Skip to main content

ATR as a Therapeutic Target

  • Chapter
  • First Online:
Advances in DNA Repair in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 72))

  • 1231 Accesses

Abstract

Ataxia Telangiectasia Mutated and Rad3-related (ATR) is a vital sensor of a variety of DNA lesions and is critical to cell cycle arrest at the S and G2 checkpoints as well as initiation of DNA repair via homologous recombination repair (HRR). ATR is a member of the PI-3K like family of kinases (PIKKs), which include Ataxia Telangiectasia Mutated (ATM) and DNA-PKCS(DNA-dependent protein kinase catalytic subunit) [1]; protein kinases that are also involved in the complex network of DNA damage signalling and repair mechanisms known as the DNA damage response (DDR). The DDR comprises sensor proteins which detect the DNA damage and signal to transducer proteins, e.g. p53 and checkpoint kinases which then transmit this information to downstream effector proteins. These effectors activate the appropriate damage response, be it cell cycle arrest and DNA repair or apoptosis. Many of the phosphorylation substrates of ATR are also common to ATM, and the two are both involved in HRR in response to double strand breaks (DSBs). There is also crosstalk between the two PIKKs. ATM and ATR phosphorylate >900 sites on >700 proteins in response to DNA damage induced, experimentally, highlighting the complexity of the network. The majority of phosphorylated proteins are involved in DNA replication, recombination and repair plus cell cycle regulation [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durocher D, Jackson SP (2001) DNA-PK, ATM and ATR as sensors of DNA damage: ­variations on a theme? Curr Opin Cell Biol 13(2):225–231

    Article  PubMed  CAS  Google Scholar 

  2. Matsuoka S et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Article  PubMed  CAS  Google Scholar 

  3. Bentley NJ et al (1996) The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J 15(23):6641–6651

    PubMed  CAS  Google Scholar 

  4. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14(4):397–402

    PubMed  CAS  Google Scholar 

  5. Schlegel R, Pardee AB (1986) Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science 232(4755):1264–1266

    Article  PubMed  CAS  Google Scholar 

  6. O’Driscoll M et al (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33(4):497–501

    Article  PubMed  CAS  Google Scholar 

  7. Tauchi H et al (2002) Nijmegen breakage syndrome gene, NBS1, and molecular links to ­factors for genome stability. Oncogene 21(58):8967–8980

    Article  PubMed  CAS  Google Scholar 

  8. Casper AM et al (2004) Chromosomal instability at common fragile sites in Seckel ­syndrome. Am J Hum Genet 75(4):654–660

    Article  PubMed  CAS  Google Scholar 

  9. Cliby WA et al (1998) Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J 17(1):159–169

    Article  PubMed  CAS  Google Scholar 

  10. Cliby WA et al (2002) S phase and G2 arrests induced by topoisomerase I poisons are dependent on ATR kinase function. J Biol Chem 277(2):1599–1606

    Article  PubMed  CAS  Google Scholar 

  11. Unsal-Kacmaz K et al (2002) Preferential binding of ATR protein to UV-damaged DNA. Proc Natl Acad Sci USA 99(10):6673–6678

    Article  PubMed  CAS  Google Scholar 

  12. Saleh-Gohari N et al (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25(16):7158–7169

    Article  PubMed  CAS  Google Scholar 

  13. Burhans WC, Weinberger M (2007) DNA replication stress, genome instability and aging. Nucleic Acids Res 35(22):7545–7556

    Article  PubMed  CAS  Google Scholar 

  14. Paulsen RD, Cimprich KA (2007) The ATR pathway: fine-tuning the fork. DNA Repair (Amst) 6(7):953–966

    Article  CAS  Google Scholar 

  15. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422): 709–715

    Article  PubMed  CAS  Google Scholar 

  16. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100(22):12871–12876

    Article  PubMed  CAS  Google Scholar 

  17. Hang B (2010) Formation and repair of tobacco carcinogen-derived bulky DNA adducts. J Nucleic Acids 2010:709521

    PubMed  Google Scholar 

  18. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  PubMed  CAS  Google Scholar 

  19. Shiotani B, Zou L (2009) Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33(5):547–558

    Article  PubMed  CAS  Google Scholar 

  20. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  PubMed  CAS  Google Scholar 

  21. Morishima K et al (2007) TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochem Biophys Res Commun 362(4):872–879

    Article  PubMed  CAS  Google Scholar 

  22. Delacroix S et al (2007) The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21(12):1472–1477

    Article  PubMed  CAS  Google Scholar 

  23. Dart DA et al (2004) Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase. J Biol Chem 279(16):16433–16440

    Article  PubMed  CAS  Google Scholar 

  24. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548

    Article  PubMed  CAS  Google Scholar 

  25. Itakura E et al (2004) ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochem Biophys Res Commun 323(4):1197–1202

    Article  PubMed  CAS  Google Scholar 

  26. Zou L, Liu D, Elledge SJ (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci USA 100(24):13827–13832

    Article  PubMed  CAS  Google Scholar 

  27. Yoshioka K, Yoshioka Y, Hsieh P (2006) ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 22(4):501–510

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Qin J (2003) MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation. Proc Natl Acad Sci USA 100(26):15387–15392

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y et al (2010) Interactions of human mismatch repair proteins MutSalpha and MutLalpha with proteins of the ATR-Chk1 pathway. J Biol Chem 285(8):5974–5982

    Article  PubMed  CAS  Google Scholar 

  30. Caporali S et al (2004) DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol Pharmacol 66(3):478–491

    PubMed  CAS  Google Scholar 

  31. Wang X et al (2006) Rad17 phosphorylation is required for claspin recruitment and Chk1 activation in response to replication stress. Mol Cell 23(3):331–341

    Article  PubMed  CAS  Google Scholar 

  32. Takai H et al (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev 14(12):1439–1447

    PubMed  CAS  Google Scholar 

  33. Walker M et al (2009) Chk1 C-terminal regulatory phosphorylation mediates checkpoint activation by de-repression of Chk1 catalytic activity. Oncogene 28(24):2314–2323

    Article  PubMed  CAS  Google Scholar 

  34. Peasland A et al (2011) Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer 105(3):372–381

    Article  PubMed  CAS  Google Scholar 

  35. Liu Q et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459

    PubMed  CAS  Google Scholar 

  36. Parsels LA et al (2011) Assessment of chk1 phosphorylation as a pharmacodynamic ­biomarker of chk1 inhibition. Clin Cancer Res 17(11):3706–3715

    Article  PubMed  CAS  Google Scholar 

  37. Sorensen CS, Syljuasen RG (2012) Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 40(2):477–486

    Article  PubMed  CAS  Google Scholar 

  38. Chen MS, Ryan CE, Piwnica-Worms H (2003) Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23(21):7488–7497

    Article  PubMed  CAS  Google Scholar 

  39. Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res 16(2):376–383

    Article  PubMed  CAS  Google Scholar 

  40. Lee J, Kumagai A, Dunphy WG (2001) Positive regulation of Wee1 by Chk1 and 14-3-3 proteins. Mol Biol Cell 12(3):551–563

    PubMed  CAS  Google Scholar 

  41. Flynn RL, Zou L (2011) ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 36(3):133–140

    Article  PubMed  CAS  Google Scholar 

  42. Casper AM et al (2002) ATR regulates fragile site stability. Cell 111(6):779–789

    Article  PubMed  CAS  Google Scholar 

  43. Petermann E, Caldecott KW (2006) Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase. Cell Cycle 5(19):2203–2209

    Article  PubMed  CAS  Google Scholar 

  44. Yajima H, Lee KJ, Chen BP (2006) ATR-dependent phosphorylation of DNA-dependent protein kinase catalytic subunit in response to UV-induced replication stress. Mol Cell Biol 26(20):7520–7528

    Article  PubMed  CAS  Google Scholar 

  45. Shigechi T et al (2012) ATR-ATRIP kinase complex triggers activation of the Fanconi anemia DNA repair pathway. Cancer Res 72(5):1149–1156

    Article  PubMed  CAS  Google Scholar 

  46. Yamane K, Taylor K, Kinsella TJ (2004) Mismatch repair-mediated G2/M arrest by 6-thioguanine involves the ATR-Chk1 pathway. Biochem Biophys Res Commun 318(1):297–302

    Article  PubMed  CAS  Google Scholar 

  47. Stauffer D et al (2007) p300/CREB-binding protein interacts with ATR and is required for the DNA replication checkpoint. J Biol Chem 282(13):9678–9687

    Article  PubMed  CAS  Google Scholar 

  48. Chen G et al (1999) Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274(18):12748–12752

    Article  PubMed  CAS  Google Scholar 

  49. Di Virgilio M, Ying CY, Gautier J (2009) PIKK-dependent phosphorylation of Mre11 induces MRN complex inactivation by disassembly from chromatin. DNA Repair (Amst) 8(11): 1311–1320

    Article  CAS  Google Scholar 

  50. Bolderson E et al (2010) Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic Acids Res 38(6):1821–1831

    Article  PubMed  CAS  Google Scholar 

  51. Cortez D et al (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286(5442):1162–1166

    Article  PubMed  CAS  Google Scholar 

  52. Zhang F et al (2009) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19(6):524–529

    Article  PubMed  CAS  Google Scholar 

  53. Jensen RB, Carreira A, Kowalczykowski SC (2010) Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467(7316):678–683

    Article  PubMed  CAS  Google Scholar 

  54. Liu J et al (2010) Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 17(10):1260–1262

    Article  PubMed  CAS  Google Scholar 

  55. Thorslund T et al (2010) The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 17(10):1263–1265

    Article  PubMed  CAS  Google Scholar 

  56. Wang H et al (2004) ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining. Cancer Res 64(19): 7139–7143

    Article  PubMed  CAS  Google Scholar 

  57. Sorensen CS et al (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7(2):195–201

    Article  PubMed  CAS  Google Scholar 

  58. Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276(51):47759–47762

    PubMed  CAS  Google Scholar 

  59. Paull TT et al (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10(15):886–895

    Article  PubMed  CAS  Google Scholar 

  60. Chu WK et al (2010) BLM has early and late functions in homologous recombination repair in mouse embryonic stem cells. Oncogene 29(33):4705–4714

    Article  PubMed  CAS  Google Scholar 

  61. Davies SL et al (2004) Phosphorylation of the Bloom’s syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 24(3):1279–1291

    Article  PubMed  CAS  Google Scholar 

  62. Otterlei M et al (2006) Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J Cell Sci 119(Pt 24):5137–5146

    Article  PubMed  CAS  Google Scholar 

  63. Tripathi V, Kaur S, Sengupta S (2008) Phosphorylation-dependent interactions of BLM and 53BP1 are required for their anti-recombinogenic roles during homologous recombination. Carcinogenesis 29(1):52–61

    Article  PubMed  CAS  Google Scholar 

  64. Patro BS et al (2011) WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes. J Cell Sci 124(Pt 23): 3967–3979

    Article  PubMed  CAS  Google Scholar 

  65. Vasquez KM (2010) Targeting and processing of site-specific DNA interstrand crosslinks. Environ Mol Mutagen 51(6):527–539

    PubMed  CAS  Google Scholar 

  66. D’Andrea AD (2010) Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med 362(20):1909–1919

    Article  PubMed  Google Scholar 

  67. Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11(7):467–480

    Article  PubMed  CAS  Google Scholar 

  68. Massague J (2004) G1 cell-cycle control and cancer. Nature 432(7015):298–306

    Article  PubMed  CAS  Google Scholar 

  69. Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    Article  PubMed  CAS  Google Scholar 

  70. Babior BM (1999) NADPH oxidase: an update. Blood 93(5):1464–1476

    PubMed  CAS  Google Scholar 

  71. Berasain C et al (2009) Inflammation and liver cancer: new molecular links. Ann N Y Acad Sci 1155:206–221

    Article  PubMed  CAS  Google Scholar 

  72. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    PubMed  CAS  Google Scholar 

  73. Garrett MD, Collins I (2011) Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 32(5):308–316

    Article  PubMed  CAS  Google Scholar 

  74. Wagner JM, Kaufmann SH (2010) Prospects for the Use of ATR Inhibitors to Treat Cancer. Pharmaceuticals 3(5):1311–1334

    Article  CAS  Google Scholar 

  75. Nghiem P et al (2001) ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci USA 98(16):9092–9097

    Article  PubMed  CAS  Google Scholar 

  76. Wilsker D, Bunz F (2007) Loss of ataxia telangiectasia mutated- and Rad3-related function potentiates the effects of chemotherapeutic drugs on cancer cell survival. Mol Cancer Ther 6(4):1406–1413

