Skip to main content

Efficient Numerical Techniques for Analyzing Microstrip Circuits and Antennas Etched on Layered Media via the Characteristic Basis Function Method

  • Chapter
  • First Online:
Computational Electromagnetics
  • 3401 Accesses

Abstract

The first part of this chapter presents an efficient technique for the electromagnetic analysis of planar microstrip structures, called the Characteristic Basis Function Method (CBFM). In this method, the original problem geometry is segmented into smaller regions called blocks, and high-level basis functions are generated to represent the electromagnetic characteristics of these sections. These basis functions are referred to as the Characteristic Basis Functions (CBFs), and their use leads to a reduced matrix equation system. Since the method only requires the solution a relatively of small-size matrix equations, associated with isolated domains, the computational burden is relieved, and an acceleration of the solve time is achieved. In the second part of the chapter, the Characteristic Basis Function Method is combined with the Equivalent Medium Approach (EMA) for fast and efficient design of microstrip circuits etched on layered media. In particular, the developed EMA method substitutes the stratified environment with an equivalent “homogeneous” medium whose Dyadic Green’s Functions (DGF’s) can be evaluated analytically. The above technique yields reliable results and reduces the computational time in comparison with the conventional Method of Moments (MoM). Some examples that demonstrate the accuracy and the efficiency of the described procedures are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson AF, Ray SL, Mittra R (1998) Computational methods for electromagnetics. IEEE Press, New York

    Google Scholar 

  2. Zhao J-S, Chew WC, Lu C-C, Michielssen E, Song J (1998) Thin-stratified medium fast-multipole algorithm for solving microstrip structures. IEEE Trans Microw Theory Tech 46(4):395–403

    Article  Google Scholar 

  3. Canning X (1993) Improved matrix localization method. IEEE Trans Antenn Propag 41(5):659–667

    Article  Google Scholar 

  4. Sabet KF, Cheng J-C, Katehi LPB (1999) Efficient wavelet-based modeling of printed circuit antenna arrays. MicrowAntenn Propag IEE Proc 146(4):298–304

    Article  Google Scholar 

  5. Prakash VVS, Kwon SJ, Mittra R (2002) An efficient solution of a dense system on linear equations arising in the method of moments. Microw Opt Technol Lett 33(3):196–200

    Article  Google Scholar 

  6. Mittra R, Prakash VVS, Ma J, Yeo J, Huang N, Kwon SJ (2002) MNM-A novel technique for iterative solution of matrix equations arising in the method-of-moments formulation. Microw Opt Technol Lett 33(2):74–78

    Article  Google Scholar 

  7. Howard GE, Chow YL (1990) Diakoptic theory for microstrip strctures. Antenna and propagation international symposium, Dallas, vol 3, pp 1079–1082, May 1990

    Google Scholar 

  8. Schwering F, Puri NN, Butler CM (1986) Modified diakoptic theory of antennas. IEEE Trans Antenn Propag 34(11):1273–1281

    Article  Google Scholar 

  9. Ooms S, Zutter DD (1998) A new diakoptic-based moments method for planar circuits. IEEE Trans Microw Theory Tech 46(3):280–291

    Article  Google Scholar 

  10. Suter E, Mosing JR (2000) A subdomain multilevel approach for the efficient MoM analysis of large planar antennas. Microw Opt Technol Lett 26(4):270–277

    Article  Google Scholar 

  11. Matekovits L, Laza VA, Vecchi G (2007) Analysis of large complex structures with the synthetic-functions approach. IEEE Trans Antenn Propag 55(9):2509–2521

    Article  Google Scholar 

  12. Matekovits L, Vecchi G, Bercigli M, Bandinelli M (2009) Synthetic-functions analysis of large aperture-coupled antennas. IEEE Trans Antenn Propag 57(7):1936–1943

    Article  Google Scholar 

  13. Kwon SJ, Du K, Mittra R (2003) Characteristic basis function method: a numerically efficient technique for analyzing microwave and RF circuits. Microw Opt Technol Lett 38(6):444–448

    Article  Google Scholar 

  14. Bianconi G (2011) Efficient numerical techniques for analyzing microstrip circuits and antennas. Ph.D. dissertation, University of Pisa, Pisa

    Google Scholar 

  15. Bianconi G, Pelletti C, Mittra R, Du K, Monorchio A (2011) An efficient technique for the evaluation of the reduced matrix in the context of the CBFM for layered media. IEEE Antenn Wireless Propag Lett 10:674–677

    Article  Google Scholar 

  16. Prakash VVS, Mittra R (2002) Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations. Microw Opt Technol Lett 36(2):95–100

    Article  Google Scholar 

  17. Lucente E, Monorchio A, Mittra R (2008) An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems. IEEE Trans Antenn Propag 56(4):999–1007

