Skip to main content

T Cell Responses in Myeloma

  • Chapter
  • First Online:
Advances in Biology and Therapy of Multiple Myeloma

Abstract

A range of different tumour-induced T cell responses are present in patients with multiple myeloma. T cell subpopulations play important roles in tumour immunology, and these involve both suppressor and regulatory networks. It is likely that T cell function is altered by tumour-derived factors leading to tumour escape. Immunotherapy trials have generally been ineffective because the strategies behind tumour vaccination have underestimated the complex nature of the cellular and molecular factors involved in the immune response in vivo in patients with myeloma. Restoration of a cytotoxic T cell response by either active or passive immunotherapy when used concurrently with protocols to overcome tumour resistance hold some promise for future immunotherapy not only for patients with multiple myeloma but also for many other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruffini PA, Neelapu SS, Kwak L et al (2002) Idiotypic vaccination for B-cell malignancies as a model for therapeutic cancer vaccines: from prototype protein to second generation vaccines. Haematologica 87:989–1001

    PubMed  Google Scholar 

  2. Yi Q (2009) Novel immunotherapies. Cancer J 15:502–510

    PubMed  CAS  Google Scholar 

  3. Higano CS, Schellhammer PF, Small EJ et al (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with Sipuleucel-t in advanced prostate cancer. Cancer 115:3670–3679

    PubMed  CAS  Google Scholar 

  4. Kay N, Leong T, Kyle RA (1999) Altered T cell repertoire usage in CD4 and CD8 subsets of multiple myeloma patients, a Study of the Eastern Cooperative Oncology Group (E9487). Leuk Lymphoma 33:127–133

    PubMed  CAS  Google Scholar 

  5. Mills KHG, Cawley JC (1983) Abnormal monoclonal antibody-defined helper/suppressor T-cell subpopulations in multiple myeloma: relationship to treatment and clinical stage. Br J Haematol 53:271–275

    PubMed  CAS  Google Scholar 

  6. Pilarski LM, Andrews EJ, Serra HM (1989) Comparative analysis of immunodeficiency in patients with monoclonal gammopathy of undetermined significance and patients with untreated multiple myeloma. Scand J Immunol 29:217–228

    PubMed  CAS  Google Scholar 

  7. Carter A, Silvian I, Tatarsky I et al (1986) Impaired immunoglobulin synthesis in multiple myeloma: a B-cell dysfunction. Am J Hematol 22:143–154

    PubMed  CAS  Google Scholar 

  8. Mellstedt H, Holm G, Pettersson D et al (1982) T cells in monoclonal gammopathies. Scand J Haematol 29:57–64

    PubMed  CAS  Google Scholar 

  9. Tienhaara A, Pelliniemi TT (1994) Peripheral blood lymphocyte subsets in multiple myeloma and monoclonal gammopathy of undetermined significance. Clin Lab Haematol 16:213–223

    PubMed  CAS  Google Scholar 

  10. Pilarski LM, Andrews EJ, Serra HM et al (1989) Abnormalities in lymphocyte profile and specificity repertoire of patients with Waldenström’s macroglobulinemia, multiple myeloma, and IgM monoclonal gammopathy of undetermined significance. Am J Hematol 30:53–60

    PubMed  CAS  Google Scholar 

  11. Serra HM, Mant MJ, Ruether BA et al (1988) Selective loss of CD4  +  CD45R  +  T cells in peripheral blood of multiple myeloma patients. J Clin Immunol 8:259–265

    PubMed  CAS  Google Scholar 

  12. Kay NE, Leong T, Bone N et al (1998) T-helper phenotypes in the blood of myeloma patients on ECOG phase III trials E9486/E3A93. Br J Haematol 100:459–463

    PubMed  CAS  Google Scholar 

  13. Kay NE, Oken MM, Kyle R (1995) Sequential phenotyping of myeloma patients on chemotherapy: persistence of activated T-cells and natural killer cells. Leuk Lymphoma 16:351–354

    PubMed  CAS  Google Scholar 

  14. Joshua DE, Brown G, MacLennan IC (1979) Immune suppression in BALB/c mice bearing the plasmacytoma TEPC-183: evidence for normal lymphocyte but defective macrophage function. Int J Cancer 23:663–672

    PubMed  CAS  Google Scholar 

  15. Massaia M, Bianchi A, Attisano C et al (1991) Detection of hyperreactive T cells in multiple myeloma by multivalent cross-linking of the CD3/TCR complex. Blood 78:1770–1780

    PubMed  CAS  Google Scholar 

  16. Reibnegger G, Krainer M, Herold M et al (1991) Predictive value of interleukin-6 and neopterin in patients with multiple myeloma. Cancer Research 51:6250–6253

    PubMed  CAS  Google Scholar 

  17. Brown RD, Joshua DE, Nelson M et al (1993) Serum thymidine kinase as a prognostic indicator for patients with multiple myeloma: results from the MRC (UK) V trial. Br J Haematol 84:238–241