    Article  PubMed  CAS  Google Scholar 

  77. Wagner JM, Karnitz LM (2009) Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumor cell survival. Mol Pharmacol 76(1):208–214

    Article  PubMed  CAS  Google Scholar 

  78. Caporali S et al (2008) AKT is activated in an ataxia-telangiectasia and Rad3-related-dependent manner in response to temozolomide and confers protection against drug-induced cell growth inhibition. Mol Pharmacol 74(1):173–183

    Article  PubMed  CAS  Google Scholar 

  79. Flatten K et al (2005) The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. J Biol Chem 280(14):14349–14355

    Article  PubMed  CAS  Google Scholar 

  80. Powell SN et al (1995) Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 55(8):1643–1648

    PubMed  CAS  Google Scholar 

  81. Yao SL et al (1996) Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat Med 2(10):1140–1143

    Article  PubMed  CAS  Google Scholar 

  82. Sarkaria JN et al (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59(17):4375–4382

    PubMed  CAS  Google Scholar 

  83. Chalmers AJ et al (2009) Cytotoxic effects of temozolomide and radiation are additive- and schedule-dependent. Int J Radiat Oncol Biol Phys 75(5):1511–1519

    Article  PubMed  CAS  Google Scholar 

  84. Nishida H et al (2009) Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res 37(17):5678–5689

    Article  PubMed  CAS  Google Scholar 

  85. Knight ZA et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125(4):733–747

    Article  PubMed  CAS  Google Scholar 

  86. Toledo LI et al (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18(6):721–727

    Article  PubMed  CAS  Google Scholar 

  87. Charrier JD et al (2011) Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem 54(7):2320–2330

    Article  PubMed  CAS  Google Scholar 

  88. Reaper PM et al (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7(7):428–430

    Article  PubMed  CAS  Google Scholar 

  89. Jacq X et al. (2012) AZ20, a novel potent and selective inhibitor of ATR kinase with in vivo antitumour activity. Cancer Res. 72(8) Suppl1 Abs#1823

    Google Scholar 

  90. Graeber TG et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91

    Article  PubMed  CAS  Google Scholar 

  91. Pires IM et al (2012) Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br J Cancer 107(2):291–299

    Article  PubMed  CAS  Google Scholar 

  92. Bryant HE et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  PubMed  CAS  Google Scholar 

  93. Farmer H et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  PubMed  CAS  Google Scholar 

  94. Starcevic D, Dalal S, Sweasy JB (2004) Is there a link between DNA polymerase beta and cancer? Cell Cycle 3(8):998–1001

    Article  PubMed  CAS  Google Scholar 

  95. Kiyohara C, Takayama K, Nakanishi Y (2006) Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer 54(3):267–283

    Article  PubMed  Google Scholar 

  96. Neijenhuis S et al (2010) Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}. Cancer Res 70(21):8706–8714

    Article  PubMed  CAS  Google Scholar 

  97. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355

    Article  PubMed  CAS  Google Scholar 

  98. Gilad O et al (2010) Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a ­dosage-dependent manner. Cancer Res 70(23):9693–9702

    Article  PubMed  CAS  Google Scholar 

  99. Hoglund A et al (2011) Therapeutic implications for the induced levels of Chk1 in Myc-expressing cancer cells. Clin Cancer Res 17(22):7067–7079

    Article  PubMed  Google Scholar 

  100. Ferrao PT et al (2012) Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene 31(13):1661–1672

    Article  PubMed  CAS  Google Scholar 

  101. Wilsker D et al (2012) Targeted mutations in the ATR pathway define agent-specific requirements for cancer cell growth and survival. Mol Cancer Ther 11(1):98–107

    Article  PubMed  CAS  Google Scholar 

  102. Zhang C et al (2009) PF-00477736 mediates checkpoint kinase 1 signaling pathway and potentiates docetaxel-induced efficacy in xenografts. Clin Cancer Res 15(14):4630–4640

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola J. Curtin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Middleton, F.K., Curtin, N.J. (2013). ATR as a Therapeutic Target. In: Panasci, L., Aloyz, R., Alaoui-Jamali, M. (eds) Advances in DNA Repair in Cancer Therapy. Cancer Drug Discovery and Development, vol 72. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4741-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4741-2_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4740-5

  • Online ISBN: 978-1-4614-4741-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics