Skip to main content

Generation of Histocompatible Tissues via Parthenogenesis

  • Chapter
  • First Online:
The Immunological Barriers to Regenerative Medicine

Abstract

Parthenogenic stem (PS) cells are a potential source of histocompatible, pluripotent cells for transplantation therapy that does not rely on fertilized embryos. Parthenotes result from artificially activated oocytes that contain only maternal chromosomes, without contribution from sperm. Parthenotes cannot develop into live offspring, but have been used to derive PS cells in multiple species, including mouse and humans. Different oocyte activation protocols and natural recombination events may lead to PS cells that are heterozygous at the major histocompatibility complex (MHC) and therefore completely histocompatible to the oocyte donor, or MHC-homozygous and histocompatible to a significant percentage of the general population. Studies in mouse and nonhuman primates suggest the PS cells may be a valuable cell source for transplantation therapies, although further work is needed to establish the safety and efficacy of human PS cell based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brevini TA, Gandolfi F (2008) Parthenotes as a source of embryonic stem cells. Cell Prolif 41(Suppl 1):20–30

    PubMed  Google Scholar 

  2. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864

    Article  PubMed  CAS  Google Scholar 

  3. Wu Q, Kumagai T, Kawahara M, Ogawa H, Hiura H, Obata Y, Takano R, Kono T (2006) Regulated expression of two sets of paternally imprinted genes is necessary for mouse parthenogenetic development to term. Reproduction 131:481–488

    Article  PubMed  CAS  Google Scholar 

  4. Shao H, Wei Z, Wang L, Wen L, Duan B, Mang L, Bou S (2007) Generation and characterization of mouse parthenogenetic embryonic stem cells containing genomes from non-growing and fully grown oocytes. Cell Biol Int 31:1336–1344

    Article  PubMed  CAS  Google Scholar 

  5. Kiessling, AA “Human Eggs: the Need, the Risks, the Politics” Burrill Stem Cell Report, 2007, pp 38–45

    Google Scholar 

  6. HFEA (2003) Human fertilisation and embryology authority code of practice, 6th edn. UK, London

    Google Scholar 

  7. Giudice L, Santa E, Pool R (eds) (2007) Assessing the medical risks of human oocyte donation for stem cell research: workshop report. National Academies Press, Washington

    Google Scholar 

  8. Kaufman MH, Robertson EJ, Handyside AH, Evans MJ (1983) Establishment of pluripotential cell lines from haploid mouse embryos. J Embryol Exp Morphol 73:249–261

    PubMed  CAS  Google Scholar 

  9. Allen ND, Barton SC, Hilton K, Norris ML, Surani MA (1994) A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 120:1473–1482

    PubMed  CAS  Google Scholar 

  10. Lin H, Lei J, Wininger D, Nguyen MT, Khanna R, Hartmann C, Yan WL, Huang SC (2003) Multilineage potential of homozygous stem cells derived from metaphase II oocytes. Stem Cells 21:152–161

    Article  PubMed  Google Scholar 

  11. Kim K, Lerou P, Yabuuchi A, Lengerke C, Ng K, West J, Kirby A, Daly MJ, Daley GQ (2007) Histocompatible embryonic stem cells by parthenogenesis. Science 315:482–486

    Article  PubMed  CAS  Google Scholar 

  12. Cibelli JB, Grant KA, Chapman KB, Cunniff K, Worst T, Green HL, Walker SJ, Gutin PH, Vilner L, Tabar V, Dominko T, Kane J, Wettstein PJ, Lanza RP, Studer L, Vrana KE, West MD (2002) Parthenogenetic stem cells in nonhuman primates. Science 295:819

    Article  PubMed  CAS  Google Scholar 

  13. Vrana KE, Hipp JD, Goss AM, McCool BA, Riddle DR, Walker SJ, Wettstein PJ, Studer LP, Tabar V, Cunniff K, Chapman K, Vilner L, West MD, Grant KA, Cibelli JB (2003) Nonhuman primate parthenogenetic stem cells. Proc Natl Acad Sci USA 100(Suppl 1):11911–11916

    Article  PubMed  CAS  Google Scholar 

  14. Dighe V, Clepper L, Pedersen D, Byrne J, Ferguson B, Gokhale S, Penedo MC, Wolf D, Mitalipov S (2008) Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 26:756–766

    Article  PubMed  CAS  Google Scholar 

  15. Hwang WS, Ryu YJ, Park JH, Park ES, Lee EG, Koo JM, Jeon HY, Lee BC, Kang SK, Kim SJ, Ahn C, Hwang JH, Park KY, Cibelli JB, Moon SY (2004) Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303:1669–1674

    Article  PubMed  CAS  Google Scholar 

  16. De Sousa PA, Wilmut I (2007) Human parthenogenetic embryo stem cells: appreciating what you have when you have it. Cell Stem Cell 1:243–244

    Article  PubMed  Google Scholar 

  17. Kim K, Ng K, Rugg-Gunn PJ, Shieh JH, Kirak O, Jaenisch R, Wakayama T, Moore MA, Pedersen RA, Daley GQ (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:346–352

    Article  PubMed  CAS  Google Scholar 

  18. Lin G, OuYang Q, Zhou X, Gu Y, Yuan D, Li W, Liu G, Liu T, Lu G (2007) A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 17:999–1007

    Article  PubMed  CAS  Google Scholar 

  19. Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, Zhou C, Zhou Q (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17:1008–1019

    Article  PubMed  CAS  Google Scholar 

  20. Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, Pryzhkova MV (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449