    PubMed  CAS  Google Scholar 

  18. Miguel-Garcia A, Matutes E, Tarin F et al (1995) Circulating Ki67 positive lymphocytes in multiple myeloma and benign monoclonal gammopathy. J Clin Pathol 48:835–839

    PubMed  CAS  Google Scholar 

  19. Massaia M, Borrione P, Attisano C et al (1995) Dysregulated Fas and bcl-2 expression leading to enhanced apoptosis in T cells of multiple myeloma patients. Blood 85:3679–3687

    PubMed  CAS  Google Scholar 

  20. Massaia M, Bianchi A, Dianzani U et al (1990) Defective interleukin-2 induction of lymphokine-activated killer (LAK) activity in peripheral blood T lymphocytes of patients with monoclonal gammopathies. Clin Exp Immunol 79:100–104

    PubMed  CAS  Google Scholar 

  21. Massaia M, Dianzani U, Bianchi A et al (1988) Defective generation of alloreactive cytotoxic T lymphocytes (CTL) in human monoclonal gammopathies. Clin Exp Immunol 73:214–218

    PubMed  CAS  Google Scholar 

  22. Svaldi M, Lanthaler AJ, Dugas M et al (2003) T-cell receptor excision circles: a novel prognostic parameter for the outcome of transplantation in multiple myeloma patients. Br J Haematol 122:795–801

    PubMed  CAS  Google Scholar 

  23. Ullrich S, Zolla-Pazner S (1982) Immunoregulatory circuits in myeloma. Clin Haematol 11:87–111

    PubMed  CAS  Google Scholar 

  24. Ozer H, Han T, Henderson ES (1981) Immunoregulatory T cell function in multiple myeloma. J Clin Invest 67:779–789

    PubMed  CAS  Google Scholar 

  25. Lahat N, Aghai E, Froom P (1988) T cells of multiple myeloma patients triggered by the autologous mixed lymphocyte reaction suppress polyclonal immunoglobulin synthesis. Cancer 15:1124–1128

    Google Scholar 

  26. Lahat N, Aghai E, Froom P (1988) T-cells of multiple myeloma patients triggered by the autologous mixed lymphocyte reaction suppress polyclonal immunoglobulin synthesis. Cancer 15:1124–1128

    Google Scholar 

  27. Pilarski LM, Mant MJ, Ruether BA et al (1985) Abnormal clonogenic potential of T cells from multiple myeloma patients. Blood 66:1266–1271

    PubMed  CAS  Google Scholar 

  28. Garderet L, Mazurier C, Pellat-Deceunynck C et al (2006) Poor ex vivo induction of responses to idiotype or tumor cell lysate-pulsed autologous dendritic cells in advanced pre-treated myeloma. Leuk Lymphoma 47:1340–1347

    PubMed  CAS  Google Scholar 

  29. Brown RD, Yuen E, Nelson M et al (1997) The prognostic significance of T cell receptor beta gene rearrangements and idiotype-reactive T cell in multiple myeloma. Leukemia 11:1312–1317

    PubMed  CAS  Google Scholar 

  30. Raitakari M, Brown RD, Gibson J et al (2003) T cells in myeloma. Hematol Oncol 21:33–42

    PubMed  CAS  Google Scholar 

  31. Sze DM-Y, Brown RD, Yang S et al (2003) Prediction of high affinity class I-restricted multiple myeloma idiotype peptide epitopes. Leuk Lymphoma 44:1557–1568

    CAS  Google Scholar 

  32. Sze DM-Y, Brown RD, Yuen E et al (2003) Clonal cytotoxic T cells in myeloma. Leuk Lymphoma 44:1667–1674

    PubMed  CAS  Google Scholar 

  33. Sze DM-Y, Giesajtis G, Brown RD et al (2001) Clonal cytotoxic T cells are expanded in myeloma and reside in the CD8+ CD57+ CD28- compartment. Blood 98:2817–2827

    PubMed  CAS  Google Scholar 

  34. Wen T, Mellstedt H (1990) Jondal M (1990) Presence of clonal T cell populations in chronic B lymphocytic leukemia and smoldering myeloma. J Exp Med 171:659–666

    PubMed  CAS  Google Scholar 

  35. Fujii S (2000) Role of interferon-alpha and clonally expanded T cells in the immunotherapy of chronic myelogenous leukemia. Leuk Lymphoma 38:21–38

    PubMed  CAS  Google Scholar 

  36. Mustjoki S, Ekblom M, Arstila TP et al (2009) Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia 23:1398–1405

    PubMed  CAS  Google Scholar 

  37. de Vries AC, Langerak AW, Verhaaf B et al (2008) T cell receptor Vbeta CDR3 oligoclonality frequently occurs in childhood refractory cytopenia (MDS-RC) and severe aplastic anaemia. Leukemia 22:1170–1174

    PubMed  Google Scholar 

  38. Epling-Burnette PK, Painter JS, Rollison DE et al (2007) Prevalence and clinical association of clonal T cell expansions in myelodysplastic syndrome. Leukemia 21:659–667

    PubMed  CAS  Google Scholar 

  39. Li H, Hong S, Qian J et al (2010) Crosstalk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood doi. doi:10.1182/blood-2009-11255026

  40. Li J, Brown RD, Sze DM-Y et al (2010) Clonal expansions of cytotoxic T cells exist in the blood of patients with Waldenstrom’s Macroglobulinaemia but exhibit anergic properties and are eliminated by nucleoside analogue therapy. Blood 115:3580–3588

    PubMed  CAS  Google Scholar 

  41. Janson CH, Grunewald J, Österborg A et al (1991) Predominant T cell receptor V gene usage in patients with abnormal clones of B cells. Blood 77:1776–1780

    PubMed  CAS  Google Scholar 

  42. Moss P, Gillespie G, Frodsham P et al (1996) Clonal populations of CD4+ and CD8+ T cells in patients with multiple myeloma and paraproteinemia. Blood 87:3297–3306

    PubMed  CAS  Google Scholar 

  43. Raitakari M, Brown RD, Sze D et al (2000) T-cell expansion in patients with multiple myeloma have a phenotype of cytotoxic T cells. Br J Haematol 110:203–209

    PubMed  CAS  Google Scholar 

  44. Halapi E, Werner Å, Wahlström J et al (1997) T cell repertoire in patients with multiple myeloma and monoclonal gammopathy of undetermined significance: clonal CD8+ T cell expansions are found preferentially in patients with a low tumor burden. Eur J Immunol 27:2245–2252

    PubMed  CAS  Google Scholar 

  45. Brown RD, Spencer A, Ho PJ et al (2009) Prognostically significant cytotoxic T cell clones are stimulated after thalidomide therapy in patients with multiple myeloma. Leuk Lymphoma 50:1860–1864

    PubMed  CAS  Google Scholar 

  46. Mileshkin L, Honemann D, Gambell P et al (2007) Patients with multiple myeloma treated with thalidomide: evaluation of clinical parameters, cytokines, angiogenic markers, mast cells and marrow CD57+ cytotoxic T cells as predictors of outcome. Haematologica 92:1075–82

    PubMed  CAS  Google Scholar 

  47. Murillo O, Arina A, Hervas-Stubbs S et al (2008) Therapeutic antitumour efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin Cancer Res 2008(14):6895–906

    Google Scholar 

  48. Waller ECP, McKinney N, Hicks R et al (2007) Differential costimulation through CD137 (4–1BB) restores proliferation of human virus-specific “effector memory” (CD28 CD45RAHI) CD8+ T cells. Blood 110:4360–4366

    PubMed  CAS  Google Scholar 

  49. Campbell JD, Cook G, Robertson SE et al (2001) Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF beta is reversed by IL-15. J Immunol 167:553–561

    PubMed  CAS  Google Scholar 

  50. Hansson L, Abdalla AO, Moshfegh A et al (2007) Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res 13:1503–1510

    PubMed  CAS  Google Scholar 

  51. Liu W, Putnam Al X-YZ et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J Exp Med 203:1701–1711

    PubMed  CAS  Google Scholar 

  52. Chen W, Jin W, Hardegen N et al (2003) Conversion of CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor FoxP3. J Exp Med 198:1875–1886

    PubMed  CAS  Google Scholar 

  53. Bourgeois C, Veiga-Fernandez H, Joret AM et al (2002) CD8 lethargy in the absence of CD4 help. Eur J Immunol 32:2199–2207

    PubMed  CAS  Google Scholar 

  54. Beyer M, Kochanek M, Darabi K (2005) Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106:2018–2025

    PubMed  CAS  Google Scholar 

  55. Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin-17 producing CD4+ effector cells develop via a lineage distinct from T helper Type 1 and 2 lineages. Nat Immunol 6:1123–1132

    PubMed  CAS  Google Scholar 

  56. Ji Y, Zhang W (2010) Th17 cells: positive or negative role in tumor? Cancer Immunol Immunother 59:979–987

    PubMed  Google Scholar 

  57. Inozume T, Hanada K, Wang QJ et al (2009) IL-17 secreted by tumor reactive T cells indices IL-8 release by human renal cancer cells. J Immunother 32:109–117

    PubMed  CAS  Google Scholar 

  58. Muranski P, Boni A, Antony PA (2009) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373

    Google Scholar 

  59. Alvarez E, Moga E, Barquinero J et al (2010) Dendritic cell and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response. Gene Ther 17:469–477

    PubMed  CAS  Google Scholar 

  60. Derhavanessian E, Adams V, Hahnel K et al (2009) Pretreatment frequency of circulating IL-17+ CD4+ T-cells, but not Tregs, correlates with clinical response to whole-cell vaccination in prostate cancer patients. Int J Cancer 125:1372–1379

    Google Scholar 

  61. Kyte JA, Traxhsel S, Risberg B et al (2009) Unconventional cytokine profiles and development of T cell memory in long-term survivors after cancer vaccination. Cancer Immunol Immunother 58:1609–1626

    PubMed  CAS  Google Scholar 

  62. Leveque L, Deknuydt F, Bioley G et al (2009) Interleukin 2-mediated conversion of ovarian cancer-associated CD4+ regulatory T cells into proinflammatory interleukin 17-producing helper T cells. J Immunother 32:101–108

    PubMed  CAS  Google Scholar 

  63. Martin-Orozco N, Muranski P et al (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798

    PubMed  CAS  Google Scholar 

  64. Van Euw E, Chondon T, Attar N, Jalil J, Koya RC, Comin-Anduix B, Ribas A (2009) CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J Transl Med 7:35

    Google Scholar 

  65. Prabhala RH, Neri P, Bae JE et al (2006) Dysfunctional T regulatory cells in multiple myeloma. Blood 107:301–304

    PubMed  CAS  Google Scholar 

  66. Beyer M, Kochanek M, Giese T et al (2006) In vivo peripheral expansion of naive CD4  +  CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107:3940–3949

    PubMed  CAS  Google Scholar 

  67. Quach H, Ritchie D, Neeson P et al (2008) Regulatory T Cells (Treg) are depressed in Patients with Relapsed/Refractory Multiple Myeloma (MM) and Increases towards Normal Range in Responding Patients Treated with Lenalidomide (LEN). Blood 112:1696

    Google Scholar 

  68. Feyler S, von Lilienfeld-Toal M, Jarmin S et al (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−)alphabetaTCR(+) Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144:686–695

    PubMed  Google Scholar 

  69. Chiarenza A, Parrinello N, La Cava P et al (2009) Lenalidomide is able to restore immune system in multiple myeloma patients. Blood 114:4909

    Google Scholar 

  70. Raja K, Raja M, Zahradova L et al (2009) Flow cytometric phenotyping and analysis of T regulatory cells in monoclonal gammopathy patients. Blood 114:2819

    Google Scholar 

  71. Prabhala RH, Pelluru D, Fulciniti M et al. (2010) Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma Blood doi:10.1182/blood-2009-10-246660

  72. Noonan KA, Anderson J, Mgebroff S (2007) Th17 lymphocytes, not regulatory T cells mediate immune regulation of bone marrow infiltrating lymphocytes and induce osteoclast activation in multiple myeloma. Blood 110:811

    Google Scholar 

  73. Law JP, Hirschkom DF, Owen RE et al (2009) The importance of Foxp3 antibody and fixation/permeabilization buffer combinations in identifying CD4  +  CD25  +  Foxp3+ regulatory T cells. Cytometry A 75:1040–1050

    PubMed  Google Scholar 

  74. Presicce P, Moreno-Fernandez ME et al (2010) Association of two clones allows for optimal detection of human FOXP3. Cytometry A 77A:571–579

    CAS  Google Scholar 

  75. LeBlanc R, Hideshima T, Catley LP et al (2004) Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 103:1787–1790

    PubMed  CAS  Google Scholar 

  76. Galustian C, Meyer B, Labarthe MC et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045

    PubMed  CAS  Google Scholar 

  77. Minnema MC, van der Veer MS, Aarts T et al (2009) Lenalidomide alone or in combination with dexamethasone is highly effective in patients with relapsed multiple myeloma following allogeneic stem cell transplantation and increases the frequency of CD4+ FOXP3+ T cells. Leukemia 23:605–607

    PubMed  CAS  Google Scholar 

  78. Feger U, Tolosa E, Huang Y-H et al (2007) HLA-G expression defines a novel regulatory T cell subset present in human peripheral blood and sites of inflammation. Blood 110:568–577

    PubMed  CAS  Google Scholar 

  79. Le Maoult J, Caumartin J, Daouya M et al (2007) Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood 109:2040–2048

    Google Scholar 

  80. Brown RD, Murray A, Pope B et al (2004) B7+ T cells in myeloma: and acquired marker of prior chronic antigen presentation and unresponsiveness. Leuk Lymphoma 45:363–371

    PubMed  CAS  Google Scholar 

  81. Brown R, Murray A, Pope B et al (2004) Either IL-12 or interferon-γ can correct the dendritic cell defect induced by TGFβ1 in patients with myeloma. Br J Haematol 125:743–748

    PubMed  CAS  Google Scholar 

  82. Schultze J, Nadler LM, Gribben JG et al (1996) B7-mediated costimulation and the immune response. Blood Rev 10:111–127

    PubMed  CAS  Google Scholar 

  83. LeMaoult J, Caumartin J, Daouya M et al (2007) Immune regulation by pretenders: cell-tocell transfers of HLA-G make effector cells act as regulatory cells. Blood 109:2040–2048

    PubMed  CAS  Google Scholar 

  84. Brown RD, Pope B, Murray A (2001) Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to upregulate CD80 (B7–1) expression after huCD40LT stimulation due to inhibition by TGFβ and IL-10. Blood 98:2992–2998

    PubMed  CAS  Google Scholar 

  85. Bertz H, Burger JA, Kunzmann R (1997) Adoptive immunotherapy for relapsed multiple myeloma after allogeneic bone marrow transplantation (BMT): evidence for a graft-versus-myeloma effect. Leukemia 11:281–283

    PubMed  CAS  Google Scholar 

  86. Salama M, Nevill T, Marcellus D et al (2000) Donor leucocyte infusions in multiple myeloma. Bone Marrow Transplant 26:1179–1184

    PubMed  CAS  Google Scholar 

  87. Abbas AK (1979) Antigen and T lymphocyte mediated suppression of myeloma cells: model systems for regulation of lymphocyte function. Immunol Rev 48:245–264

    PubMed  CAS  Google Scholar 

  88. Abbas K, Perry LL, Bach BA et al (1980) Idiotype-specific T cell immunity. I Generation of effector and suppressor T lymphocytes reactive with myeloma idiotypic determinants J Immunol 124:1160–1166

    CAS  Google Scholar 

  89. Lynch RG (1987) Immunoglobulin-specific suppressor T cells. Advan Immunol 40:135–151

    CAS  Google Scholar 

  90. Lynch RG, Graff RJ, Sirisinha S et al (1972) Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci USA 69:1540–1544

    PubMed  CAS  Google Scholar 

  91. Daley MJ, Gebel HM, Lynch RG (1978) Idiotype-specific transplantation resistance to MOPC-315: abrogation by post-immunization thymectomy. J Immunol 120:1620–1624

    PubMed  CAS  Google Scholar 

  92. Milburn GL, Lynch RG (1983) Anti-idiotypic regulation of IgA expression in myeloma cells. Mol Immunol 20:931–940

    PubMed  CAS  Google Scholar 

  93. Bogen B, Malissen B, Haas W (1986) Idiotope-specific T cell clones that recognize syngeneic immunoglobulin fragments in the context of class II molecules. Eur J Immunol 16:1373–1378

    PubMed  CAS  Google Scholar 

  94. Bogen B, Lauritzsen GF, Weiss S (1990) A stimulatory monoclonal antibody detecting T cell receptor diversity among idiotype-specific, major histocompatibility complex-restricted T cell clones. Eur J Immunol 20:2359–2362

    PubMed  CAS  Google Scholar 

  95. Corthay A, Lundkin KU, Hofgaard PO et al (2009) Secretion of tumor-specific antigen by myeloma cells is required for cancer immunosurveillance by CD4+ T cells. Cancer Res 69:5901–5907

    PubMed  CAS  Google Scholar 

  96. Bogen B, Schenck K, Munthe LA et al (2000) Deletion of idiotype (Id)-specific T cells in multiple myeloma. Acta Oncologica 39:783–788

    PubMed  CAS  Google Scholar 

  97. Hong S, Qian J, Yang J et al (2008) Roles of idiotype-specific t cells in myeloma cell growth and survival: Th1 and CTL cells are tumoricidal while Th2 cells promote tumor growth. Cancer Res 68:8456–8464

    PubMed  CAS  Google Scholar 

  98. Dou J, Chu L, Zhao F et al (2007) Study of immunotherapy of murine myeloma by an IL-21-based tumor vaccine in BALB/C mice. Cancer Biol Ther 6:1871–1879

    PubMed  CAS  Google Scholar 

  99. Broder S, Humphrey R, Durm M et al (1975) Impaired synthesis of polyclonal (non-paraprotein) immunoglobulins by circulating lymphocytes from patients with multiple myeloma. New Engl J Med 293:888–892

    Google Scholar 

  100. Walchner M, Wick M (1997) Elevation of CD8  +  CD11b  +  Leu-8- T cells is associated with the humoral immunodeficiency in myeloma patients. Clin Exp Immunol 109:310–316

    PubMed  CAS  Google Scholar 

  101. Paglieroni T, MacKenzie MR (1977) Studies on the pathogenesis of an immune defect in multiple myeloma. J Clin Invest 59:1120–1133

    PubMed  CAS  Google Scholar 

  102. Massaia M, Attisano C, Peola S et al (1993) Rapid generation of antiplasma cell activity in the bone marrow of myeloma patients by CD3-activated T cells. Blood 82:1787–1797

    PubMed  CAS  Google Scholar 

  103. Österborg A, Janson CH, Bergenbrandt S et al (1991) Peripheral blood T lymphocytes in patients with monoclonal gammopathies: expanded subsets as depicted by capacity to bind to autologous monoclonal immunoglobulins or reactivity with anti-V gene-restricted antibodies. Eur J Haematol 47:185–191

    PubMed  Google Scholar 

  104. Österborg A, Masucci M, Bergenbrandt S et al (1991) Generation of T cell clones binding F(ab’)2 fragments of the idiotypic immunoglobulin in patients with monoclonal gammopathy. Cancer Immunol Immunother 34:157–162

    PubMed  Google Scholar 

  105. Österborg A, Yi Q, Bergenbrandt S et al (1995) Idiotype-specific T cells in multiple myeloma stage I: an evaluation by four different functional tests. Br J Haematol 89:110–116

    PubMed  Google Scholar 

  106. Yi Q, Holm G, Lefvert AK (1996) Idiotype-induced T cell stimulation requires antigen presentation in association with HLA-DR molecules. Clin Exp Immunol 104:359–365

    PubMed  CAS  Google Scholar 

  107. Dembic Z, Schenck K, Bogen B (2000) Dendritic cells purified from myeloma are primed with tumor-specific antigen (idiotype) and activate CD4+ T cells. Proc Natl Acad Sci USA 97:2697–2702

    PubMed  CAS  Google Scholar 

  108. Diazani U, Pileri A, Boccadoro M et al (1988) Activated idiotype-reactive cells in suppressor/cytotoxic subpopulations of monoclonal gammopathies: correlation with diagnosis and disease status. Blood 72:185–191

    Google Scholar 

  109. Hoover RG, Hickman S, Gebel HM (1981) Expansion of Fc receptor-bearing T lymphocytes in patients with immunoglobulin G and immunoglobulin A myeloma. J Clin Invest 67:308–311

    PubMed  CAS  Google Scholar 

  110. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175

    PubMed  CAS  Google Scholar 

  111. Trojan A, Schultze JL, Witzens M et al (2000) Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nature Med 6:667–672

    PubMed  CAS  Google Scholar 

  112. Belle S, Han F, Condomines M et al (2008) Identification of HLA-A2 restricted T-cell epitopes within the conserved region of the immunoglobulin G heavy-chain in patients with multiple myeloma. Eur J Haematol 81:26–35

    PubMed  CAS  Google Scholar 

  113. Ritchie DS (2007) Plasma cell lysate as an antigen source in multiple myeloma immunotherapy. Leuk Lymphoma 48:1894–1895

    PubMed  CAS  Google Scholar 

  114. Lee JJ, Choi BH, Kang HK et al (2007) Induction of multiple myeloma-specific cytotoxic T lymphocyte stimulation by dendritic cell pulsing with purified and optimized cell lysates. Leuk Lymphoma 48:2022–2031

    PubMed  CAS  Google Scholar 

  115. Michalek J, Ocadlikova D, Matejkova E et al (2010) Individual myeloma-specific T cell clones eliminate tumour cells and correlate with clinical outcomes in patients with multiple myeloma. Br J Haematol 148:859–867

    PubMed  Google Scholar 

  116. Christensen O, Lupu A, Schmidt S et al (2009) Melan-A/Mart peptide triggers anti-myeloma T cells through cross reactivity with HM1.24. J Immunother 32:613–623

    PubMed  CAS  Google Scholar 

  117. Jalili A, Ozaki S, Hara T et al (2005) Induction of HM1.24 peptide specific cytotoxic T lymphocytes by using peripheral blood stem cell harvests in patients with multiple myeloma. Blood 106:3538–3545

    PubMed  CAS  Google Scholar 

  118. Rew SB, Peggs K, Sanjuan I et al (2005) Generation of potent antitumour CTL from patients with multiple myeloma directed against HM1.24. Clin Cancer Res 11:3377–3384

    PubMed  CAS  Google Scholar 

  119. Atanackovic D, Arfsten J, Cao Y et al (2007) Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 109:1103–1112

    PubMed  CAS  Google Scholar 

  120. Goodyear O, Piper K, Khan N et al (2005) CD8+ T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden. Blood 106:4217–4224

    PubMed  CAS  Google Scholar 

  121. Kronig H, Hofer K, Conrad H et al (2009) Allorestricted T lymphocytes with a high avidity T-cell receptor towards NY-ESO-1 have potent anti-tumor activity. Int J Cancer 125:649–655

    PubMed  Google Scholar 

  122. Frank C, Hundemer M, Ho AD (2008) Cellular immune responses against the cancer-testis antigen SPAN-XB in healthy donors and patients with multiple myeloma. Leuk Lymphoma 49:779–785

    PubMed  CAS  Google Scholar 

  123. Szmania S, Gnjatic S, Tricot G et al (2007) Immunization with a recombinant MAGE-A3 protein after high dose therapy for myeloma. J Immunother 30:847–854

    PubMed  Google Scholar 

  124. Grube M, Moritz S, Obermann EC et al (2007) CD8+ T cells reactive to survivin antigen in patients with multiple myeloma. Clin Cancer Res 13:1053–1060

    PubMed  CAS  Google Scholar 

  125. Qian J, Xie J, Hong S et al (2007) Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood 110:1587–1594

    PubMed  CAS  Google Scholar 

  126. Azuma T, Otsuki T, Kuzushima K et al (2004) Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes. Clin Cancer Res 10:7402–7412

    PubMed  CAS  Google Scholar 

  127. Tsuboi A, Oka Y, Nakajima H, Fukuda Y et al (2007) Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma. Int J Hematol 86:414–417

    PubMed  Google Scholar 

  128. Schmitt M, Schmitt A, Rojewski MT et al (2008) RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 111:1357–1367

    PubMed  CAS  Google Scholar 

  129. Kryukov F, Ocadlíková D, Kovárová L et al (2009) In vitro activation of cytotoxic T-lymphocytes by hTERT-pulsed dendritic cells. J Immunotoxicol 6:243–248

    PubMed  CAS  Google Scholar 

  130. Qian J, Wang S, Yang J et al (2005) Targeting heat shock proteins for immunotherapy in multiple myeloma: generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96. Clin Cancer Res 11:8808–8013

    PubMed  CAS  Google Scholar 

  131. Kim SK, Nguyen Pham TN, Nguyen Hoang TM et al (2009) Induction of myeloma-specific cytotoxic T lymphocytes ex vivo by CD40-activated B cells loaded with myeloma tumor antigens. Ann Hematol 88:1113–1123

    PubMed  CAS  Google Scholar 

  132. Freeman JL, Vari F, Hart DN (2007) CMRF-56 immunoselected blood dendritic cell preparations activated with GM-CSF induce potent antimyeloma cytotoxic T cell responses. J Immunother 30:740–748

    PubMed  CAS  Google Scholar 

  133. Lokhorst HM, Liebowitz D (1999) Adoptive T-cell therapy. Semin Hematol 36:26–29

    PubMed  CAS  Google Scholar 

  134. Cabrera R, Diaz-Espada F, Barrios Y et al (2000) Infusion of lymphocytes obtained from a donor immunised with the paraprotein idiotype as a treatment in a relapsed myeloma. Bone Marrow Transplant 25:1105–1108

    PubMed  CAS  Google Scholar 

  135. Kröger N, Krüger W, Renges H et al (2001) Donor lymphocyte infusion enhances remission status in patients with persistent disease after allografting for multiple myeloma. Br J Haematol 112:421–423

    PubMed  Google Scholar 

  136. Kwak LW, Taub DD, Duffey PL (1995) Transfer of myeloma idiotype-specific immunity from an actively immunised marrow donor. Lancet 345:1016–1020

    PubMed  CAS  Google Scholar 

  137. Zeiser R, Bertz H, Spyridonidis A et al (2004) Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives. Bone Marrow Transplant 34:923–928

    PubMed  CAS  Google Scholar 

  138. Kwak LW, Neelapu SS, Bishop MR (2004) Adoptive immunotherapy with antigen-specific T cells in myeloma: a model of tumor-specific donor lymphocyte infusion. Semin Oncol 31:37–46

    PubMed  Google Scholar 

  139. Meehan KR, Wu J, Bengtson E et al (2007) Early recovery of aggressive cytotoxic cells and improved immune resurgence with post-transplant immunotherapy for multiple myeloma. Bone Marrow Transplant 39:695–703

    PubMed  CAS  Google Scholar 

  140. Chiriva-Internati M, Du J, Cannon M et al (2001) Myeloma-reactive allospecific cytotoxic T lymphocytes lyse target cells via the granule exocytosis pathway. Br J Haematol 112:410–420

    PubMed  CAS  Google Scholar 

  141. Orsini E, Alyea EP, Schlossman R et al (2000) Changes in T cell receptor repertoire associated with graft-versus-tumor effect and graft-versus-host disease in patients with relapsed multiple myeloma after donor lymphocyte infusion. Bone Marrow Transplant 25:623–632

    PubMed  CAS  Google Scholar 

  142. Lu ZY, Condomines M, Tarte K et al (2007) B7-1 and 4-1BB ligand expression on a myeloma cell line makes it possible to expand autologous tumor-specific cytotoxic T cells in vitro. Exp Hematol 35:443–453

    PubMed  Google Scholar 

  143. Cull G, Durrant L, Stainer C et al (1999) Haynes A. Russell N Generation of anti-idiotype immune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma Br J Haematol 107:648–655

    CAS  Google Scholar 

  144. Lim SH, Bailey-Wood R (1999) Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Internat J Cancer 83:215–222

    CAS  Google Scholar 

  145. Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S et al (2000) Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Bone Marrow Transplant 6:621–627

    CAS  Google Scholar 

  146. Massaia M, Borrione P, Battaglio S et al (1999) Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood 94:673–683

    PubMed  CAS  Google Scholar 

  147. Österborg A, Henriksson L, Mellstedt H (2000) Idiotype immunity (natural and vaccine-induced) in early stage multiple myeloma. Acta Oncologica 39:797–800

    PubMed  Google Scholar 

  148. Reichardt VL, Okada CY, Liso A et al (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma - a feasibility study. Blood 93:2411–2419

    PubMed  CAS  Google Scholar 

  149. Titzer S, Christensen O, Manzke O et al (2000) Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol 108:805–816

    PubMed  CAS  Google Scholar 

  150. Wen Y-J, Barlogie B, Yi Q (2001) Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood 97:1750–1755

    PubMed  CAS  Google Scholar 

  151. Lacy MQ, Wettstein P, Gertz MA (2000) Dendritic cell-based idiotypic vaccination in post transplant multiple myeloma. Blood 96(Suppl 1):374a

    Google Scholar 

  152. MacKenzie M, Peshwa MV, Wun T (2000) Immunotherapy of advanced refractory multiple myeloma with idiotype-pulsed dendritic cells (mylovenge). Blood 96(Suppl 1):166a

    Google Scholar 

  153. Lacy MQ, Jacobus S, Blood EA et al (2009) Phase II study of interleukin-12 for treatment of plateau phase multiple myeloma (E1A96): a trial of the Eastern Cooperative Oncology Group. Leuk Res 33:1485–1489

    PubMed  CAS  Google Scholar 

  154. Lacy MQ, Mandrekar S, Dispenzieri A et al (2009) Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol 84:799–802

    PubMed  Google Scholar 

  155. Abdalla AO, Kokhaei P, Hansson L et al (2008) Idiotype vaccination in patients with myeloma reduced circulating myeloma cells (CMC). Ann Oncol 19:1172–1179

    PubMed  CAS  Google Scholar 

  156. Curti A, Tosi P, Comoli P et al (2007) Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides. Br J Haematol 139:415–424

    PubMed  CAS  Google Scholar 

  157. Wang S, Hong S, Wezeman M (2007) Dendritic cell vaccine but not idiotype-KLH protein vaccine primes therapeutic tumor-specific immunity against multiple myeloma. Front Biosci 12:3566–3575

    PubMed  CAS  Google Scholar 

  158. Brasel K, De Smedt T, Smith JL et al (2000) Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 96:3029–3039

    PubMed  CAS  Google Scholar 

  159. Racanelli V, Leone P, Frassanito MA et al (2010) Alterations in the antigen processing-presenting machinery of transformed plasma cells are associated with reduced recognition by CD8+ T cells and characterize the progression of MGUS to multiple myeloma. Blood 115:1185–1193

    PubMed  CAS  Google Scholar 

  160. Abdalla AO, Hansson L, Eriksson I et al (2007) Idiotype protein vaccination in combination with adjuvant cytokines in patients with multiple myeloma–evaluation of T-cell responses by different read-out systems. Haematologica 92:110–114

    PubMed  CAS  Google Scholar 

  161. Straube C, Wehner R, Wendisch M et al (2007) Bortezomib significantly impairs the immunostimulatory capacity of human myeloid blood dendritic cells. Leukemia 21:1464–1471

    PubMed  CAS  Google Scholar 

  162. Fiore F, Nuschak B, Peola S et al (2005) Exposure to myeloma cell lysates affects the immune competence of dendritic cells and favors the induction of Tr1-like regulatory T cells. Eur J Immunol 35:115–1163

    Google Scholar 

  163. Pope B, Brown RD, Gibson J et al (2000) B7-2 positive myeloma: incidence, clinical characteristics, prognostic significance and implications for immunotherapy. Blood 96:1274–1279

    PubMed  CAS  Google Scholar 

  164. Cook G, Campbell JD, Carr CE (1999) Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leuc Biol 66:981–988

    CAS  Google Scholar 

  165. Peinert S, Prince HM, Guru PM et al (2010) Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Therapy. doi:10.1038/gt.2010.21

  166. Banerjee DK, Dhodapkar MV, Matayeva E et al (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108:2655–2661

    PubMed  CAS  Google Scholar 

  167. Curiel TJ (2007) Tregs and rethinking cancer immunology. J Clin Invest 117:1167–1174

    PubMed  CAS  Google Scholar 

  168. Villunger A, Egle A, Marschitz I et al (1997) Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor-induced suppression of immune surveillance. Blood 90:12–20

    PubMed  CAS  Google Scholar 

  169. Shima Y, Nishimoto N, Ogata A et al (1995) Myeloma cells express Fas antigen/APO-1 (CD95) but only some are sensitive to anti-Fas antibody resulting in apoptosis. Blood 85:757–764

    PubMed  CAS  Google Scholar 

  170. Landowski T, Qu N, Buyuksal I (1997) Mutations in the Fas antigen in patients with multiple myeloma. Blood 90:4266–4270

    PubMed  CAS  Google Scholar 

  171. Han S, Wang B, Cotter MJ et al (2007) Overcoming immune tolerance against multiple myeloma with lentiviral calnexin-engineered dendritic cells. Mol Ther 16:268–279

    Google Scholar 

  172. Sharabi A, Ghera NH (2010) Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy. Adv Cancer Res 107:1–37

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, R., Ho, P.J., Gibson, J., Joshua, D. (2013). T Cell Responses in Myeloma. In: Munshi, N., Anderson, K. (eds) Advances in Biology and Therapy of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5260-7_1

Download citation

Publish with us

Policies and ethics