    Article  Google Scholar 

  18. Mittra R, Bianconi G, Pelletti C, Du K, Genovesi S, Monorchio A (2012) A computationally efficient technique for prototyping planar antennas and printed circuits for wireless applications. Proc IEEE 100(7):2122–2131

    Article  Google Scholar 

  19. Bianconi G, Pelletti C, Mittra R, Du K, Genovesi S, Monorchio A (2012) A spectral domain characteristic basis function method for efficient simulation of microstrip devices in layered media. IET MicrowAntenn Propag 6(4):411–417

    Article  Google Scholar 

  20. Bianconi G, Pelletti C, Mittra R (2012) Efficient technique for analysis of printed microwave circuits using characteristic basis functions. Electron Lett 48(12):701–702

    Article  Google Scholar 

  21. Chow YL, Yang JJ, Fang DF, Howard GE (1991) Closed form spatial Green’s function for the thick substrate. IEEE Trans Microw Theory Tech 39(3):588–592

    Article  Google Scholar 

  22. Aksun MI, Mittra R (1992) Derivation of closed-form Green’s functions for a general microstrip geometry. IEEE Trans Microw Theory Tech 40(11):2055–2062

    Article  Google Scholar 

  23. Dural G, Aksun MI (1995) Closed-form Green’s functions for general sources in stratified media. IEEE Trans Microw Theory Tech 43(7):1545–1552

    Article  Google Scholar 

  24. Aksun MI, Mittra R (1996) Closed-form green’s functions and their use in the method of moments. In: Guran A, Mittra R, Moser PJ (eds) Electromagnetic wave interactions. Series B, World Scientific Company, New Jersey, vol 12, pp 1–37

    Google Scholar 

  25. Michalski KA, Mosig JR (1997) Multilayered media green’s functions in integral equation formulations. IEEE Trans Antenn Propag 45(3):508–519

    Article  Google Scholar 

  26. Chew WC (1995) Waves and fields in inhomogeneous media, Electromagnetic Waves. IEEE Press, New York

    Google Scholar 

  27. Lucas SK, Stone HA (1995) Evaluating infinite integrals involving Bessel functions of arbitrary order. J Comput Appl Math 64:217–231

    Article  MathSciNet  MATH  Google Scholar 

  28. Hua Y, Sarkar TK (1989) Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans Antenn Propag 37(2):229–234

    Article  Google Scholar 

  29. Liu Y, Li L-W, Yeo T-S, Leong M-S (2002) Application of DCIM to the MPIE-MoM analysis of 3-D PEC objects in multilayered media. IEEE Trans Antenn Propag 50(2):157–162

    Article  Google Scholar 

  30. Yuan M, Zhang Y, De A, Ji Z, Sarkar TK (2008) Two-dimensional discrete complex image method (DCIM) for closed-form green’s function of arbitrary 3D structures in general multilayered media. IEEE Trans Antenn Propag 56(5):1350–1357

    Article  MathSciNet  Google Scholar 

  31. Onal T, Aksun MI, Kinayman N (2006) An efficient full-wave simulation algorithm for multiple vertical conductors in printed circuits. IEEE Trans Microw Theory Tech 54(10):3739–3745

    Article  Google Scholar 

  32. Yeo J, Mittra R (2003) An algorithm for interpolating the frequency variation of method-of-moments matrices arising in the analysis of planar microstrip structures. IEEE Trans Microw Theory Tech 51(3):1018–1025

    Article  Google Scholar 

  33. Tokgoz C, Dural G (2000) Closed-form green’s functions for cylindrically stratified media. IEEE Trans Microw Theory Tech 48(1):40–49

    Article  Google Scholar 

  34. Bianconi G, Genovesi S, Monorchio A, Mittra R, Du K (2010) A new technique for efficient evaluation of the multilayered green’s function for frequency sweep analysis of planar microstrip circuits. IEEE Antenn Wireless Propag Lett 9:428–431

    Article  Google Scholar 

  35. Yamashita E, Atsuki K, Hirahata T (1981) Microstrip dispersion in a wide-frequency range. IEEE Trans Microw Theory Tech 29(6):610–611

    Article  Google Scholar 

  36. Yeo J, Köksoy S, Prakash VVS, Mittra R (2004) Efficient generation of method of moments matrices using the characteristic function method. IEEE Trans Antenn Propag 52(12):3405–3409

    Article  Google Scholar 

  37. Pelletti C, Bianconi G, Mittra R, Monorchio A, Panayappan K (2012) Numerically efficient method of moments formulation valid over a wide frequency band including very low Frequencies. IET MicrowAntenn Propag 6(1):46–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Bianconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bianconi, G., Mittra, R. (2014). Efficient Numerical Techniques for Analyzing Microstrip Circuits and Antennas Etched on Layered Media via the Characteristic Basis Function Method. In: Mittra, R. (eds) Computational Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4382-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4382-7_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4381-0

  • Online ISBN: 978-1-4614-4382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics