8 mouse. J Pharmacol Exp Ther 319(3):1133–1143

    PubMed  CAS  Google Scholar 

  294. Macy ME, Sawczyn KK, Garrington TP, Graham DK, Gore L (2008) Pediatric developmental therapies: interesting new drugs now in early-stage clinical trials. Curr Oncol Rep 10(6):477–490

    PubMed  CAS  Google Scholar 

  295. Zweidler-McKay PA (2008) Notch signaling in pediatric malignancies. Curr Oncol Rep 10(6):459–468

    PubMed  CAS  Google Scholar 

  296. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8(10):806–823

    PubMed  CAS  Google Scholar 

  297. Albain K, Czerlanis C, Zlobin A, Covington KR, Rajan P, Godellas C et al (2011) Modulation of cancer stem cell biomarkers by the Notch Inhibitor MK0752 added to endocrine therapy for early stage ER + breast cancer. Cancer Res 71(24):97s

    Google Scholar 

  298. Luistro L, He W, Smith M, Packman K, Vilenchik M, Carvajal D et al (2009) Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res 69(19):7672–7680

    PubMed  CAS  Google Scholar 

  299. He W, Luistro L, Carvajal D, Smith M, Nevins T, Yin X et al (2011) High tumor levels of IL6 and IL8 abrogate preclinical efficacy of the gamma-secretase inhibitor, RO4929097. Mol Oncol 5(3):292–301

    PubMed  CAS  Google Scholar 

  300. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462(7270):182–188

    PubMed  CAS  Google Scholar 

  301. Mukhtar H, Ahmad N (1999) Green tea in chemoprevention of cancer. Toxicol Sci 52(2):111–117

    PubMed  CAS  Google Scholar 

  302. Lee MM, Gomez SL, Chang JS, Wey M, Wang RT, Hsing AW (2003) Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev 12(7):665–668

    PubMed  CAS  Google Scholar 

  303. Smith-Warner SA, Spiegelman D, Yaun SS, Albanes D, Beeson WL, van den Brandt PA et al (2003) Fruits, vegetables and lung cancer: a pooled analysis of cohort studies. Int J Cancer 107(6):1001–1011

    PubMed  CAS  Google Scholar 

  304. Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH (2006) Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer 118(8):1930–1936

    PubMed  CAS  Google Scholar 

  305. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D et al (2011) Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem 112(1):78–88

    PubMed  CAS  Google Scholar 

  306. Kallifatidis G, Labsch S, Rausch V, Mattern J, Gladkich J, Moldenhauer G et al (2011) Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther 19(1):188–195

    PubMed  CAS  Google Scholar 

  307. Kawahara T, Kawaguchi-Ihara N, Okuhashi Y, Itoh M, Nara N, Tohda S (2009) Cyclopamine and quercetin suppress the growth of leukemia and lymphoma cells. Anticancer Res 29(11):4629–4632

    PubMed  CAS  Google Scholar 

  308. Okuhashi Y, Itoh M, Nara N, Tohda S (2011) Effects of combination of notch inhibitor plus hedgehog inhibitor or Wnt inhibitor on growth of leukemia cells. Anticancer Res 31(3):893–896

    PubMed  CAS  Google Scholar 

  309. Zhou W, Kallifatidis G, Baumann B, Rausch V, Mattern J, Gladkich J et al (2010) Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int J Oncol 37(3):551–561

    PubMed  CAS  Google Scholar 

  310. Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH (2006) Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer 106(11):2503–2513

    PubMed  CAS  Google Scholar 

  311. Cecchinato V, Chiaramonte R, Nizzardo M, Cristofaro B, Basile A, Sherbet GV et al (2007) Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells. Biochem Pharmacol 74(11):1568–1574

    PubMed  CAS  Google Scholar 

  312. Lin H, Xiong W, Zhang X, Liu B, Zhang W, Zhang Y et al (2011) Notch-1 activation-dependent p53 restoration contributes to resveratrol-induced apoptosis in glioblastoma cells. Oncol Rep 26(4):925–930

    PubMed  CAS  Google Scholar 

  313. Truong M, Cook MR, Pinchot SN, Kunnimalaiyaan M, Chen H (2011) Resveratrol induces Notch2-mediated apoptosis and suppression of neuroendocrine markers in medullary thyroid cancer. Ann Surg Oncol 18(5):1506–1511

    PubMed  Google Scholar 

  314. Pinchot SN, Jaskula-Sztul R, Ning L, Peters NR, Cook MR, Kunnimalaiyaan M et al (2011) Identification and validation of Notch pathway activating compounds through a novel high-throughput screening method. Cancer 117(7):1386–1398

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially support by NCIAG. We thank Dr. Christian R. Gomez for his critical review and comments on the manuscript.

Conflict of Interest/Disclosures

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Miele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Espinoza, I., Miele, L. (2013). Development of Notch Pathway Inhibitors for Cancer Therapy. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_17

Download citation

Publish with us

Policies and ethics