    Article  PubMed  CAS  Google Scholar 

  21. Revazova ES, Turovets NA, Kochetkova OD, Agapova LS, Sebastian JL, Pryzhkova MV, Smolnikova VI, Kuzmichev LN, Janus JD (2008) HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 10:11–24

    Article  PubMed  CAS  Google Scholar 

  22. Brevini TA, Pennarossa G, Antonini S, Paffoni A, Tettamanti G, Montemurro T, Radaelli E, Lazzari L, Rebulla P, Scanziani E, de Eguileor M, Benvenisty N, Ragni G, Gandolfi F (2009) Cell lines derived from human parthenogenetic embryos can display aberrant centriole distribution and altered expression levels of mitotic spindle check-point transcripts. Stem Cell Rev 5:340–352

    Article  PubMed  Google Scholar 

  23. Cibelli JB, Cunniff K, Vrana KE (2006) Embryonic stem cells from parthenotes. Methods Enzymol 418:117–135

    Article  PubMed  CAS  Google Scholar 

  24. Mitalipov SM, Nusser KD, Wolf DP (2001) Parthenogenetic activation of rhesus monkey oocytes and reconstructed embryos. Biol Reprod 65:253–259

    Article  PubMed  CAS  Google Scholar 

  25. Ozil JP, Markoulaki S, Toth S, Matson S, Banrezes B, Knott JG, Schultz RM, Huneau D, Ducibella T (2005) Egg activation events are regulated by the duration of a sustained [ca2+]cyt signal in the mouse. Dev Biol 282:39–54

    Article  PubMed  CAS  Google Scholar 

  26. Jiang H, Sun B, Wang W, Zhang Z, Gao F, Shi G, Cui B, Kong X, He Z, Ding X, Kuang Y, Fei J, Sun YJ, Feng Y, Jin Y (2007) Activation of paternally expressed imprinted genes in newly derived germline-competent mouse parthenogenetic embryonic stem cell lines. Cell Res 17:792–803

    Article  PubMed  CAS  Google Scholar 

  27. Lengerke C, Kim K, Lerou P, Daley GQ (2007) Differentiation potential of histocompatible parthenogenetic embryonic stem cells. Ann NY Acad Sci 1106:209–218

    Article  PubMed  CAS  Google Scholar 

  28. McKarney LA, Overall ML, Dziadek M (1997) Myogenesis in cultures of uniparental mouse embryonic stem cells: Differing patterns of expression of myogenic regulatory factors. Int J Dev Biol 41:485–490

    PubMed  CAS  Google Scholar 

  29. Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG, Keefe DL, Yang X, Liu L (2009) Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells 27:2136–2145

    Article  PubMed  CAS  Google Scholar 

  30. Kiessling AA, Bletsa R, Desmarais B, Mara C, Kallianidis K, Loutradis D (2010) Genome-wide microarray evidence that 8-cell human blastomeres over-express cell cycle drivers and under-express checkpoints. J Assist Reprod Genet 27(6):265–276

    Article  PubMed  Google Scholar 

  31. Nagy A, Gócza E, Diaz EM, Prideaux VR, Iványi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110:815–821

    PubMed  CAS  Google Scholar 

  32. Eggan K, Jaenisch R (2003) Differentiation of F1 embryonic stem cells into viable male and female mice by tetraploid embryo complementation. Methods Enzymol 365:25–39

    Article  PubMed  Google Scholar 

  33. Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, Keefe DL, Liu L (2009) Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 18:2177–2187

    Article  PubMed  CAS  Google Scholar 

  34. Gong SP, Kim H, Lee EJ, Lee ST, Moon S, Lee HJ, Lim JM (2009) Change in gene expression of mouse embryonic stem cells derived from parthenogenetic activation. Hum Reprod 24:805–814

    Article  PubMed  CAS  Google Scholar 

  35. Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R (2001) Epigenetic instability in es cells and cloned mice. Science 293:95–97

    Article  PubMed  CAS  Google Scholar 

  36. Drukker M (2008) Recent advancements towards the derivation of immune-compatible patient-specific human embryonic stem cell lines. Semin Immunol 20:123–129

    Article  PubMed  CAS  Google Scholar 

  37. Lampton PW, Crooker RJ, Newmark JA, Warner CM (2008) Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos. Tissue Antigens 72:448–457

    Article  PubMed  CAS  Google Scholar 

  38. Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229

    Article  PubMed  Google Scholar 

  39. Rideout WM 3rd, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27

    Article  PubMed  CAS  Google Scholar 

  40. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  PubMed  Google Scholar 

  41. Vinay K, George T, Yeung K, Yu L, Liu J, Bennet M (1997) Role of murine NK cells and their receptors in hybrid resistance. Curr Opin Immunol 9:52–56

    Article  Google Scholar 

  42. Sanchez-Pernaute R, Studer L, Ferrari D, Perrier A, Lee H, Vinuela A, Isacson O (2005) Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (Cyno-1) after transplantation. Stem Cells 23:914–922

    Article  PubMed  Google Scholar 

  43. Sanchez-Pernaute R, Lee H, Patterson M, Reske-Nielsen C, Yoshizaki T, Sonntag KC, Studer L, Isacson O (2008) Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson’s disease. Brain 131:2127–2139

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula W. Lampton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lampton, P.W., Newmark, J.A., Kiessling, A.A. (2013). Generation of Histocompatible Tissues via Parthenogenesis. In: Fairchild, P. (eds) The Immunological Barriers to Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5480-9_8

Download citation

Publish with us

Policies and ethics